
Neurocomputing 526 (2023) 1–8
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Data reduction via multi-label prototype generation
https://doi.org/10.1016/j.neucom.2023.01.004
0925-2312/� 2023 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: stoug@ihu.gr (S. Ougiaroglou), gevan@uom.edu.gr

(G. Evangelidis).
URLs: https://people.iee.ihu.gr/stoug (S. Ougiaroglou), http://users.uom.gr/ge-

van (G. Evangelidis).

1 Prototype Selection algorithms have two points of view: condensing and
We consider them from the first point of view.
Stefanos Ougiaroglou a,⇑, Panagiotis Filippakis a, Georgia Fotiadou a, Georgios Evangelidis b

aDept. of Information and Electronic Engineering, School of Engineering International Hellenic University, 57400 Sindos, Greece
bDept. of Applied Informatics, School of Information Sciences University of Macedonia, 54636 Thessaloniki, Greece

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 May 2022
Revised 11 December 2022
Accepted 8 January 2023
Available online 12 January 2023

2010 MSC:
00–01
99–00

Keywords:
Multi-label classification
Data reduction techniques
Prototype generation
k-NN classification
Binary relevance
RHC
RSP3
BRkNN
A very common practice to speed up instance based classifiers is to reduce the size of their training set,
that is, replace it by a condensing set, hoping that their accuracy will not worsen. This can be achieved by
applying a Prototype Selection or Generation algorithm, also referred to as a Data Reduction Technique.
Most of these techniques cannot be applied on multi-label problems, where an instance may belong to
more than one classes. Reduction through Homogeneous Clustering (RHC) and Reduction by Space
Partitioning (RSP3) are parameter-free single-label Prototype Generation algorithms. Both are based on
recursive data partitioning procedures that identify homogeneous clusters of training data, which they
replace by their representatives. This paper proposes variations of these algorithms for multi-label train-
ing datasets. The proposed methods generate multi-label prototypes and inherit all the desirable proper-
ties of their single-label versions. They consider clusters that contain instances that share at least one
common label as homogeneous clusters. It is shown via an experimental study based on nine multi-
label datasets that the proposed algorithms achieve good reduction rates without negatively affecting
classification accuracy.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Multi-label classification [1] can be seen as a generalization of
the single-label problem of categorizing instances into exactly
one class. In the multi-label problem, an instance can belong to
many of the classes. Formally, it is a model that maps inputs x to
binary vectors y, whose size is equal to the number of available
class labels. Classification of images, text, proteins, music,
video/movies, etc., are typical examples of multi-label classifica-
tion problems. For instance, a movie can simultaneously be ‘‘crime”
and ‘‘drama”; an artist or music track may belong to more than one
genres or moods; an image may depict ‘‘mountain”, ‘‘sea” and
‘‘beach”.

A typical instance-based, also called lazy, classifier is k-Nearest
Neighbours (k-NN) [2,3]. The classifier retrieves the k nearest
neighbours of each unclassified instance and classifies it by
applying a majority voting. The k-NN classifier is simple, easy to
implement and has good performance. It can also be easily adapted
for multi-label datasets. Still, its memory and CPU requirements
can be lowered and, thus, its performance can be significantly
improved by reducing the size of its training set. In single-label
classification, k-NN is usually applied in conjunction with a Data
Reduction Technique (DRT), which can be either a Prototype Selec-
tion (PS)1 [4] or a Prototype Generation (PG) [5] algorithm.

Dimensionality reduction [6] and attribute (feature) selection
[7] techniques can be also characterized as DRTs. This paper does
not consider dimensionality reduction and attribute selection,
but instead focuses on instance reduction via PS and PG algorithms.
One can find many such algorithms for single-label classification
problems in the literature.

DRTs replace the initial training dataset by a much smaller data-
set. This set is called the condensing set and is used by k-NN to
achieve comparable accuracy to the one achieved when using the
initial training dataset, but at a much lower computational cost.
Prototype Selection algorithms select instances (or prototypes)
from the initial training set, whereas, Prototype Generation
editing.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.01.004&domain=pdf
https://doi.org/10.1016/j.neucom.2023.01.004
mailto:stoug@ihu.gr
mailto:gevan@uom.edu.gr
https://people.iee.ihu.gr/stoug
http://users.uom.gr/gevan
http://users.uom.gr/gevan
https://doi.org/10.1016/j.neucom.2023.01.004
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
algorithms generate prototypes by summarizing similar training
instances of the same class. Most of the DRTs are based on the fol-
lowing simple idea: only the close to the class decision boundaries
training instances are necessary for classification tasks. The train-
ing instances belonging to the ‘‘internal” area of a class (far from
decision boundaries) can be safely removed without loss of classi-
fication accuracy. Therefore, DRTs try to select or to generate a suf-
ficient number of prototypes that are close to the class decision
boundary data areas. DRTs have been studied in the context of
single-label classification problems.

The Label Powerset (LP) transformation technique [1] could be a
straightforward approach for using a DRT in a multi-label problem.
LP transforms a multi-label dataset into a singe-label dataset by
considering each label combination (labelset) as a distinct class.
However, LP can be applied only if the number of labels and the
possible labelsets are small and there is a sufficient number of
instances for each labelset. Otherwise, the total number of different
combinations may increase exponentially, the reduction rate may
be low and some combinations may be poorly represented.

Binary Relevance (BR) is a widely used transformation tech-
nique for multi-label problems. It transforms the multi-label prob-
lem into multiple single-label binary problems. Hence, one needs
as many classifiers as the available labels in order to predict the
labels an unknown instance belongs to. The k-NN classifier in con-
junction with BR is called BRkNN [8] and seems to be an ideal com-
bination since the k-NN classifier is a lazy classifier and does not
build any classification model. When an instance x needs to be
classified, BRkNN searches for the k nearest to x neighbours once,
like the single-label k-NN does. Then, the nearest neighbours vot-
ing procedure is repeated once for each label. Since each voting
procedure concerns a binary classification problem, k should be
odd to prevent ties.

The k-NN classifier stops being lazy when it is used in conjunc-
tion with a DRT. In effect, the condensing set is the classification
model. In multi-label classification, if BR is used, one needs to con-
struct a condensing set for each label. Therefore, the goal of data
reduction is not achieved and the k-NN classifier must search for
nearest neighbours in each condensing set in order to make each
individual label prediction. Thus, the BR transformation method
cannot be combined with a Data Reduction algorithm because of
the multiple binary condensing sets. This observation makes clear
that DRTs must be adapted so that they can be used for multi-label
datasets and this is the motive behind the present work.

This paper extends the work presented in [9]. More specifically,
it proposes two new prototype generation algorithms for multi-
label datasets. Both constitute variations of single-label DRTs.
The first proposed algorithm is a variation of Reduction through
Homogeneous Clustering (RHC) [10], which is a fast and
parameter-free prototype generation algorithm for single-label
classification problems. The second proposed algorithm is a varia-
tion of RSP3, also a single-label and parameter-free prototype gen-
eration algorithm, that belongs to the family of Reduction by Space
Partitioning algorithms [11,12]. Both RHC and RSP3 attempt to
identify homogeneous clusters of data, i.e., clusters of training
instances that belong to the same class label.

The proposed algorithms are called Multilabel RHC (MLRHC) [9]
and Multilabel RSP3 (MLRSP3) and inherit the properties of their
single-label versions. However, MLRHC and MLRSP3 build multi-
label condensing sets to be used by BRkNN. Both MLRHC and
MLRSP3 consider a cluster to be homogeneous when all its
instances share at least a common label. The experimental study
conducted shows that MLRHC and MLRSP3 achieve good reduction
rates while classification accuracy is not affected.

The rest of this paper is organized as follows: Section 2 briefly
presents the related work, while Section 3 reviews the RHC and
RSP3 algorithms. Section 4 presents the proposed MLRHC and
2

MLRSP3 algorithms. Section 5 discusses the experimental study,
and, Section 6 concludes the paper and gives directions for future
work.
2. Related work

The majority of papers on multi-label classification focus on
proposing accurate classification algorithms, without addressing
issues related to the high computational cost required when deal-
ing with large multi-label training sets. Only few papers focus on
speeding-up lazy classifiers on large multi-label training sets and
even fewer are concerned with data reduction or condensing algo-
rithms for that type of datasets. As far as we know, there are no
prototype generation algorithms in the literature for multi-label
training sets. In this section, we review the limited related litera-
ture for fast multi-label classification.

[13] propose the first prototype selection algorithm for multi-
label datasets. However, the algorithm focuses on editing imbal-
anced datasets. Editing removes noise and smooths the class deci-
sion boundaries; it does not deal with data reduction. The authors
present an under-sampling method for imbalanced training sets
inspired by the Edited Nearest Neighbour rule (ENN-rule) [14].
[15] proposes a prototype selection editing algorithm, also based
on ENN-rule. The algorithm uses Hamming loss to determine the
noisy instances. The idea is simple: instances with high Hamming
loss probably lie in close decision boundaries and for this reason
they should be removed, like in the case of ENN-rule. We will
not further consider the aforementioned approaches since they
both deal with editing.

[16] is the first attempt that adapts existing prototype selection
algorithms to edit and condense multi-label data. Previously pro-
posed prototype selection algorithms LSBo, for data reduction,
and LSSm, for data editing [17] are adapted. The proposed algo-
rithms as well as their predecessors are based on the concept of
local sets [18] and on the LP transformation technique. In single-
label problems, the local set of an instance x is the largest set of
instances centered on x, so that all instances belong to the same
class. In multi-label datasets, the authors claim that there is no
need for a local set to contain the exact same labelset. The labelset
of the instances in a local set may slightly differ. The authors use
the Hamming loss calculated over labelsets to measure the differ-
ences between labelsets. If the Hamming loss between the label-
sets of two instances is greater than a pre-specifed threshold, the
instances are considered to be of different ‘‘classes”. The proposed
algorithms are not parameter-free and their performance depends
on the pre-specified threshold. Therefore, they are not considered
further in this paper.

[19] uses BR, LP and other transformation methods in conjunc-
tion with single-label prototype selection algorithms. In the case of
BR and its variants, the proposed strategy creates as many single-
label training sets as the number of distinct labels. Then, a proto-
type selection algorithm is applied on each training set to build a
condensing set for each label. Every time an instance is selected,
it receives a vote that is accumulated in a vector with the votes
for all instances. The strategy builds a complete condensing set
by selecting all instances with a number of votes that exceeds a
pre-specified threshold. Hence, this is also a parameter based
approach and will not be considered further. Furthermore, this
paper points out the LP drawbacks, mentioned in Section 1, when
it is used in conjunction with a prototype selection algorithm.

[20] proposes a scalable lazy classifier for large multi-label
datasets. The authors propose an implementation of MLkNN [21]
on GPUs. The proposed method implements the execution stages
of MLkNN in parallel, offering computational speedup without loss
of accuracy.

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
3. Background knowledge

3.1. The reduction through homogeneous clustering (RHC) algorithm

Reduction through Homogeneous Clustering (RHC) [10] is a
prototype generation algorithm based on k-means clustering.
RHC is parameter-free, hence the size of the condensing set is
determined automatically. Also, it is a fast algorithm since it avoids
costly and time-consuming pre-processing tasks on the training
set, which may be prohibitive for large datasets.

RHC computes the initial means for k-means clustering by aver-
aging the instances of each class label. Then, k-means forms as
many clusters as the number of distinct class labels in the training
set. Hence, both the number of clusters k and their initial means
are determined automatically for k-means. If a discovered cluster
is homogeneous, i.e., it consists of instances of only one class label,
the cluster centroid is placed in the condensing set as a prototype.
Otherwise, the aforementioned procedure is recursively applied on
that cluster. RHC terminates when all discovered clusters are
homogeneous.

RHC generates more prototypes for the close to the decision
boundary areas and fewer prototypes for the ‘‘internal” class areas.
By using the class representatives as initial means for k-means
clustering, RHC quickly discovers large homogeneous clusters
and achieves a high reduction rate without costly k-means itera-
tions. RHC can become even faster by using k-means clustering
without full cluster consolidation. Contrary to many DRTs, RHC
always builds the same condensing set regardless the order of
the data in the training set. Moreover, RHC is simple and quite easy
to implement. The experimental study presented in [10] shows
that RHC is faster and achieves higher reduction rates than state-
of-the-art DRTs without harming classification accuracy.
3.2. The reduction by space partitioning v3 (RSP3) algorithm

Reduction by Space Partitioning (RSP) is a group of three PG
algorithms that were proposed by Santchez [11]. The three algo-
rithms are based on the Chen and Jozwik algorithm (CJA) [22].
RSP3 is the only parameter-free RSP algorithm (CJA included).
Therefore, RSP3 automatically determines the size of the condens-
ing set. Like RHC, RSP3 is based on the concept of cluster homo-
geneity. Initially, RSP3 determines the two farthest instances in
the training set and forms two clusters by assigning each training
instance to its closest farthest instance. The algorithm is recur-
sively applied on each non–homogeneous created cluster. In the
end, each homogeneous cluster is replaced by its appropriately
labeled representative to form the condensing set.

Like RHC, the condensing set created by RSP3 does not depend
on the instance order in the training set. The experimental study in
[11] and the findings in other studies [12] have shown that RSP3
generates a small and accurate set of training prototypes. When
the k-NN classifier utilizes the RSP3 output instead of the original
training data, it achieves comparable accuracy but at a much lower
computational cost.
4. The proposed variations

4.1. The multi-label RHC (MLRHC) algorithm

The Multi-label Reduction through Homogeneous Clustering
(MLRHC) algorithm is a variant of RHC for multi-label training data.
It works quite similar to RHC, but builds a multi-label condensing
3

set. The key characteristic of MLRHC is the definition of homogene-
ity for clusters that contain multi-label data. For MLRHC, a cluster
is considered homogeneous when it contains instances that share
at least one common label.

This is how the MLRHC algorithm works. Assuming that the ini-
tial training set is a non–homogeneous cluster, RHC builds a mean
(representative) for each label l by averaging the instances that
their labelset contains l. Then, it runs k-means clustering and dis-
covers as many clusters as the number of distinct labels in the
training set. For each cluster C with instances that do not share a
common label (i.e., C is non–homogeneous), the aforementioned
procedure is repeated considering only the instances that belong
to C. For each homogeneous cluster, MLRHC stores the cluster cen-
troid in the condensing set as a prototype. The generated prototype
is labeled by the common label(s) in C along with the majority
labels, i.e, labels that appear in the labelset of more than half the
instances of C. Like the case of RHC, MLRHC terminates when all
clusters become homogeneous.

Suppose a training set has three attributes (a; b; c) and three
labels (x; y; z). Moreover, suppose that MLRHC discovered a cluster
C which contains instances inst1; inst2 and inst3 with the following
BR representations:

� inst1 : fa; b; c; x; y; zg ¼ f2;1;1;0;1;1g
� inst2 : fa; b; c; x; y; zg ¼ f1;2;2;0;1;0g
� inst3 : fa; b; c; x; y; zg ¼ f3;2;1;1;1;1g

Since all instances contain label y;C is homogeneous. The labelset of
the generated prototype p will be fy; zg because y is the common
label that renders C homogeneous and z is a majority label in C. Con-
sequently, in a BR representation, p is
fa; b; c; x; y; zg ¼ f2;1:67;1:33;0;1;1g.

Fig. 1 demonstrates a two dimensional example. Suppose that a
dataset contains sixteen instances (Fig. 1(a)). MLRHC computes
representatives for the squares, circles, and stars (Fig. 1(b)). Then,
k-means clustering uses the three label representatives as initial
means and discovers three clusters (Fig. 1(c)). Two of them are
homogeneous because their instances have a common class. Thus,
the cluster centroids constitute prototypes (Fig. 1(d)). One proto-
type is labeled only by ‘‘square” because there is no majority label
in the cluster. The other prototype is labeled by ‘‘square” and
‘‘star”, because ‘‘star” is the common label and ‘‘square” is a major-
ity label in a that cluster. MLRHC proceeds by dividing the non
homogeneous cluster into three homogeneous clusters (Fig. 1(e)).
Consequently, three more prototypes are stored in the condensing
set. The final condensing set contains five prototypes instead of the
sixteen instances of the initial training set (Fig. 1(f)).

Algorithm1 shows a non-recursive MLRHC implementation. It
uses a queue data structure, Q, to hold clusters. Initially, the whole
training set is an unprocessed cluster and is placed in Q (line 2). At
each repeat-until iteration, MLRHC dequeues cluster C from Q (line
5) and checks whether C is homogeneous, i.e., it has at least one
common label. If it is (line 6), its centroid is placed in the condens-
ing set (CS) as a prototype (line 15) labeled by the common and
majority labels in C (lines 9–14). Otherwise, MLRHC computes a list
of label-representatives (M), one for each of the labels that exist in
C (lines 17–21). Then, MLRHC applies k-means clustering, with
parameters the non–homogeneous cluster C and the list of the ini-
tial label-representatives M to be used as initial means. The result
is a new set of unprocessed clusters (NewClusters) (line 22) all of
which are put into Q (lines 23–25). The repeat-until loop continues
until Q becomes empty (line 27), i.e., there are no more clusters to
process.

Fig. 1. MLRHC execution example.

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
Algorithm1: MLRHC
Input: TS {original training set}

Output: CS {condensing set}

1: Q £ {queue of unprocessed clusters}

2: Enqueue(Q ; TS) {TS is the first unprocessed cluster}

3: CS £ {initialize the condensing set}

4: repeat

5: CS Dequeue(Q) {get a cluster to process}

6: ifall the instances in C have at least one common

labelthen

7: r centroid of C

8: rlabelset £ {initilize the labelset of r}

9: foreach label l in Cdo

10: n count the instances 2 C with l in their labelset

11: ifn > jCj=2then

12: rlabelset rlabelset [l

13: end if

14: end for

15: CS CS [frg {add r to the condensing set}

16: else

17: M £ {initialize the set of label-centroids}

18: foreach label l 2 C do

19: ml centroid of instances whose labelset contains l

20: M M [fmlg

21: end for

22: NewClusters k�meansðC;MÞ {determine jMj new

clusters}

23: foreach cluster cl 2 NewClustersdo

24: Enqueue(Q ; cl) {put all of them in the processing

queue}

25: end for

26: end if

27: until IsEmpty(Q)

28: return CS
MLRHC inherits all the properties of RHC. Therefore, it is a fast
and parameter-free prototype generation algorithm. Also, MLRHC
builds the same condensing set regardless the order of the
4

instances in the training set. MLRHC can be ideally combined with
BRkNN. For each unclassified instance x, the BRkNN classifier runs
over the condensing set (instead of the initial large training set)
once and retrieves the k nearest to x prototypes. Then, the labelset
of x is predicted by as many voting procedures as the number of
labels. For each label l, the same k retrieved nearest prototypes
vote in order to predict if x is labeled by l or not.

4.2. The Multi-label RSP3 (MLRSP3) algorithm

The Multi-label Reduction by Space Partitioning (MLRSP3) algo-
rithm is a variant of RSP3 that builds multi-label condensing sets
that can be used by the BRkNN classifier. MLRSP3 also uses the idea
that a cluster is considered homogeneous when its instances share
at least a common label.

Assuming that the initial training set is a non–homogeneous
cluster, MLRSP3 retrieves the two farthest instances, p1 and p2,
in the training set. Then, the training set is divided into two clus-
ters, one containing the instances closer to p1 and one the
instances closer to p2. MLRSP3 continues by dividing each non–ho-
mogeneous cluster C, i.e., each cluster that contains instances that
do not share at least one common label. This procedure continues
until all the clusters become homogeneous. A prototype is gener-
ated by averaging the instances that belong to each homogeneous
cluster C. Like MLRHC, the generated prototype is labeled by the
common label(s) in C along with the majority labels in C, i.e., the
labels that appear in the labelset of more than half the instances
of C.

Fig. 2 shows a two dimensional example. A dataset with sixteen
instances is used (Fig. 2(a)). Initially, MLRSP3 finds the farthest
training instances A and B (Fig. 2(b)). The training instances are
divided into two clusters according to their distances from A and
B (Fig. 2(c)). One of the clusters is homogeneous because its
instances have a common class. Thus, the cluster centroid consti-
tutes a prototype labeled only by ‘‘square” ((Fig. 2(d))). There is
no majority label in the cluster. MLRSP3 continues by retrieving
the furthest instances C and D in the non–homogeneous cluster
((Fig. 2(d))). The training instances are divided into two clusters
according to their distances from C and D. The result is a non–ho-
mogeneous cluster and a homogeneous cluster (Figs. 2(e)). MLRSP3
generates a multi-label prototype for the homogeneous cluster. It

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
is labeled by ‘‘star” and ‘‘square”. The star is the common label and
the square is the majority label. Then, the same procedure is
repeated for each non–homogeneous cluster formed (Figs. 2))
three more prototypes are stored in the condensing set. The final
condensing is presented in Fig. 1(i).

A non-recursive MLRSP3 implementation is presented by Algo-
rithm2. It uses a queue data structure, Q, to hold unprocessed clus-
ters. Initially, the whole training set is an unprocessed cluster and
placed in Q (line 2). At each repeat-until iteration, MLRSP3 selects a
cluster C from Q (line 5) and checks whether C has at least one
common label or not. If it has a common label (line 6), the mean
r of the cluster is placed in the condensing set (CS) as a prototype
(line 15). r is labeled by the common and majority labels in C (lines
9–14). If C does not contain common labels (i.e., C is non–homoge-
neous), MLRSP3 finds the farthest instances in C and divides C into
C1 and C2. Both clusters are placed in Q for further processing. The
repeat-until loop stops when Q becomes empty (line 23), i.e., all
the clusters contain a common label.

MLRSP3 inherits the properties of RSP3. Therefore, it is
parameter-free prototype generation algorithm that builds the
same condensing set regardless the order of the instances in the
training set. MLRSP3 can be combined with BRkNN in a similar
manner as MLRHC.
Algorithm2: MLRSP3
2 http://mulan.sourceforge.net/datasets-mlc.html
Input: TS {the original training set}

Output: CS {the condensing set}

1: Q £ {queue of unprocessed clusters}

2: Enqueue(Q ; TS)

3: CS £ {initialize the condensing set}

4: repeat

5: C Dequeue(Q) {get a cluster to process}

6: ifall the instances in C have at least one common

labelthen

7: r centroid of C

8: rlabelset £ {initilize the labelset of r}

9: foreach label l in Cdo

10: n count the instances 2 C with l in their labelset

11: ifn > jCj=2then

12: rlabelset rlabelset [l

13: end if

14: end for

15: CS CS [frg {add r to the condensing set}

16: else

17: p1 and p2 are the farthest instances in C

18: C1 set of instances of C closer to p1

19: C2 set of instances of C closer to p2

20: Enqueue(Q ;C1)

21: Enqueue(Q ;C2)

22: end if

23: until IsEmpty(Q)

24: return CS
5. Performance evaluation

5.1. Datasets

The performance of MLRHC and MLRSP3 was evaluated by con-
ducted experiments on nine multilabel datasets distributed by
Mulan datasets repository [23]2. Table 1 summarizes the key char-
acteristics of the datasets used. The last two columns present the
5

cardinality and the density of the datasets. Cardinality is the mean
of the number of labels of the instances. Density is the mean of
the number of labels of the instances divided by the number of
labels. The second column of Table 1 lists the domain of each dataset.

5.2. Experimental setup

MLRHC and MLRSP3 were coded in C++ and were run only as a
pre-processing step to build the multilabel condensing sets. We
used the Python implementation of BRkNN3 available in scikin-
multilearn [24]. Scikit-multilearn is a Python library for multi-label
classification that is built on top of the popular scikit-learn library.

We compared the performance of BRkNN running over the con-
densing set built by MLRHC and MLRSP3 against the performance
of BRkNN running over the original training set. The Euclidean dis-
tance was used as the distance metric. We measured two metrics:
(i) Hamming loss, and, (ii) Reduction Rate, that were derived via a
fivefold cross-validation schema. Initially, we normalized the data-
sets in the ½0� 1� range, and then, we split them into random sub-
sets appropriate for fivefold cross-validation. Since the
computational cost of the BRkNN classifier depends on the size of
the training set used, the CPU time needed for the classification
is not reported. The Hamming Loss (HL) is the fraction of the
wrongly predicted labels to the total number of labels. It is com-
puted as follows:

HL ¼ 1
m

Xm

i¼1

jYiDZij
jLj

where m is the number of instances in the testing dataset, jLj is the
number of labels, Yi is the set of real labels of instance i, and, Zi is
the set of predicted labels for instance i. D is the symmetric differ-
ence of two sets and corresponds to the XOR operation. For exam-
ple, if the labels of an instance are f1;1;0;0;1g and the predicted
labels are f1;1;0;1;0g, the Hamming loss is 2

5 ¼ 0:4.

5.3. Experimental results

Tables 2–4 present the results obtained by the experimental
study. For each dataset, we report Hamming loss and reduction
rate achieved by MLRHC and MRPS3. The best measurements are
shown in bold face. Moreover, we estimated the pre-processing
cost needed by MLRHC and MLRSP3 in order to build their con-
densing sets. The pre-processing cost was estimated by counting
the distances computed by MLRHC and MLRSP3. The last table
row reports the average measurements.

Table 2 shows that MLRHC achieved reduction rates between
40% and 85%. The reduction rates achieved by MLRSP3 were
between 31% and 76%. The average reduction rate is 57.73% and
51.60% for MLRHC and MLRSP3, respectively. This means that the
BRkNN classifier that runs over the condensing set constructed
by MLRHC (MLRSP3) is 57.73% (51.60%) faster on average than
the BRkNN classifier that runs over the original training set. In
the cases of the EMT, SC, BRD, CHD and IMG datasets, MLRHC
achieves higher reduction rates than MLRSP3. In the rest four data-
sets, MLRSP3 achieved higher reduction rates than MLRHC.

One could claim that the reduction rates are not very high. Cer-
tainly, they are lower than the reduction rates achieved by the
single-label versions of RHC and RSP3. We claim that the compar-
ison between the reduction rates achieved on single-label and
multi-label datasets does not make sense. Multi-label data is more
complex than single-label data. As a result, MLRHC and MLRSP3
cannot identify large homogeneous clusters in multi-label data like
their single-label versions do in single-label data.
3 http://scikit.ml/api/skmultilearn.adapt.brknn.html

Fig. 2. MLRSP3 execution example.

Table 1
Dataset characteristics.

Datasets Domain Size Attr. Labels Cardinality Density

CAL500 (CAL) Music 502 68 174 26.044 0.150
Emotions (EMT) Music 593 72 6 1.869 0.311

Water quality (WQ) Chemistry 1060 16 14 5.073 0.362
Scene (SC) Image 2407 294 6 1.074 0.179
Yeast (YS) Biology 2417 103 14 4.237 0.303
Birds (BRD) Sounds 645 260 19 1.014 0.053

CHD49 (CHD) Medicine 555 49 6 2.580 0.430
Image (IMG) Image 2000 294 5 1.236 0.247

Mediamill (MDM) Video 43907 120 101 4.376 0.043

Table 2
Comparison in terms of reduction rate.

Dataset MLRHC MLRSP3

CAL 40.50 76.36
EMT 65.73 46.44
WQ 40.64 59.91
SC 85.13 39.33
YS 51.85 53.02
BRD 42.7 31.82
CHD 65.47 53.30
IMG 71.71 35.65
MDM 55.86 68.57
AVG 57.73 51.60

Table 3
Comparison in terms of pre-processing cost (in distance computations)

Dataset MLRHC MLRSP3

CAL 712,828 340,001
EMT 65,750 298,839
WQ 369,905 1,559,594
SC 480,152 6,811,157
YS 1,341,733 3,885,708
BRD 79,764 160,228
CHD 65,892 224,105
IMG 419,476 6,410,364
MDM 806,819,021 2,604,417,792
AVG 90,039,391 291,567,532

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8

6

Table 4
Comparison in terms of Hamming Loss (HL %). The best three values per dataset are shown in bold (including ties).

Alg. k CAL EMT WQ SC YS BRD CHD IMG MDM

BrkNN 1 0.197 0.244 0.385 0.133 0.294 0.096 0.368 0.298 0.041
5 0.153 0.207 0.35 0.12 0.203 0.084 0.33 0.278 0.033
9 0.146 0.197 0.336 0.12 0.195 0.088 0.311 0.276 0.032
13 0.144 0.195 0.333 0.122 0.195 0.088 0.309 0.272 0.032
17 0.141 0.192 0.328 0.122 0.195 0.088 0.301 0.272 0.032

MLRHC
BRkNN

1 0.17 0.226 0.379 0.126 0.232 0.093 0.356 0.288 0.038

5 0.145 0.203 0.34 0.122 0.202 0.09 0.32 0.259 0.032
9 0.141 0.205 0.33 0.127 0.202 0.093 0.307 0.256 0.032
13 0.139 0.215 0.327 0.142 0.202 0.095 0.299 0.254 0.032
17 0.139 0.225 0.326 0.153 0.203 0.097 0.3 0.253 0.032

MLRSP3
BRkNN

1 0.15 0.227 0.368 0.126 0.225 0.131 0.356 0.284 0.035

5 0.14 0.203 0.339 0.117 0.204 0.098 0.326 0.27 0.032
9 0.138 0.195 0.331 0.121 0.202 0.098 0.322 0.266 0.032
13 0.138 0.191 0.329 0.125 0.203 0.098 0.311 0.262 0.032
17 0.137 0.2 0.331 0.128 0.205 0.098 0.306 0.26 0.032

Table 5
Results of Wilcoxon signed rank test on Hamming loss, Reduction rate and distance computations (DST) measurements.

Methods Hamming Loss Reduction Rate DST

w/l Wilc. w/l Wilc. w/l Wilc.

MLRHC vs MLRSP3 6/3 0.678 5/4 0.515 8/1 0.028
MLRHC vs BRkNN 3/6 0.374 - - - -
MLRSP3 vs BRkNN 2/6 0.208 - - - -

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
Table 3 shows that in eight out nine datasets, MLRHC is faster
than MLRSP3. In effect, MLRHC is on average three times faster
than MLRSP3. In the SC and IMG datasets, the pre-processing cost
required by MLRSP3 is 14 and 15 times higher than the pre-
processing cost required by MLRHC. In the case of CAL dataset,
MLRSP3 computes fewer distances than MLRHC.

We ran experiments using different k values (1, 5, 9, 13 and 17),
which is a common practice in the literature. Table 4 shows that
the differences in Hamming loss are insignificant. In effect, there
is no difference in Hamming loss between BRkNN that uses the
multi-label condensing sets constructed by MLRHC and MLRSP3
and the BRkNN classifier that uses the original training set. In most
cases, BRkNN achieves similar Hamming loss measurements
regardless of whether a condensing set or the original training
set is used. In many datasets (i.e., CAL, EMT, WQ, SC, CHD, IMG),
the BRkNN classifier that uses condensing sets instead of the orig-
inal training sets is more accurate. We can safely conclude that
MLRHC and MLRSP3 achieve adequate gains in reduction rates
while accuracy is not negatively affected.

5.4. Wilcoxon signed rank test

We report the results of a Wilcoxon signed rank test [25] on the
experimental measurements, which is a non-parametric statistical
test that compares DRTs in pairs. In particular, it examines the
experimental measurements achieved by DRTs in each dataset
and statistically confirms the validity of the measurements in
Tables 2–4.

The results of the statistical test are presented in Table 5. It is
worth mentioning that the column with header ‘‘Wilc.” presents
the Wilcoxon value that quantifies the significance of the differ-
ence between the two algorithms. If the Wilcoxon value is lower
than 0.05, the difference is considered statistically significant.

We ran the test three times, one for each comparison criterion
(Hamming loss, Reduction rate and Preprocessing cost in terms
of Distance computations). For each dataset and algorithm, we
7

computed the average value of hamming loss achieved by the dif-
ferent k values. Concerning hamming loss and reduction rate mea-
surements, the Wilcoxon test showed that the difference between
the MLRHC and MLRSP3 is not significant. In contrast, the differ-
ence is statistically significant when the preprocessing cost mea-
surements in terms of distance computations are examined.
Consequently, we can conclude that MLRHC is faster than MLRSP3.
It is worth mentioning that there is no statistically difference when
MLRHC and MLRSP3 are compared to the conventional BRkNN ran
over the original training data (without data reduction). Therefore,
we conclude that we can use MLRHC and MLRSP3 without loss of
classification accuracy.
6. Conclusions and future work

Data Reduction is an essential pre-processing step in order to
avoid the drawbacks of high computational cost and storage
requirements in instance based classification. However, the vast
majority of existing DRTs are not applicable to multi-label classifi-
cation problems, and also, they can not be effectively used in con-
junction with a problem transformation method like Binary
Relevance or Label Powerset.

This paper first presented the recent research efforts for
speeding-up the k-NN classifier in the context of multi-label clas-
sification. Then, it proposed two variations of known Prototype
Generation algorithms that are appropriate for multi-label classifi-
cation problems. The proposed MLRHC and MLRSP3 algorithms can
be considered to be the first Prototype Generation algorithms for
multi-label training data.

MLRHC and MRPS3 are adaptations of their single-label ver-
sions RHC and RSP3. They are parameter-free and are based on
clustering procedures that discover homogeneous clusters. In the
context of multi-label classification, we consider a cluster to be
homogeneous when it contains instances with at least one com-
mon label. The centroid of each homogeneous cluster constitutes

S. Ougiaroglou, P. Filippakis, G. Fotiadou et al. Neurocomputing 526 (2023) 1–8
a prototype labeled by the common labels along with each label
that appears in the majority of the cluster instances. Thus, MLRHC
and MLRSP3 build a multi-label condensing set that BRkNN can use
to search for nearest neighbours and make multi-label predictions.

The experimental study used nine multi-label datasets and
demonstrated that there is no difference on the accuracy achieved
by BRkNN when using the condensing sets built by MLRHC and
MLRSP3 instead of the original training set. On the other hand,
the CPU time needed for the classification process when using
the condensing sets is much lower. In many cases, the new varia-
tions save more than 70% of CPU time. MLRHC achieved higher
reduction rates and lower pre-processing cost than MLRSP3 with
no difference in accuracy. Therefore, we can conclude that MLRHC
has higher overall classification performance than MLRSP3.

This paper showed that Data Reduction on multi-label problems
is an open research field in the data mining and machine learning
context. We plan to adapt well-known single-label DRTs on multi-
label problems. Next, we plan to developed new parameter-free
DRTs as well as scalable classification methods for multi-label
training sets.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] G. Tsoumakas, I. Katakis, Multi-label classification: an overview, Int. J. Data
Warehousing Min. 2007 (2007) 1–13.

[2] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory
13 (1) (1967) 21–27, https://doi.org/10.1109/TIT.1967.1053964.

[3] S. Ougiaroglou, G. Evangelidis, D.A. Dervos, Fhc: an adaptive fast hybrid
method for k-nn classification, Logic Journal of IGPL arXiv:http://jigpal.
oxfordjournals.org/content/early/2015/03/29/jigpal.jzv015.full.pdf html,
doi:10.1093/jigpal/jzv015. http://jigpal.oxfordjournals.org/content/early/
2015/03/29/jigpal.jzv015.abstract.

[4] S. Garcia, J. Derrac, J. Cano, F. Herrera, Prototype selection for nearest neighbor
classification: taxonomy and empirical study, IEEE Trans. Pattern Anal. Mach.
Intell. 34 (3) (2012) 417–435, https://doi.org/10.1109/TPAMI.2011.142.

[5] I. Triguero, J. Derrac, S. Garcia, F. Herrera, A taxonomy and experimental study
on prototype generation for nearest neighbor classification, Trans. Sys. Man
Cyber Part C 42 (1) (2012) 86–100, https://doi.org/10.1109/
TSMCC.2010.2103939.

[6] L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a
comparative review, J. Mach. Learn. Res. 10 (2009) 66–71.

[7] J. Tang, S. Alelyani, H. Liu, Feature selection for classification: A review, CRC
Press, 2014, pp. 37–64, publisher Copyright: 2015 by Taylor & Francis Group,
LLC. doi:10.1201/b17320.
8

[8] I.V. Eleftherios Spyromitros, Grigorios Tsoumakas, An Empirical Study of Lazy
Multilabel Classification Algorithms, in: Proc. 5th Hellenic Conference on
Artificial Intelligence (SETN 2008), 2008.

[9] S. Ougiaroglou, P. Filippakis, G. Evangelidis, Prototype generation for multi-
label nearest neighbours classification, in: H. Sanjurjo Gonzalez, I. Pastor
Lopez, P. Garcia Bringas, H. Quintian, E. Corchado (Eds.), Hybrid Artificial
Intelligent Systems, Springer International Publishing, Cham, 2021, pp. 172–
183.

[10] S. Ougiaroglou, G. Evangelidis, RHC: non-parametric cluster-based data
reduction for efficient k-NN classification, Pattern Anal. Appl. 19 (1) (2014)
93–109, https://doi.org/10.1007/s10044-014-0393-7.

[11] J.S. Sánchez, High training set size reduction by space partitioning and
prototype abstraction, Pattern Recogn. 37 (7) (2004) 1561–1564.

[12] T. Giorginis, S. Ougiaroglou, G. Evangelidis, D.A. Dervos, Fast data reduction by
space partitioning via convex hull and mbr computation, Pattern Recogn. 126
(2022), https://doi.org/10.1016/j.patcog.2022.108553, https://
www.sciencedirect.com/science/article/pii/S0031320322000346.

[13] F. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, MLeNN: a First Approach to
Heuristic Multilabel Undersampling, in: E. Corchado, J.A. Lozano, H. Quintián,
H. Yin (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL
2014, Springer International Publishing, Cham, 2014, pp. 1–9.

[14] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst., Man, Cybernet. 2 (3) (1972) 408–421.

[15] S. Kanj, F. Abdallah, T. Denœux, K. Tout, Editing training data for multi-label
classification with the k-nearest neighbor rule, Pattern Anal. Appl. 19 (1)
(2015) 145–161, https://doi.org/10.1007/s10044-015-0452-8.

[16] J.-F. Álvar Arnaiz-González, J.J. Díez-Pastor, C. García-Osorio Rodríguez, Local
sets for multi-label instance selection, Appl. Soft Comput. 68 (2018) 651–666,
https://doi.org/10.1016/j.asoc.2018.04.016.

[17] E. Leyva, A. González, R. Pérez, Three new instance selection methods based on
local sets: A comparative study with several approaches from a bi-objective
perspective, Pattern Recogn. 48 (4) (2015) 1523–1537, https://doi.org/
10.1016/j.patcog.2014.10.001.

[18] H. Brighton, C. Mellish, Advances in instance selection for instance-based
learning algorithms, Data Min. Knowl. Discov. 6 (2) (2002) 153–172, https://
doi.org/10.1023/A:1014043630878.

[19] J.-F. Álvar Arnaiz-González, J.J. Díez-Pastor, C. García-Osorio Rodríguez, Study
of data transformation techniques for adapting single-label prototype
selection algorithms to multi-label learning, Exp. Syst. Appl., 109 (2018)
114–130, https://doi.org/10.1016/j.eswa.2018.05.017.

[20] P. Skryjomski, B. Krawczyk, A. Cano, Speeding up k-Nearest Neighbors
classifier for large-scale multi-label learning on gpus, Neurocomputing 354
(2019) 10–19, recent Advancements in Hybrid Artificial Intelligence Systems.
doi: 10.1016/j.neucom.2018.06.095.

[21] M.-L. Zhang, Z.-H. Zhou, ML-KNN: a lazy learning approach to multi-label
learning, Pattern Recogn. 40 (7) (2007) 2038–2048, https://doi.org/10.1016/
j.patcog.2006.12.019.

[22] C.H. Chen, A. Jóźwik, A sample set condensation algorithm for the class
sensitive artificial neural network, Pattern Recogn. Lett. 17 (8) (1996) 819–
823, https://doi.org/10.1016/0167-8655(96)00041-4.

[23] G. Tsoumakas, I. Katakis, I. Vlahavas, Mining Multi-label Data, Springer, US,
Boston, MA (2010) 667–685, https://doi.org/10.1007/978-0-387-09823-4_34.

[24] P. Szymański, T. Kajdanowicz, A scikit-based Python environment for
performing multi-label classification, ArXiv e-prints arXiv:1702.01460.

[25] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
A Chapman & Hall book, Chapman & Hall/CRC (2011).

http://refhub.elsevier.com/S0925-2312(23)00012-7/h0005
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0005
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1109/TSMCC.2010.2103939
https://doi.org/10.1109/TSMCC.2010.2103939
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0030
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0030
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0045
https://doi.org/10.1007/s10044-014-0393-7
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0055
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0055
https://doi.org/10.1016/j.patcog.2022.108553
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0065
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0070
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0070
https://doi.org/10.1007/s10044-015-0452-8
https://doi.org/10.1016/j.asoc.2018.04.016
https://doi.org/10.1016/j.patcog.2014.10.001
https://doi.org/10.1016/j.patcog.2014.10.001
https://doi.org/10.1023/A:1014043630878
https://doi.org/10.1023/A:1014043630878
https://doi.org/10.1016/j.eswa.2018.05.017
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/0167-8655(96)00041-4
https://doi.org/10.1007/978-0-387-09823-4_34
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0125
http://refhub.elsevier.com/S0925-2312(23)00012-7/h0125

	Data reduction via multi-label prototype generation
	1 Introduction
	2 Related work
	3 Background knowledge
	3.1 The reduction through homogeneous clustering (RHC) algorithm
	3.2 The reduction by space partitioning v3 (RSP3) algorithm

	4 The proposed variations
	4.1 The multi-label RHC (MLRHC) algorithm
	4.2 The Multi-label RSP3 (MLRSP3) algorithm

	5 Performance evaluation
	5.1 Datasets
	5.2 Experimental setup
	5.3 Experimental results
	5.4 Wilcoxon signed rank test

	6 Conclusions and future work
	Declaration of Competing Interest
	References

