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Abstract The efficiency of the k-Nearest Neighbour classifier depends on the size of the
training set as well as the level of noise in it. Large datasets with high level of noise lead to
less accurate classifiers with high computational cost and storage requirements. The goal of
editing is to improve accuracy by improving the quality of the training datasets. To obtain
such datasets, editing removes noise and mislabeled data as well as smooths the decision
boundaries between the discrete classes. On the other hand, prototype abstraction aims to
reduce the computational cost and the storage requirements of classifiers by condensing
the training data. This paper proposes an editing algorithm called Editing through Homo-
geneous Clusters (EHC). Then, it extends the idea by introducing a prototype abstraction
algorithm that integrate the EHC mechanism and is capable of creating a small noise-free
representative set of the initial training data. This algorithm is called Editing and Reduction
through Homogeneous Clusters (ERHC). Both are based on a fast and parameter free iter-
ative execution of k-means clustering that forms homogeneous clusters. Both consider as
noise and remove clusters consisting of a single item. In addition, ERHC summarizes the
items of the remaining clusters by storing the mean item for each one in the representative
set. EHC and ERHC are tested on several datasets. The results show that both run very fast
and achieve high accuracy. In addition, ERHC achieves high reduction rates.
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1 Introduction

Classification is a traditional data mining problem that has attracted the interest of many
researchers in the past decades [15]. Classification algorithms (or classifiers) attempt to
assign unclassified items to a class from a set of predefined classes. Classifiers can be
divided into eager and instance-based (or lazy) classifiers. Contrary to eager classifiers,
lazy classifiers do not build any classification model that is then used to classify new items.
Instead, they use the training set as the classification model.

The k-Nearest Neighbor (k-NN) classifier [5, 6] is the reference lazy classification
algorithm. It is a simple and easy to implement classifier that can be exploited in many
application domains and easily integrated in many systems. Moreover, the k-NN classifier
is analytically tractable and for k¥ = 1 and unlimited items the error rate is asymptotically
never worse than twice the minimum possible, which is the Bayes rate [5].

When a new item needs to be classified, the k-NN classifier scans the training data. In
particular, it classifies an item x by searching in the available training set and retrieving the
k nearest items (neighbours) to x according to a distance metric. Then, x is classified to the
most common class among the classes of the k nearest neighbours. This class is often called
major class and is determined by a nearest neighbours voting procedure. Possible ties during
voting (more than one classes are voted to be major classes) are resolved by choosing the
class of the nearest neighbour or randomly.

The k-NN classifier is considered to be an effective classifier. However, it has some
weaknesses that render its use inefficient. The first one is that it is noise-sensitive. More
specifically, accuracy highly depends on the quality of the training set. Mislabeled items,
noise, outliers and overlaps between regions of discrete classes, negatively affect its accu-
racy. This drawback is partially remedied by examining a larger neighbourhood, i.e., using
a high k value. However, this assumes that noise is uniformly distributed in the training set
and requires k to be tuned via a trial and error procedure. Furthermore, high k values do
not clearly define the boundaries between distinct classes. Another weak point is the high
computational cost involved. The algorithm must compute all distances between each new,
unclassified item and all training items. Although nowadays systems are equipped with
powerful processors, the distance computations are time-consuming and, in cases of time-
constraint environments, can be prohibitive. Finally, the high storage requirements needed
to store the training set is also weak point of the k-NN classifier. Contrary to eager classi-
fiers, which can remove the training data after the construction of the classification model,
the k-NN classifier needs the training data to be always available.

These weaknesses constitute an active research problem and have attracted the interest
of the data mining community in the past decades. Several Data Reduction Techniques
(DRTs) can effectively cope with the aforementioned weaknesses. They are distinguished
into prototype selection algorithms [11] and prototype abstraction [36] algorithms. The
former algorithms select representative items (or prototypes) from the initial training set,
whereas the later ones create prototypes by summarizing similar items in the training set.
Prototype selection algorithms are also distinguished into two categories. They can be either
condensing or editing algorithms. Condensing and prototype abstraction algorithms aim to
create a small representative set of the training set, called the condensing set. This has the
benefits of low storage requirements and computational cost without sacrificing accuracy.
In contrast, editing algorithms have as goal to improve accuracy rather than to achieve high
reduction rates. Thus, they try to create an edited set that does not contain region overlaps
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Fig. 1 Smoothing decision boundaries and removing noise

between classes. To achieve this, they attempt to remove outliers, noise and mislabelled data
and smooth the boundaries between classes (see Fig. 1).

High levels of noise in the training set prevent many condensing or prototype abstraction
algorithms from achieving high reduction rates. In effect, the higher the level of noise,
the lower the reduction rates achieved. Therefore, effective application of a condensing or
prototype abstraction algorithm usually implies the application of editing beforehand [7,
19]. Hence, an editing algorithm should be used on a training set that contains noise in
order to either improve accuracy or make more effective the application of condensing and
prototype abstraction algorithms. It is worth mentioning that some condensing approaches
combine the idea of editing. They are called hybrid algorithms (see [11, 36]).

Figure 2 summarizes the k-NN classification process through data reduction. The whole
process includes two phases, preprocessing and classification. Certainty, the preprocessing
phase is optional. Generally, there are four possible combinations of preprocessing: (i) no-
preprocessing, (ii) only editing, (iii) only condensing, and (iv) both editing and condensing.
If the training set does not contain noise and misleading data and its size is small, no prepro-
cessing is required. When the size of the training set is small, but it contains noise, only an
editing algorithm should be executed during preprocessing. On the other hand, in cases of
large and noise-free training sets, data reduction without editing should be executed. Finally,
in cases of large training data with noise, both kinds of preprocessing algorithms must be
ran.
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Fig. 2 Data reduction preprocessing
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Here, we should clarify that the concept of data reduction is wider [12]. It does not
only concern prototype selection and abstraction algorithms. Many other preprocessing
algorithms have been characterized as DRTs. They include feature selection and generation
algorithms as well as space transformation techniques. However, in this paper, we consider
DRTs from the point of view of prototype selection and abstraction. Moreover, we should
note that prototype selection and abstraction algorithms can be hybridized with other type
of DRTs [8, 37] or other learning algorithms (e.g., [14]).

Although editing algorithms contribute in obtaining high quality training data, they con-
stitute an extra costly preprocessing step. Moreover, to the best of our knowledge, all the
well-known editing algorithms are parametric [9, 35, 39]. Users have to define at least
one parameter value via expensive trial-and-error procedures (tuning). These observations
are behind the motivation of our work. In [27], we presented an effective parameterless
editing algorithm called EHC. Furthermore, in [25, 28], we proposed RHC, an efficient
parameterless prototype abstraction algorithm. Both are very fast and are based on a sim-
ilar k-means clustering [20, 41] procedure that finds homogeneous clusters, i.e., clusters
with items of a specific class. In this paper, we extend our previous work and develop and
evaluate an effective fast, parameterless prototype abstraction algorithm which combines
the ideas of EHC editing and RHC data abstraction. It is called Editing and Reduc-
tion though Homogeneous Clusters (ERHC) and is a descendant of our RHC and EHC
algorithms.

The rest of the paper is organized as follows: Section 2 reviews the most well-known
editing algorithms. Section 3 presents the family of the three algorithms based on homo-
geneous clusters, i.e., EHC, RHC and ERHC. Performance evaluation experiments and the
results of a non-parametric test are presented in Section 4. Finally, Section 5 concludes the

paper.

2 Editing algorithms
2.1 The edited nearest neighbour (ENN) rule

The reference editing algorithm is the Wilson’s Edited Nearest Neighbor (ENN) rule [39].
It constitutes the base of all other editing algorithms. ENN-rule is very simple. Algorithm
1 lists the pseudo-code of ENN-rule. Initially, the edited set (ES) is set to be equal to the
training set (7'S) (line 1). For each item x of T'S, the algorithm scans 7S and retrieves its
k nearest neighbors (line 3). If x is misclassified by the majority vote of the retrieved near-
est neighbours, it is removed from ES (lines 4-7). ENN-rule considers wrongly classified
items to be noise or close-border items and, thus, they must be removed. Note that, in each
algorithm iteration, ENN-rule searches for nearest neighbours in the original training set
and not in the “under construction” edited set.

Obviously, the cost of editing depends on the size of the training set. In cases of large
datasets, ENN-rule is a time-consuming algorithm since it must compute all distances
between the training items. More specifically, w distances must be computed, where
N is the number of training items.

A crucial issue that should be addressed is the determination of the value of k that defines
the size of the examined neighbourhood. [13, 21, 40] consider £ = 3 to be a typical value.
This is adopted in many papers (e.g. [30]), whereas, other papers use k = 3 and additional
k values (e.g., [17, 34]). In some cases, researchers determine the value of k that achieves
the best performance through trial-and-error procedures (e.g., [38]). In [39], the impact of
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Algorithm 1 ENN-rule
Input: 7S, k

Output: ES
1: ES<TS
2: foreachx € TS do
3: N Ns <« find the k nearest to x neighbors in 7S — {x}
4 majorClass < find the most common class of NNs
5: if xc1455 7 majorClass then
6: ES < ES — {x}
7: end if
8: end for
9: return ES

k is discussed in detail. Furthermore, in [17], a large number of k values are experimentally
evaluated. It turns out that the best value of k& depends on the dataset at hand and should
be determined by considering the distribution of items in the multidimensional space. Even
the best value of k may not be optimal and it may remove items that are not noise (see [13])
or keep items that are noise. This happens because ENN-rule uses a unique k value for the
entire training set. Different k values may be optimal for different regions in space.

2.2 All k-NN

All-kNN [35] is a popular variation of ENN-rule. It iteratively executes ENN-rule with
different k values (see Algorithm 2. All-kNN adopts kmax as an upper limit for the value
of k. Initially, the edited set (ES) is set to be the whole training set (7'S) (line 1). For each
item x in 7S (line 2), All-kNN applies the k-NN classifier on the items of 7S (lines 6-7),
initially with £ = 1, and tries to remove x from ES in a way similar to ENN-rule. If x is
misclassified, it is removed and the procedure continues with the next item (lines 8—10).
Otherwise, k is incremented by one (line 12) and the algorithm retries to remove x. If the
item is not removed after kmax iterations (line 5), x remains in the final £S and All-kNN
continues with the next item.

Since All-kNN uses more than one values for k, it removes more items than ENN-rule.
Although All-kNN is an iterative version of ENN-rule, an efficient implementation of it
does not re-compute the same distances again and again. Therefore, All-kNN computes as
many distances as ENN-rule and is parametric, too. The value of kmax must be defined
by the user. This usually implies tuning via trial-and-error. Garcia-Borroto et al. consider
kmax =7 or kmax = 9 to be appropriate values [13].

2.3 Multiedit

Multiedit [9] is another well-known editing approach. Its pseudo-code is presented in Algo-
rithm 3. Initially, the edited set (E'S) is set to be equal to the training set (7S) (line 1). Then,
TS is divided into n random subsets, s1, 52, ..., S, (line 5). The algorithm continues by
applying ENN-rule over each item x € s; (line 7) of each subset s; (line 6), but searching for
the single nearest neighbor (1-NN) in the modulo 7 following subset, i.€., $(i+1) mod » (line
8). The misclassified items are removed from E S (line 10). If at least one item is removed,
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Algorithm 2 All-kNN
Input: 7S, kmax

Output: ES
1: ES<TS
2: foreachx € TS do
3 k<« 1
4: flag < FALSE
5: while (k < kmax) and (flag == FALSE) do
6: N Ns < find the k nearest to x neighbors in 7S — {x}
7: majorClass < find the most common class in NNs
8: if x¢145s # majorClass then
9: ES < ES — {x}
10: flag < TRUE
11: end if
12: k<—k+1
13: end while
14: end for

15: return ES

TS is setto be ES (line 20) and the whole process is repeated. Multiedit continues until the
last R iterations produce no editing (lines 11,15-16,21).

Here, parameter k is not used since multiedit utilizes the 1-NN classifier. However,
parameters n and R influence the resulting edited set. Parameter n > 3 defines the number
of subsets. In many papers (e.g., [13, 34]), n = 3 is either adopted or proposed. Parameter R
defines the number of non-editing iterations. In [13], R = 2 is suggested as an appropriate
value. Nevertheless, the best values for these parameters can not be determined without
tuning through a trial-end-error procedure.

Multiedit usually achieves higher reduction rates than ENN-rule. It can successfully
remove noise, outliers and close-border items. However, it may also remove items that are
not noise. If items of two or more classes are close to each other, multiedit may eliminate
entire classes [13]. Another drawback of multiedit is that it is based on a random formation
of subsets, i.e., repeated applications may build a completely different edited set from the
same training data.

Multedit is usually more time-consuming than ENN-rule. However, it may compute even
fewer than w distances. An implementation of multiedit that does not compute a dis-
tance more than once should have the distances that have been already computed available
until the end of the execution. Therefore, such an implementation requires more memory.
In case of a simple implementation where each distance may be computed more than once,
the computational cost of the algorithm highly depends on the value of R.

2.4 Other editing algorithms

Subsections 2.1, 2.2 and 2.3 presented in detail three state-of-the-art editing algorithms that
we use for comparison purposes in our experimental study in Section 4. Many more editing
approaches have been proposed in the literature.

EENProb and ENNth [38] are extensions of ENN-rule. Both retrieve the k nearest neigh-
bors, and then perform editing based on probability estimations. Repeated ENN (RENN)
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rule [35] is also a variation of ENN-rule. Actually, it is quite similar to All-kNN. RENN-rule
applies ENN-rule in an iterative way until each item’s majority of k nearest items have the
same class. In [17], another simple variation of ENN-rule is proposed that places an item in
the edited set, only if all its k nearest neighbors share the same class label with it (distance
ties increase the value of k).

Sanchez et al. proposed two editing algorithms that are based on geometric informa-
tion provided by proximity graphs [34]. They are also based on the concept of removal
of misclassified items. To the best of our knowledge, they are the only parameterless edit-
ing algorithms. Nevertheless, the type of proximity graphs used influence the resulting
edited set. In [34], two types of proximity graphs were used. Consequently, four editing
approaches were obtained and evaluated. From this point of view, even these algorithms can
be characterized as parametric methods.

k-NCN editing and its iterative version [30] are also based on ENN-rule. Particularly,
they use the k nearest centroid neighbourhood classifier [33] instead of the k-NN clas-
sifier. Both are based on the following simple idea: the appropriate neighbourhood that
should be examined for each item is defined by taking into consideration not only its nearest
neighbours but also the symmetrical distribution of neighbours around it.

In [4, 30] a depuration algorithm is proposed for editing training data. In addition to
removing some training items, the algorithm also changes the class labels of some items.
To achieve this, it uses two input parameters (see [4] or [30] for details). [18] considers and
evaluates editing approaches based on the depuration algorithm and proposes the Neural

Algorithm 3 Multiedit
Input: 7S, n, R
Output: ES
1: ES<TS
2:r <0
3: repeat
4:  flag < FALSE
5: S <« set of n random subsets, s1, $2,...,5, of TS
6: foreachs; € Sdo
7: for each x € s; do
8: nn < find the nearest neighbor in s +1)modn
9: if Xclass 7 Nhclass then
10: ES < ES — {x}
11: flag < TRUE
12: end if
13: end for
14: end for

15: if flag = FALSE
16: r<«r+1

17: else

18: r <20

19: end if

20:. TS < ES

21: until r == R {until the last R iterations do not edit data}

22: return ES
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Network Ensemble Editing (NNEE). This method is also parametric. NNEE trains a neu-
ral network ensemble that is then used to relabel some items. Last by not least, a recent
paper [31] proposes the use of local support vector machines for noise reduction. Like the
other methods, its performance depends on parameter tuning.

3 Algorithms based on homogeneous clusters
3.1 An algorithm for finding homogeneous clusters

We propose three algorithms that are based on a procedure that forms clusters containing
items of a specific class only, i.e., they are homogeneous clusters. It is a quite simple pro-
cedure that utilizes k-means clustering. More specifically, initially, the whole training set
is considered to be a non-homogeneous cluster. The algorithm for finding homogeneous
clusters begins by computing the class-mean for each class by averaging the corresponding
items of the cluster. Therefore, for a dataset with r classes, it estimates r class-means. The
algorithm continues by executing k-means clustering adopting the r class-means as initial
means. The result is the construction of r clusters. The above clustering procedure is applied
recursively on the items of each non-homogeneous cluster and terminates when all clus-
ters become homogeneous. Notice that using the class-means as initial means for k-means
clustering, the number of clusters is automatically determined.

The algorithm is easy to implement. Algorithm 4 lists the pseudo-code of a possible
implementation. It uses a queue structure Q to store clusters. Initially, Q holds the whole
training set 7S as an unprocessed cluster (lines 2-3). In each iteration, the head cluster C
is dequeued from Q (line 5). If C is non-homogeneous (line 8), a class-mean for each class
in C is computed and added to set R (lines 9—-12). The later as well as C is the input to a
k-means clustering call (line 13). The resulting clusters Clusters are enqueued in Q (lines
14-16). The repeat-until loop (lines 4, 18) terminates when Q is empty, i.e., all clusters
become homogeneous. The proposed algorithms, i.e., RHC, EHC and ERHC, differ to each
other on how they treat the homogeneous clusters (line 7).

In effect, when the algorithm is executed over a noise-free dataset, it forms a small num-
ber of large clusters. On the other hand, if a dataset with high level of noise is used, a high
number of small clusters are constructed. Concerning the computational cost, we can eas-
ily conclude that the algorithm is fast. It uses the fast k-means clustering algorithm that is
also sped-up by considering as initial means the means of the classes that are present in
each cluster. One expects that the resulting clusters are quickly consolidated and the cost
is lower than when opting for random means initialization. It is worth mentioning that we
used the full cluster consolidation for the stopping condition of k-Means clustering. The
algorithm could have been even faster had we used another stopping condition. Certainly,
the algorithm always builds the same clusters regardless of data ordering. Last but not least,
the algorithm is quite simple and can be easily integrated in many existing data mining soft-
ware tools. Since EHC, RHC and ERHC are based on this algorithm, they inherit all these
desirable properties.

3.2 The editing through homogeneous clusters algorithm
As we already mentioned in Section 2, editing algorithms either extend ENN-rule or are

based on the same idea. The proposed Editing through Homogeneous Clusters (EHC)
algorithm follows a completely different, parameterless strategy in order to remove noise,

@ Springer



Efficient editing and data abstraction by linding homogeneous clusters 335

Algorithm 4 FindHomogeneousClusters

Input: 7S
Output: RS

I: RS <~ o

2: Q <« O

3: Enqueue(Q, T'S)

4: repeat

5:  C <« Dequeue(Q)

6: if C is homogeneous then
7: RS < DATA_REDUCTION(RS, C) {RHC or EHC or ERHC is called}
8
9

else
: R < @ {R s the set of class means}
10: for each class M in C do
11: R < RUmean_of (M)
12: end for
13: Clusters < K-MEANS(C, R)
14: for each cluster Cl € Clusters do

15: Enqueue(Q, Cl)
16: end for
17:  end if

18: until ISEmpty(Q) {until all constructed clusters are homogeneous}
19: return RS

mislabelled and close-border data items. EHC uses the procedure for finding homogeneous
clusters (see Algorithm 4). When a homogeneous cluster is identified, EHC counts the items
in the cluster and removes it if it has only one item. We call the clusters that have only one
item, one-item clusters. The idea behind EHC is quite simple: one-item-clusters are redun-
dant. These items are probably outliers or lie in a region of a different class (noise) or lie
close to a decision-boundaries region, and thus, they must be removed.

Two examples that demonstrate the operation of EHC are depicted in Figs. 3 and 4.
More specifically, Fig. 3 demonstrates how EHC identifies and removes a close-border item,
while Fig. 4 demonstrates how the algorithm removes an item that is noise. Note that non-
homogeneous clusters are depicted with dashed borders. In particular, Fig. 3a presents a
dataset with a border item that should be removed. Initially, EHC computes the class-means
by averaging the items that belong to each class (Fig. 3b). Then, k-means is executed using
the class-means as initial means and identifies two clusters (Fig. 3c): cluster A is non-
homogeneous while cluster B is homogeneous. Since cluster B is homogeneous and has
more than one item, it is ignored. Then, the class-means in cluster A are computed (Fig. 3d)
and k-means is executed on the data of the particular cluster. The result is the construction
of two homogeneous clusters (Fig. 3e). Since cluster D is a one-class cluster, it is removed
(Fig. 3f). In an analogous way, EHC removes the item that represents noise in Fig. 4a. EHC
identifies and removes outliers in a similar way. X

EHC may assign a typical data item (that is not noise or a close-border item) to an one-
item cluster and remove it. For instance, suppose that a non-homogeneous cluster with two
items is built. EHC will remove both items even when one of them belongs to the major
class of the region. It is worth mentioning that contrary to all other editing methods, EHC
does not compute distances between “real” items. It computes distances between items and
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Fig. 3 EHC: Smoothing decision boundaries

mean items. Moreover, contrary to ENN-rule and some of its variations that compute a
fixed number of distances regardless the item distribution in the multidimensional space,
the number of distances computed by EHC is difficult to predict in advance. It exclusively
depends on the item distribution in the data space. The main advantages of EHC are that,
contrary to all other editing approaches, it is very fast and is the only parameterless edit-
ing algorithm. Hence, costly and time-consuming trial-end-error procedures for parameter
tuning are avoided.

3.3 The reduction through homogeneous clusters algorithm

Although the Reduction through Homogeneous Clusters (RHC) algorithm [25, 28] and EHC
are based on the idea of forming homogeneous clusters (see Algorithm 4), each one aims to a

@ Springer



Efficient editing and data abstraction by linding homogeneous clusters 337

o O Mean of ciasell O
0 O O CircIeD O
- O OD a | . O (,D |
O o O O o O
oo Noisy item = D:::zsnsoéuare
(a) initial data (b) means of classes

O o
A ‘g E] / Mean of class O O
Circle
(d) means of classes in clus- (e) k-Means on (f) final edited set
ter A non-homogeneous  cluster

A

Fig. 4 EHC: Removing noise

different goal. RHC is a prototype abstraction algorithm while EHC is an editing algorithm.
RHC, like other condensing and prototype abstraction algorithms [22, 23, 29], is based on
the concept of homogeneity. When a homogeneous cluster is constructed, RHC computes
its mean by averaging the items that have been assigned to it. This mean item is stored in
the condensing set as prototype. Algorithmically, RHC differs from EHC in the following
point: EHC stores in the edited set all training items that have not been assigned to one-item
clusters, while RHC computes the mean item for each homogeneous cluster and stores it in
the condensing set.

Considering RHC, we realize that it generates many prototypes for the close-border data
areas and few prototypes for the non-close-border data areas. Hence, the more the classes
in the data and the higher the level of noise, the more borders exist, and therefore, the
more prototypes are generated. By adopting the class-means as initial means for k-means
clustering, RHC quickly finds homogeneous clusters and also achieves high reduction rates.
Contrary to many other condensing and prototype abstraction algorithms, RHC builds the
same condensing set regardless the order of the training data.

In effect, RHC retains the advantages of PSC [22-24, 26] and RSP3 [29] and avoids their
drawbacks. PSC is fast and parametric. RSP3 is parameterless but needs high preprocessing
cost because it executes an “expensive” procedure for finding the most distant items in
clusters. Contrary to PSC, RHC is parameterless. Contrary to RSP3, RHC is a fast algorithm
because it is based on the fast k-means clustering that is also sped-up by the class-mean
initializations.

In [25, 28], RHC was compared to the state-of-the-art CNN-rule [16], IB2 [1, 2],
RSP3, PSC on several datasets. The performance measurements were validated by the non-
parametric test. The results show that almost in all cases, RHC appears to achieve the highest
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reduction rates with the lowest preprocessing cost and an acceptable classification accu-
racy, similar to that of CNN-rule. Moreover, the results illustrated that the reduction rates
achieved by RHC depend on the level of noise in the training data, and this is true for all
data reduction algorithms.

3.4 The editing and reduction through homogeneous clusters algorithm

The Editing and Reduction through Homogeneous Clusters (ERHC) algorithm constitutes a
combination RHC and EHC. Practically, it is a variation of RHC that can effectively manage
datasets with noise. ERHC works in a way similar to RHC and EHC. However, whenever a
homogeneous cluster is identified, ERHC counts the items in it. If it contains a single item (it
is one-item cluster), ERHC removes it. If the homogeneous cluster has more than one item,
its cluster-mean is computed and placed in the condensing set as a prototype. Therefore, the
final condensing set built by ERHC contains the cluster-means of the homogeneous clusters
that contain more than one item.

The aforementioned procedure is depicted in Fig. 5. Suppose that the initial training
set contains two classes, squares and circles (Fig. 5a). ERHC computes two class-means
(Fig. 5b). k-Means is applied on the training set and builds two clusters, A and B (Fig. 5c).
A is homogeneous and contains more than one item. Thus, its cluster-mean is placed in the
condensing set. B is non-homogeneous since it contains items from both classes. Therefore,
ERHC computes two class-means (Fig. 5d), and then k-means is applied on B and builds
clusters C and D (Fig. 5e). Since D is homogeneous and contains more than one item, its
cluster-mean is placed in the condensing set. Since C is non-homogeneous, its class-means
are computed (Fig. 5f) and k-means is applied on C building clusters E and F (Fig. 5g).
Then, the cluster-mean of the homogeneous cluster F is placed in the condensing set, while
the class-means are computed for the non-homogeneous cluster E (Fig. Se). k-means is
applied on E and the result is clusters G and H. Both are homogeneous (Fig. 51). However,
H is one-item-cluster. Hence, it is removed (it is not represented in the condensing set).
The cluster-mean of G is placed in the condensing set (Fig. 5j). The final condensing set
contains only four items (reduction rate over 85 %). Note that the only difference between
RHC and ERHC is that RHC will place in the condensing set a prototype for cluster H.

Obviously, ERHC is quite similar to RHC. However, we expect that the simple editing
mechanism integrated in ERHC can effectively improve classification performance espe-
cially when data contains noise. ERHC inherits all the benefits of the algorithm for finding
homogeneous cluster (Algorithm 4). Therefore, it is very fast and does not depend on the
data order in the training set. We note that ERHC is not equivalent to the successive exe-
cution of EHC and RHC algorithms (let’s call this EHC-RHC). Different clusters are built
by the two approaches and consequently different reduction rates are achieved. Also, EHC-
RHC has higher preprocessing cost than ERHC since it applies the procedure for finding
homogeneous clusters twice: once on the original and once on the edited data. ERHC can
simultaneously remove noise from the data and reduce the size of the training set.

4 Performance evaluation

This section presents the results of the experiments we conducted. Subsection 4.1 presents
the experimental study regarding EHC, while Subsection 4.2 concerns ERHC. In [25,
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28], we compared RHC to CNN-rule [16], IB2 [1, 2], RSP3 [29], PSC [22-24, 26] on
original and edited forms of several datasets. Since the performance of RHC has been
extensively evaluated and experimentally compared to state-of-the-art condensing and pro-
totype abstraction algorithms, this paper does not include comparison experiments for the
particular algorithms.

In all experimentations, the euclidean distance was adopted as the distance metric. More-
over, all algorithm implementations were coded in C. The experiments were run over
datasets distributed by the KEEL dataset repository! [3] and the UCR Time Series Clas-
sification/Clustering Homepage.? All measurements are averages obtained via a five-fold
cross-validation. Accuracy measurements were estimated by executing the 1-NN classifier
on the resulting (reduced) training sets.

Please note that we have integrated the algorithms presented in this paper, i.e., EHC,
RHC, ERHC, ENN-rule, Multiedit and All-k-NN as well as many other data reduction
techniques in WebDR.? This is a web application that allows the user to plan and run
experiments over several known datasets through an interactive interface. All conducted
experiments can be easily re-executed by the interested reader.

4.1 Experimental study for EHC
4.1.1 Experimental setup

EHC was evaluated on fifteen datasets. We downloaded thirteen datasets from the reposi-
tories (the first ten from KEEL and the rest from UCR) and give their profile in Table 1.
The LIR dataset is an almost noise-free dataset and some datasets have low levels of noise.
Since, we wanted to test how editing behaves on noise-free datasets, we decided to include
them in our experimentation. Moreover, we built two additional datasets by adding 10 %
random noise in the LS and PH datasets. We refer to these datasets as LS-n and PH-n,
respectively. The noise was added by setting the class label of the 10 % of the training items
to a randomly chosen different class label. No other data transformation was performed.

For comparison purposes, we coded the three state-of-the-art algorithms presented in
detail in Section 2 (ENN-rule [39], All-kNN [35], Multiedit [9]). An important issue that
we had to address was the tuning of the parameters of the aforementioned methods. For all
of them, we adopted the settings proposed in [13]. In particular, we used k = 3 for ENN-
rule, k = 7 and k = 9 for All-kNN and n = 3 and R = 2 for Multiedit. These settings
are very common in many experimental studies in the literature. In addition, we used k = 5
for ENN-rule and n = 5 for Multiedit after running several experiments with different
parameter values. These experiments depicted that these values constitute a good choice.
Finally, we also measured and present the performance of the conventional 1-NN classifier
(classification without editing).

The four editing algorithms were compared to each other in terms of two main crite-
ria: classification accuracy and preprocessing (editing) cost. The latter was estimated by
counting the distances computed by each algorithm. Although the reduction rates achieved
by each method do not indicate the best performing algorithm, they reveal the percentage

Thttp://sci2s.ugr.es/keel/datasets.php
Zhttp://www.cs.ucr.edu/~eamonn/time_series_data
3https://ilust.uom.gr/webdr
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Table 1 Dataset details

Dataset Size (items) Attributes Classes
Magic Gamma Telescope (MGT) 19020 10 2
Landsat Satellite (LS) 6435 36 6
Phoneme (PH) 5404 5 2
Letter Image Recognition (LIR) 20000 16 26
Banana (BN) 5300 2

Ecoli (ECL) 336 7

Pima (PM) 768 8

Yeast (YS) 1484 8 10
MONK2 (MN2) 432 6

Twonorm (TN) 7400 20

CBF 930 128 3
Face All (FA) 2250 131 14
Synthetic Control (SC) 600 60 6

of data that is considered as noise by each algorithm. Therefore reduction rates are also
reported.

4.1.2 Experimental measurements

The performance measurements of our experimental study are presented in Table 2. Each
table cell contains three measurements that correspond to the execution of an editing
approach on a particular dataset. The three measurements are: accuracy, reduction rate and
preprocessing cost in millions of distance computations. The best measurements are in bold.

As we expected, EHC is the fastest approach. It achieves very low average preprocessing
cost compared to its competitors (see the last row of the table). EHC computes the fewest
distances in fourteen out of fifteen datasets. Furthermore, we observe that the cost gains
are very high for large datasets. Finally, as we predicted in Section 3, EHC computes a
completely different number of distances for LS, LS-n and PH, PH-n.

Concerning accuracy measurements, we observe that the proposed algorithm is compa-
rable to ENN-rule and All-kNN. Multiedit has the worst accuracy, especially for the LIR
and ECL datasets where its accuracy is unacceptable. Although the differences in accuracy
between EHC, ENN and All-kNN are not statistically significant, we observe that EHC has
the highest accuracy in seven out of fifteen datasets. However, ENN-rule has the highest
average accuracy.

In some datasets, all editing approaches seem to negatively affect accuracy, since the
conventional 1-NN classifier is the most accurate approach. This could be an indication that
the datasets do not contain a lot of noise. However, in all these cases with the exception of
the MN2 dataset, EHC is the most accurate editing algorithm. In contrast, for some datasets
(MGT, BN, ECL, PM, YS, TN, LS-n and PH-n), most of the editing approaches achieve
higher accuracy than the conventional 1-NN classifier. This could be an indication that the
datasets contain a lot of noise and, therefore, it appears that editing constitutes a necessary
preprocessing step.

The proposed algorithm has the lowest reduction rate. EHC removes items by using the
strict criterion of one-item clusters. For datasets with extremely high levels of noise (e.g.,
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Table 2 Comparisson of editing algorithms in terms of Accuracy (Acc(%)), Reduction Rate (RR(%)) and
Preprocessing Cost (PC (millions of distance computations))

ENNI ENN2  MEI ME2 AIlkNN1  AIIKNN2
Dataset INN  (k=3) *=5 m=3 (=5 (k=7 (=9 EHC
(R=2) (R=2)

Acc 78.14 80.44 80.57 76.75 75.26 80.76 80.86 79.52
MGT RR - 20.08 19.20 39.98 42.36 29.67 30.38 10.70
PC - 115.76 11576 2,839.55 1,447.93 115.76 115.76 4.08
Acc  90.60 90.30 90.43 86.79 86.03 90.12 90.16 90.55
LS RR - 9.07 9.27 24.13 26.17 13.92 14.51 3.11
PC - 13.25 13.25 266.22 139.53 13.25 13.25 1.69
Acc  90.10 88.14 87.53 80.77 79.72 86.55 86.23 89.06
PH RR - 11.25 11.93 34.14 36.91 17.92 19.30 7.36
pC - 9.35 9.35 166.22 53.71 9.35 9.35 0.66
Acc  95.83 94.98 94.87 70.94 8.35 94.28 94.00 95.23
LIR RR - 4.33 4.44 43.43 56.59 7.31 7.97 3.95
PC - 127.99 127.99  7,21438  2,900.53 127.99 127.99 41.85
Acc 8691 89.36 89.55 89.83 90.38 89.509 89.79 88.60
BN RR - 11.53 10.98 20.12 21.64 17.10 17.51 10.65
PC - 8.99 8.99 106.69 60.26 8.99 8.99 0.56
Acc  79.78 81.57 81.86 63.10 46.11 81.26 80.66 82.16
ECL RR - 20.45 20.45 47.29 60.15 28.63 30.48 17.01
PC - 0.036 0.036 0.100 0.055 0.036 0.036 0.035
Acc  68.36 71.87 71.75 71.36 68.89 72.65 73.30 70.32
PM RR - 30.16 29.43 53.07 58.96 45.56 46.24 16.59
PC - 0.19 0.19 0.51 0.26 0.19 0.19 0.06
Acc  52.16 56.47 57.07 52.90 50.54 58.29 58.42 54.45
YS RR - 45.73 43.89 74.34 80.93 59.90 61.25 29.58
PC - 0.70 0.70 1.19 0.58 0.70 0.70 0.84

Acc  90.505  89.580  89.113 69.663 62.989  83.317 83.317  81.481
MN2 RR - 2.081 0.925 47.861 58.728 12.370 12.659 0.405
PC - 0.060 0.060 0.218 0.112 0.060 0.060 0.007

Acc 94878  95.680  95.541 96.608 96.595  95.770 95.797  95.108
N RR - 3.611 3.135 17.017 20.838 6.791 6.905 0.956
PC - 17.520 17.520 578.025 411.564 17.520 17.520 1.642

Acc 98.387  98.280  98.280 86.989 80.538  98.172 98.172  98.280
CBF RR - 1.398 0.860 24.005 32.930 2.016 2.043 0.269
PC - 0.276 0.276 3.924 1.865 0.276 0.276 0.057

Acc  95.067 92578  92.222 67.778 53.689  91.333 90.844  93.778
FA RR - 5.867 7.556 48.133 63.900 10.211 11.444 3.844
PC - 1.619 1.619 18.957 6.216 1.619 1.619 1.072
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Table 2  (continued)

ENNI ENN2  MEI ME2 AIKNNT  AllENN2
Dataset INN  (k=3) (=5 m=3 ®=5 (k=7 (=9 EHC
(R=2) (R=2)

Acc  91.667 87333  87.167  72.000 50.833 85.333 84.833 91.667

SC RR - 8.833 10.167  39.208 53.250 13.292 14.125 0.417
PC - 0.115  0.115 0.753 0.313 0.115 0.115 0.040
Acc  82.58 89.64 89.74 86.47 85.55 89.73 89.84 87.55

LS-n RR - 19.82 18.45 38.33 40.19 29.64 30.17 10.93
PC - 13.25 13.25  139.02 78.43 13.25 13.25 2.00
Acc  82.14 86.94 86.70 81.31 79.29 86.31 85.90 86.16

PH-n RR - 21.20 20.61 44.93 49.85 33.29 34.68 17.66
PC - 9.35 9.35 52.65 31.74 9.35 9.35 0.71

Acc 85.140 86.211  86.160  76.884 70.984 85.559 85.475 85.594
AVG RR - 14.361 14.086  39.732 46.893 21.841 22.644 8.895
PC - 21.230 21230 759.227  342.206 21.230 21.230 3.687

30 % or more), it is not certain that EHC will improve classification accuracy like ENN-
rule with an appropriate k value does. On the other hand, EHC is not expected to negatively
affect classification accuracy as much as the other methods do.

4.1.3 Non parametric statistical test

We validated the performance measurements by applying a non-parametric statistical test of
significance [32]. In particular, we ran Friedman’s 2-way ANOVA by ranks test with Dunn-
Bonferroni post-hoc tests using IBM SPSS that compares all pairs of algorithms taking into
consideration their performance measurements on each dataset.

We executed the particular test once on the fifteen measurements of each criterion
(classification accuracy, preprocessing cost).

The test revealed that (a) in terms of accuracy, all methods with the exception of
Multiedit1 are better than Multiedit2 and that both versions of ENN are also better than Mul-
tiedit1, and, (b) in terms of preprocessing cost, all methods with the exception of Multiedit2
are better than Multiedit] and that EHC is also better than Multiedit2.

To summarize, EHC is better than Multiedit and as good as ENN and All-kNN.

4.2 Experimental study for ERHC
4.2.1 Experimental setup

ERHC was tested on sixteen datasets. These are the datasets we used in the experimental
study of the previous subsection with the removal of the ECL and YS datasets and the
addition of three extra large datasets from KEEL (PD, SH, TXR). We decided to exclude
the ECL and YS datasets, because the editing mechanism eliminates all items that belong to
rare classes (i.e., rare classes are not represented in the condensing set). Table 3 summarizes
the datasets used.
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Table 3 Dataset details

Dataset Size (items) Attributes Classes
Letter Image Recognition (LIR) 20000 16 26
Pen-Digits (PD) 10992 16 10
Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Banana (BN) 5300 2 2
Landsat Satellite (LS) 6435 36 6
Magic Gamma Telescope (MGT) 19020 10 2
Phoneme (PH) 5404 5 2
Pima (PM) 768 8 2
MONK?2 (MN2) 432 6 2
Twonorm (TN) 7400 20 2
CBF 930 128 3
Face All (FA) 2250 131 14
Synthetic Control (SC) 600 60 6

ERHC is compared to the RHC, ENN-RHC and EHC-RHC algorithms. ENN-RHC is
the successive execution of ENN-rule for editing and RHC for data abstraction, whereas
EHC-RHC is the successive execution of EHC for editing and RHC for data abstraction.
We used ENN-rule because it is the reference editing algorithm. We ran experiments with
k = 3 because that value is either adopted or suggested by many researchers [13, 21, 40].
The four algorithms were evaluated by estimating three measurements: accuracy, reduction
rate, and, preprocessing cost in terms of distance computations.

In this experimental study, ERHC is not compared to state-of-the-art condensing and
prototype abstraction algorithms. In effect, this study complements the experimental study
presented in [28] where RHC is extensively evaluated against several state-of-the-art
condensing and prototype abstraction algorithms.

4.2.2 Experimental measurements

Table 4 presents the measurements obtained with the best ones shown in bold. Preprocess-
ing cost measurements are in million distances. In addition, Table 4 reports the accuracies
obtained by applying the conventional 1-NN classifier (1-NN) on the original training data
(without data reduction).

For the BN, PM, MN2, CBF, SC, LS-n and PH-n datasets, one or more algorithms
achieved higher accuracy than conventional 1-NN. Almost in all datasets, ERHC appears
to achieve higher accuracy and reduction rate measurements than RHC. It is worth men-
tioning that no editing approach (ERHC included) negatively affects accuracy on noise-free
datasets (e.g., LIR, PD, SH, TXR).

We expected EHC-RHC to have higher reduction rates than ERHC. However, the results
show that this is not always true. In nine datasets, ERHC has higher reduction rates than
EHC-RHC. Nevertheless, the differences are not significant.

Concerning the preprocessing cost, we observe that in all cases EHC-RHC has almost
the double cost compared to ERHC and RHC. Also, ENN-RHC is the slowest approach.
This is because it includes the execution of the costly ENN-rule procedure. In practice, the
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Table 4 DRT comparison in terms of Accuracy (Acc(%)), Reduction Rate (RR(%)) and Preprocessing Cost
(PC(M))

Dataset I-NN RHC ENN-RHC EHC-RHC ERHC
Acc 95.825 93.585 92.720 93.045 92.690
LIR RR - 88.081 90.343 90.383 92.029
PC - 41.844 159.039 73.710 41.844
Acc 99.354 98.299 98.453 98.472 98.626
PD RR - 96.516 97.189 97.589 97.448
PC - 2.882 41.489 5.521 2.882
Acc 99.822 98.095 99.597 98.481 98.038
SH RR - 99.550 99.658 99.669 99.690
PC 16.827 1098.864 32.695 16.827
Acc 99.018 97.036 97.109 96.873 97.364
TXR RR - 94.705 95.582 95.732 95.936
PC - 3.629 12.675 6.133 3.629
Acc 86.906 83.283 88.094 87.019 88.000
BN RR - 79.684 95.660 93.000 90.330
PC - 0.562 9.519 1.014 0.562
Acc 90.598 88.951 89.138 88.392 89.013
LS RR - 89.841 95.062 92.273 92.949
PC - 1.693 14.984 3.192 1.693
Acc 78.144 71.966 77.781 74.716 71.014
MGT RR - 73.757 93.057 83.843 84.456
PC - 4.082 118.591 7.480 4.082
Acc 90.100 85.585 85.400 86.158 86.565
PH RR - 80.708 92.098 89.008 88.053
PC - 0.658 9.812 1.161 0.658
Acc 68.358 63.281 72.653 69.927 69.793
PM RR - 63.577 91.792 80.977 80.065
PC - 0.062 0.219 0.103 0.062
Acc 90.505 94.678 96.750 94.221 95.140
MN2 RR - 96.474 97.043 96.696 96.763
PC - 0.007 0.067 0.015 0.007
Acc 94.878 88.689 93.108 91.473 91.527
TN RR - 96.628 98.517 97.588 97.584
PC - 1.642 18.884 3.357 1.642
Acc 98.387 98.602 98.602 98.495 98.495
CBF RR - 97.742 98.011 97.957 98.011
PC - 0.057 0.319 0.112 0.057
Acc 95.067 93.022 90.800 91.111 91.200
FA RR - 87.811 90.189 91.122 91.656
PC - 1.072 2.377 1.908 1.072
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Table 4 (continued)

Dataset 1-NN RHC ENN-RHC EHC-RHC ERHC
Acc 91.667 98.667 98.333 98.833 98.667
SC RR - 97.292 97.792 97.667 97.708
PC - 0.040 0.151 0.079 0.040
Acc 82.580 78.819 88.578 84.817 85.377
LS-n RR - 76.632 95.361 88.465 87.560
PC - 1.999 14.744 3.637 1.999
Acc 82.143 75.407 83.993 81.255 84.030
PH-n RR - 64.246 92.019 86.394 81.910
PC - 0.706 116.164 1.180 0.706
Acc 90.210 87.998 90.694 89.581 90.096
Avg RR - 86.453 94.961 92.398 92.009
PC - 4.860 101.119 8.831 4.860

actual preprocessing cost of ENN-rule may be even higher: tuning its parameter may require
multiple executions of a trial-and-error-procedure.

Although ENN-RHC is the slowest approach, it seems to be slightly more accurate
than EHC-RHC and ERHC. Moreover, it achieves higher reduction rate measurements on
datasets with high levels of noise. This is because ENN-rule considers as noise more items
than EHC and ERHC do.

4.2.3 Non parametric statistical test

We validated the performance measurements by applying Friedman’s 2-way ANOVA by
ranks test with Dunn-Bonferroni post-hoc tests using IBM SPSS. We ran the test once for
each comparison criterion (classification accuracy, reduction rate, preprocessing cost (PC)).

The test revealed that (a) in terms of accuracy all methods perform the same, (b) in terms
of reduction rate, all methods are better than RHC — this is expected since data reduction
always works better on edited data, and, (c) in terms of preprocessing cost, RHC and ERHC
are better than ENN-RHC and EHC-RHC.

5 Conclusions

In this paper, we presented a family of three algorithms that are based on a k-means clus-
tering procedure that forms homogeneous clusters. Main motive behind the algorithms
constitutes the fast and parameterless (independent of tuning parameters via trial-and-error
procedures) preprocessing of the training set. Certainly, effective classification is also an
important goal. RHC is a simple “general purpose” prototype abstraction algorithm that
achieves high performance. EHC is an editing algorithm that aims to improve the quality of
the training data, and as a consequence, the accuracy rather than the speed of classification.
This is accomplished by removing outliers, noise, mislabelled and close-border training
items. Last but not least, ERHC is a simple variation of RHC that integrates the idea of EHC
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editing. Therefore, it can achieve high reduction rates regardless the level of noise in the
training data and without requiring as high preprocessing cost as a sequential execution of
EHC and RHC. EHC and ERHC were empirically evaluated on several datasets. The exper-
imental results illustrated that they meet the goals for which they were developed, they are
at least as good as the state-of-the-art methods and in some cases they improve classification
performance.
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