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Abstract

Although the k-NN classifier is considered to be an effective classification algorithm, it has
some major weaknesses that may render its use inappropriate for some application domains
and / or datasets. The first one is the high computational cost involved (all distances between
each unclassified item and all training data must be computed). Although nowadays systems
are equipped with powerful processors, in cases of large datasets, this drawback renders the
classification a time-consuming and in some cases a prohibitive procedure. Another weak-
ness is the high storage requirements for maintaining the training data. Eager classifiers (e.g.,
decision tress, neural networks) can discard the training data after the construction of the
classification model in order to save space. In contrast, the k-NN classifier must have all the
training data always available. Moreover, the classification accuracy achieved by the classifier
depends on the quality of the available training data. Noisy and mislabelled data, as well as
outliers and overlaps between data regions of different classes may mislead the algorithm and
affect the classification accuracy.

The aforementioned weaknesses constitute an active research problem. The dissertation is
motivated by these weaknesses and tries to remedy the problem. Therefore, it contributes
novel algorithms and techniques that can effectively deal with the aforementioned weak-
nesses. In other words, it proposes algorithms and techniques for efficient and effective k-NN
classification. The contributions are distinguished into three main categories: (i) new data re-
duction techniques that deal with all the weak points of the classifier and avoid the limitations
and disadvantages of existing data reduction techniques, (ii) novel hybrid algorithms that com-
bine different types of speed-up techniques and that can effectively reduce the computational
cost of the classifier, and, (iii) improvements and experimentations for existing algorithms.

The proposed algorithms, techniques and improvements are evaluated on several datasets
and experimentally compared to state-of-the-art methods. The experimental measurements
are validated by statistical tests of significance. The results illustrate that the proposedmethods
satisfy the goals for which they were developed and lead to improved classification, in terms
of accuracy, preprocessing and computational cost.

keywords: k nearest neighbours, classification, clustering, data reduction, prototypes, pro-
totype selection and abstraction, condensing, editing, cluster-based methods, hybrid algorithms,
streaming / dynamic environments, time-series, preprocessing, computational cost, accuracy.
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Περίληψη

Ο κατηγοριοποιητής εγγύτερων γειτόνων είναι ένας αποτελεσματικός αλγόριθμος κατη-
γοριοποίησης. Ωστόσο, περιλαμβάνει μειονεκτήματα και αδυναμίες που τον καθιστούν ακα-
τάλληλο σε συγκεκριμένα πεδία εφαρμογής ή/και σύνολα δεδομένων. Το πρώτο μειονέκτημα
είναι το υψηλό κόστος κατηγοριοποίησης ως αποτέλεσμα του υπολογισμού των αποστάσεων
μεταξύ κάθε αντικείμενου προς κατηγοριοποίηση και όλων των αντικειμένων που ανήκουν
στο σύνολο εκπαίδευσης. Αν και τα σημερινά υπολογιστικά συστήματα είναι εφοδιασμένα με
ισχυρούς επεξεργαστές, σε περιπτώσεις μεγάλων συνόλων δεδομένων, το συγκεκριμένο μειο-
νέκτημα καθιστά την κατηγοριοποίηση μια ιδιαίτερα χρονοβόρα διαδικασία, η εκτέλεση της
οποίας μπορεί να είναι απαγορευτική. Το δεύτερο μειονέκτημα αφορά τις μεγάλες απαιτή-
σεις σε αποθηκευτικό χώρο. Κατηγοριοποιητές που βασίζονται σε μοντέλα κατηγοριοποίη-
σης (π.χ., δένδρα απόφασης, νευρωνικά δίκτυα) μπορούν μετά την κατασκευή του μοντέλου
να διαγράψουν τα δεδομένα εκπαίδευσης ώστε να εξοικονομήσουν χώρο. Αντίθετα, ο κα-
τηγοριοποιητής εγγύτερων γειτόνων πρέπει να έχει πάντα όλα τα δεδομένα εκπαίδευσης
διαθέσιμα. Έτσι δεν είναι δυνατή η εξοικονόμηση αποθηκευτικού χώρου. Τέλος, η ακρίβεια
που επιτυγχάνει ο κατηγοριοποιητής εγγύτερων γειτόνων εξαρτάται από την ποιότητα των
δεδομένων εκπαίδευσης. Δεδομένα με θόρυβο, αντικείμενα χωρίς ετικέτα κλάσης, ακραία
σημεία και επικαλύψεις στις περιοχές διαφορετικών κλάσεων αποπροσανατολίζουν τον κα-
τηγοριοποιητή με αποτέλεσμα τη μείωση της ακρίβειας.

Τα μειονεκτήματα αυτά αποτελούν μια ενεργή περιοχή έρευνας. Η διδακτορική διατριβή
έχει ως κίνητρο την αντιμετώπιση των συγκεκριμένων μειονεκτημάτων. Ως εκ τούτου, η δια-
τριβή συνεισφέρει καινοτόμους αλγόριθμους που αντιμετωπίζουν με αποτελεσματικό τρόπο
τα μειονεκτήματα αυτά. Με άλλα λόγια, η διατριβή προτείνει αλγόριθμους και τεχνικές απο-
τελεσματικής κατηγοριοποίησης εγγύτερων γειτόνων. Η συνεισφορά έχει χωριστεί σε τρεις
κατηγορίες: (i) νέες τεχνικές μείωσης όγκου των δεδομένων εκπαίδευσης που αντιμετωπίζουν
όλα τα μειονεκτήματα και δεν παρουσιάζουν τις αδυναμίες υπαρχουσών τεχνικών, (ii) υβριδι-
κούς αλγορίθμους που συνδυάζουν διαφορετικού τύπου μεθόδους επιτάχυνσης με στόχο την
μείωση του υπολογιστικού κόστους της κατηγοριοποίησης (iii) βελτιώσεις σε υπάρχουσες
τεχνικές και πειραματικές μελέτες.

Η απόδοση των προτεινόμενων αλγόριθμων, τεχνικών και βελτιώσεων ελέγχθηκε πειρα-
ματικά και συγκρίθηκε με γνωστές στη βιβλιογραφία μεθόδους χρησιμοποιώντας διάφορα
σύνολα δεδομένων. Οι πειραματικές μετρήσεις επικυρώθηκαν με το μη παραμετρικό στατι-
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στικό τεστ του Wilcoxon. Τα αποτελέσματα υποδεικνύουν ότι οι αλγόριθμοι, οι τεχνικές και
οι βελτιώσεις επιτυγχάνουν τον σκοπό για τον οποίο αναπτύχθηκαν και ότι οδηγούν σε απο-
τελεσματική κατηγοριοποίηση σε ότι αφορά την ακρίβεια, το κόστος κατηγοριοποίησης και
το κόστος προ-επεξεργασίας.

Λέξεις κλειδιά: κ εγγύτεροι γείτονες, κατηγοριοποίηση, συσταδοποίηση, μείωση όγκου δεδο-
μένων, αντιπρόσωποι, επιλογή αντιπροσώπων, δημιουργία αντιπροσώπων, συμπύκνωση, επεξερ-
γασία με σκοπό τη μείωση θορύβου, μέθοδοι βασισμένοι στη συσταδοποίηση, Υβριδικοί αλγόριθμοι,
ροές δεδομένων και δυναμικά περιβάλλοντα, χρονοσειρές, προ-επεξεργασία δεδομένων, υπολογι-
στικό κόστος, ακρίβεια
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Chapter 1

Introduction

1.1 Classification

The efficiency and the effectiveness of data mining algorithms is an important research prob-
lem that has attracted the attention of both the academia and the industry [56, 109]. Classi-
fication (or supervised learning according to machine learning terminology) is a crucial data
mining task. Classification algorithms (or classifiers) [64] try to assign new, unclassified data
items to a set of predefined classes, on the basis of the available training data, i.e., a set of
already classified instances (or items). A typical classification example is to assign an email to
either class “spam” or class “non-spam”.

Classifiers can be divided into twomain algorithm categories [64]: (i) eager classifiers, and,
(ii) lazy (or instance based) classifiers. Both share the same motivation, that is, accurate class
prediction. However, they differ on how they work. Essential role for the effectiveness of the
algorithms of both categories plays the available training set. An eager classifier pre-processes
the available training data and builds a classification model that is then used to classify new,
unclassified items. On the other hand, lazy classifiers do not build any classification model. In
effect, they consider the training dataset as the classification model. A lazy algorithm classifies
a new item by scanning the training set at the time it arrives.

Since eager classifiers build a classification model before the arrival of any new item, the
classification process is very fast. Although lazy classifiers do not spend any time to build
classification models, their classification process is more time-consuming than that of eager
classifiers. A drawback of eager classifiers is that they have to generate a single hypothesis that
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covers the entire training set. This is not always feasible, may affect the classification accuracy
and may render the construction of the classification model an extremely time-consuming and
complicated pre-processing task. On the other hand, lazy classifiers use the entire training set
and, thus, can adopt more complex hypothesises about the data. Consequently, they may
improve the classification accuracy. A disadvantage of lazy classifiers is that they require all
the training data to be always available, which leads to high storage requirements. In contrast,
in eager classification, after the construction of the classification model, the training data can
be removed in order to save space .

During the past decades, the problem of classification has attracted the interest of many
researchers from different research fields of computer science. Therefore, various eager and
lazy classifiers have been proposed and are available in the literature.

Classification decision trees [110] constitute a well-known subcategory of eager classifiers.
Based on the available training data, these classifiers build a tree structure that is used to
classify new items. Other eager classifiers are based on artificial neural networks [59, 141].
A neural network is first trained by the training items and then it performs classifications.
Probabilistic classifiers belong also to the eager classifiers category. They build a classification
model that is based on probabilities. One characteristic example of a probabilistic classifier
is the naive Bayes classifier [37, 142]. Another subcategory of eager algorithms includes the
classifiers based on association rules mining [119]. They discover association rules within the
available training data. These rules are used for classification purposes.

On the other hand, the category of the lazy classifiers includes the well-known k Nearest
Neighbours classifier [28, 27] and the case-based reasoning classification methods [74]. The k
Nearest Neighbours classifier is the research subject of study of the this dissertation.

1.2 The k-Nearest Neighbours classifier

The k-Nearest Neighbours (k-NN) classifier [28, 27] is an effective and extensively used lazy
classification algorithm. It is a simple and easy to implement classifier, can be exploited in
many application domains and can be easily integrated in many systems. Moreover the k-
NN classifier is analytically tractable and for k = 1 and unlimited items the error rate is
asymptotically never worse than twice the minimum possible, which is the Bayes’ rate [27].

Since the k-NN classifier is a lazy classifier, it does not build any classification model. The
algorithm uses the training data whenever a new item needs to be classified. In particular, it
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Figure 1.1: k Nearest Neighbours classification process with k = 3 and k = 5

classifies an item x by searching in the available training data and retrieving the k nearest items
(neighbours) to x according to a distance metric. Then, x is assigned to the most common class
among the classes of the retrieved k nearest neighbours. This class is often called the major
class and is determined via a procedure known as the nearest neighbours voting. Note that
when k = 1, the algorithm is also known as nearest neighbour classifier (or 1-NN rule).

Figure 1.1 illustrates a two-dimensional example of the classification process. More specif-
ically, it shows a dataset with two classes, squares and circles, and a query item (Q) that needs
to be classified to one of these classes. If we set k to be equal to three (solid line circle in
Figure 1.1), Q is classified to the class circle because two of the three nearest neighbours are
circles. On the other hand, if k is set to be equal to five (dashed line circle in Figure 1.1), the
query item is assigned to the class square because three of the five neighbours belong to class
square.

The classification performance certainly depends on the selection of the value of parameter
k. The value of k that achieves the highest classification accuracy depends on the dataset used
and its determination usually implies tuning via costly trial-and-error preprocessing tasks.
Although the determination of k can not follow any general rule and the “best” k may be com-
pletely different for different datasets, larger k values are appropriate for datasets with noise
since they examine larger neighbourhoods. However, they do not clearly define the bound-
aries between distinct classes. In contrast, small parameter values render the classifier more
noise-sensitive. Therefore, in cases of training data that contains noise, classification is prob-
ably less accurate. It is worth mentioning that even the best k value may not be optimal. This
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happens because the k-NN classifier uses a unique k value. Different k values may be optimal
for different regions of the data space. Consequently, heuristics for dynamic determination
of k [105] can be adopted that can achieve higher accuracy than the k-NN classifier with its
“best” k value determination.

In cases of binary classification problems (datasets with two classes), k should have an
odd value to avoid ties (both classes are the most common) during nearest neighbours voting.
In cases of non-binary problems, k can have any value. Here, possible ties during voting
are resolved by selecting either a random “most common” class or the class of the nearest
neighbour. The popular Weka software [53] and many other data mining / machine learning
software tools resolve ties randomly. In the experimental studies of this dissertation, we adopt
the single nearest neighbour classifier to resolve ties.

Another important issue that should be addressed is the selection of the metric used to
compute the distance between items. Certainly, this decision should take into consideration
the data types of the dataset attributes (variables). In cases of real and / or integer attributes,
the Euclidean distance is the commonly-used distance metric. However, other distance met-
rics can be adopted (e.g., Mahalanobis, Manhatan, Minkowski, Chebyshev) [35]. Many other
similarity measures have been proposed to handle nominal attributes (non-metric spaces).
However, all experimentations in this dissertation are conducted on datasets with real and /
or integer attributes. Therefore, we adopt the Euclidean distance as the distance metric. Con-
sequently, data items described by n attributes are considered as data points (or vectors) in
the n-dimensional Euclidean metric space, and the Euclidean distance between points p and q
is given by:

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + . . .+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2

Different attribute ranges can affect the distance value. Even in cases where all attributes
have the same significance, attributes with wide ranges have higher impact on the distance
value than attributes with narrower ranges. Suppose that attribute “salary” ranges from 800 to
5000 and attribute “number of children” takes values from 0 to 6. With both attributes having
the same significance, “salary” has higher impact in the distance computation than “number
of children”. Therefore, the range of the attributes should be normalized to a particular in-
terval range (e.g., [0, 1]). Assume that a dataset contains n items and an attribute e should be
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normalized to [0, 1]. The attribute value of the i-th item, i = 1, . . . , n is normalized as follows:

normalized(ei) =
ei − Emin

Emax − Emin

where Emin and Emax are the minimum and maximum values for attribute e, respectively.
Data normalization is a common preprocessing procedure in many data mining tasks. Some
data mining software suites apply it by default.

Several variations of the k-NN classifier have been proposed. The most important one is
the distance-weighted k-NN rule [39] that uses a distance-weight function to weight more
heavily the closer neighbours than the further ones. The nearest neighbour is weighted by
one while the furthest of neighbour is weighted by zero. The weights of all other neighbours
are scaled to this interval. A new item is classified by a majority weighted vote: it is assigned
to the class with the largest sum of weights.

1.3 Motivation / Weaknesses of the k-NN classifier

Although the k-NN classifier is considered to be an effective method, it has some weaknesses
that may render its use inefficient. The first weak point is the high computational cost in-
volved. The k-NN classifier must compute all distances between each unclassified item and all
items stored in the training set. In cases of large datasets, this drawback renders its use a time-
consuming and in some cases a prohibitive procedure. For instance, suppose that a classifica-
tion system stores 100,000 training items. In addition, suppose that the system should classify
about 50,000 unclassified items by executing the k-NN classifier over the training data. This
means that the system must compute five billion distances. Although nowadays systems are
equipped with powerful processors, these computations are time-consuming and unaccept-
able in cases of time-constraint environments. We should mention that, apart from the size
of the training set, the computational cost of the classification task also depends on the data
dimensionality. The higher the data dimensionality, the more the computations performed for
a distance computation.

Another weakness of the k-NN classifier is the large storage requirements for the training
data. Contrary to eager classifiers that can discard the training data after the construction
of the classification model, the k-NN classifier needs the training data to be always avail-
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able. Consequently, the k-NN classifier must be executed on computer systems equipped with
enough main memory to store the training data.

The last weakness is that the k-NN classifier, like many other classification methods, is a
noise-sensitive method. In particular, the classification accuracy highly depends on the quality
of the training data. Noise and mislabelled data, as well as outliers and overlaps between
data regions of different classes, lead to less accurate classification. Usage of high k values
extends the examined neighbourhood and, thus, can partially remedy this drawback. However,
it implies a high number of trial-and-error executions to determine the appropriate k value and
the noise is uniformly distributed in the training set.

These weaknesses constitute an active research problem and have attracted the interest of
the data mining research community. This dissertation is also motivated by these weaknesses
and contributes novel algorithms and techniques to address them.

1.4 Method categories for efficient and effective k-NN classi-

fication

Although most of the recent research efforts focus on the reduction of the computational cost
of the k-NN classifier, numerous algorithms and techniques have been proposed that can deal
with the other weak points of the classifier. A possible categorization of methods for improved
k-NN classification is: (i) Multi-attribute Indexes, (ii) Data Reduction Techniques, and, (iii)
Cluster-Based Methods.

Multi-attribute indexes [112, 139, 22] can accelerate the nearest neighbours searches and,
as a consequence, they can speed-up the k-NN classifier. However, storage requirements in-
crease, since, in addition to the training data, the index must be stored, too. Moreover, indexes
can be applied only on datasets with moderate dimensionality (e.g., 2-10). In higher dimen-
sions, the phenomenon of the dimensionality cursemakes sequential scansmore effective than
indexes [129]. Thus, it is essential to first apply a dimensionality reduction technique, such
as the Principal Component Analysis (PCA) [67]. Unfortunately, PCA may lead to significant
information loss. In addition, each unclassified item should be transformed before searching
for its nearest neighbours. Therefore, classification may become less efficient.

Data Reduction Techniques (DRTs) have two points of view: (i) item reduction, and, (ii) di-
mensionality reduction. The dissertation considers them from the first point of view. DRTs can
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effectively cope with all weaknesses. They can be grouped into twomain algorithm categories:
(i) prototype selection algorithms [48], and, (ii) prototype abstraction [123] algorithms. Proto-
type selection algorithms select representative items (or prototypes) from the initial training
set, whereas prototype abstraction algorithms generate items by summarizing on similar train-
ing items and use them as prototypes. In effect, each prototype represents a specific data area
of the multidimensional space.

Prototype selection algorithms are divided into two subcategories. They can be either
condensing or editing algorithms. Prototype abstraction and condensing algorithms have the
same motivation. They aim to built a small representative set of the initial training data. This
set is usually called the condensing set. Usage of a condensing set has the benefits of low
computational cost and storage requirements, while classification accuracy is not negatively
affected. On the other hand, editing algorithms aim to improve accuracy rather than achieve
high reduction rates. To achieve this, they try to improve the quality of the training data
by removing noise, outliers and mislabelled items and by smoothing the decision boundaries
between classes (see Figure 2.2). Ideally, an editing algorithm builds an edited training set
without overlaps between the classes. Figure 1.2 summarizes the aforementioned categories
in a hierarchical taxonomy. It is worth mentioning that some condensing algorithms integrate
the idea of editing. In [48], they are called hybrid algorithms.

Prototype selection and abstraction algorithms are reviewed and compared to each other
in [48] and [123], respectively. Also, both of these papers present interesting taxonomies.
Other relevant reviews can be found in [122, 131, 65, 51, 17, 84, 76]. Furthermore, Chapter 2
presents a short review of the most significant DRTs.

Cluster-based methods can speed-up the k-NN classification process. Like multi-attribute
indexes and contrary to DRTs, they do not reduce the size of the training set. Moreover,
they do not improve the quality of the training data. Their unique goal is the reduction of
the computational cost. To achieve this, cluster-based methods pre-process the training data
and group it into clusters. For each new item, they dynamically form an appropriate training
subset of the initial training set, which then is used to classify the new item. This subset is
usually called reference set and is a union of some clusters.
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Figure 1.2: Categories of data reduction techniques: An hierarchical taxonomy

1.5 Contribution / Dissertation organization

This dissertation focuses on DRTs and cluster-based methods. It contributes new, novel DRTs
and proposes improvements for existing methods. Moreover, it proposes hybrid classification
schemas that combine DRTs and cluster-based methods. In this section, we summarize the
main findings and the contribution and, at the same time, we present the organization of the
dissertation.

Chapter 2 presents a survey of existing methods for efficient and effective k-NN classifi-
cation. Prototype selection and abstraction algorithms as well as cluster-based methods and
multi-attribute indexes are reviewed. Their advantages and drawbacks are discussed. Al-
though Chapter 2 emphasizes on the methods implemented in the context of the dissertation
and used for comparison purposes in the experimental studies, it briefly reviews all the state-
of-the-art methods. In addition, Chapter 2 discusses k-means clustering that is the base of the
methods introduced in the following chapters.
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Chapter 3 contributes new DRTs based on forming clusters containing items of a specific
class only (homogeneous clusters). More specifically, the chapter introduces a family of four
novel fast and non-parametric (independent of tuning parameters) algorithms. These are (i) the
Reduction through Homogeneous Clusters (RHC) algorithm [92, 91], (ii) the dynamic version
of RHC (dRHC) [91], (iii) the Editing through Homogeneous Clusters (EHC) algorithm [98]
and (iv) the Editing and Reduction through Homogeneous Clusters (ERHC) algorithm [89].
Although they are based on the same idea, each one aims to a different goal. RHC is a pro-
totype abstraction algorithm that achieves high reduction rates with low preprocessing cost
while maintaining k-NN classification accuracy at high levels. dRHC is a dynamic prototype
abstraction algorithm that incrementally builds its condensing set and, therefore, is appropri-
ate for dynamic / streaming environments [1] where new training data is gradually available
and for very large datasets that can not fit in main memory. EHC is an editing algorithm that
improves the quality of the training data by removing noise, outliers and mislabelled data as
well as by smoothing the decision boundaries between distinct classes. ERHC combines the
idea of RHC with that of EHC. In effect, it is a variation of RHC that can effectively deal with
datasets with noise.

Chapter 4 also focuses on data reduction. It proposes two additional prototype abstraction
algorithms, namely, (i) the Abstraction IB2 (AIB2) algorithm [96, 88], and, (ii) the Reduction
through k Means (RkM) algorithm [95]. AIB2 is a prototype abstraction version of the well-
known IB2 algorithm. It inherits all the good properties of IB2 but it performs better. RkM is a
simple noise-tolerant prototype abstraction algorithm that is based on k-means clustering [79,
133].

Chapter 5 proposes novel methods that combine different speed-up strategies for fast k-
NN classification in hybrid classification schemas. Although they do not reduce the storage
requirements, they accelerate the classification process. The chapter introduces three hybrid
classification methods and variations. First, a fast, hybrid and model-free classification al-
gorithm and two variations [101] are proposed. The reduction of the computational cost is
achieved by the combination of the conventional k-NN and the minimum distance [38] clas-
sifiers. Then, a classification method is proposed that combines the idea of DRTs with that of
cluster-based methods to achieve the desirable performance [102, 90]. The particular method
can be used either to improve accuracy at a lower cost, or to reduce cost at a minimum level
without sacrificing accuracy. This is achieved by appropriately adjusting a set of input param-
eters. The last section of Chapter 5 extends the aforementioned idea and proposes a hybrid
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classification method that also combines the strategy of data reduction with that of cluster-
based methods [97, 94]. However, the proposed method is non-parametric (independent of
tuning parameters). A variation of the aforementioned method is also proposed that can im-
prove the performance of state-of-the-art DRTs.

Chapter 6 presents some additional research tasks and experimentations conducted in the
context of the dissertation. Initially, it elaborates on fast time series classification through
general-purposes DRTs [104, 103]. Then, it deals with the recently proposed Prototype Selec-
tion by Clustering (PSC) algorithm [86, 85, 87] that is a prototype abstraction algorithm based
on k-means clustering. In particular, Chapter 6 demonstrates that the reduction rate and the
accuracy of PSC can be improved by generating a large number of clusters [93]. Finally, the
chapter focuses on the cluster-based method proposed by Hwang and Cho [62] by present-
ing an extensive experimental study. The results show that if a set of parameters is carefully
defined, one can achieve improved classification performance.

Chapter 7 concludes the dissertation by summarizing on its findings and contribution. In
addition, it gives some research directions for future work. Last but not least, Appendix A
presents WebDR [99], a web-based application developed during the PhD research and offers
all DRTs coded in the context of the dissertation available on-line. In effect, WebDR is a work-
bench that allows the user to plan and run experiments as well as to evaluate the performance
of DRTs over several know datasets through the web.
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Chapter 2

Background knowledge

2.1 Data Reduction Techniques

2.1.1 Introduction

As already mentioned in Section 1.4, there are two categories of Data Reduction Techniques
(DRTs) [123, 48, 76, 122, 131, 65, 51, 17, 84]: prototype selection and prototype abstraction
algorithms. In addition, prototype selection algorithms are distinguished into condensing and
editing algorithms. Prototype abstraction and condensing algorithms can cope with the weak-
nesses of the k-NN classifier regarding the high classification computational cost and storage
requirements. This is achieved by building a small representative set of the initial training
data. This set is called the condensing set and contains only essential items. Applying the k-
NN classifier using the condensing set, one has the benefits of much lower computational cost
and storage requirements, whereas accuracy remains high or does not degrade significantly.
On the other hand, editing algorithms attempt to improve the accuracy by removing training
data that is noise and smoothing the decision boundaries between classes.

DRTs can be evaluated using three criteria. The first one is the reduction rate that indicates
how much smaller the size of the condensing set is with regards to the size of initial training
set. Practically, it is the ratio of the number of discarded items over the number of initial items
of the training set. Obviously, the higher the reduction rate, the faster the k-NN classification.
Another major criterion is the classification accuracy achieved by the k-NN classifier when it
runs over the condensing set. The third criterion is the preprocessing computational cost, that
is, the cost required to build the condensing set. For certain domains, one criterion may be
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Figure 2.1: k-NN classification through data reduction

more critical than another. However, all of them should satisfy certainminimum requirements.
The dissertation considers all criteria as having the same significance.

Although editing has a completely different goal than the other DRTs, it can be used to
improve their performance by increasing their reduction rates and / or accuracy levels. More
specifically, the reduction rates of many prototype abstraction and condensing algorithms de-
pend on the level of noise in the training data. High levels of noise in the training set prevent
many condensing or prototype abstraction algorithms from achieving high reduction rates. In
effect, the higher the level of noise, the lower the reduction rates achieved. Therefore, effective
application of such algorithms implies removal of noise from the data, i.e., application of an
editing algorithm beforehand [29, 76]. Hence, an editing algorithm should be used on a train-
ing set with noise in order to either improve accuracy or make the application of condensing
and prototype abstraction algorithms more effective.

Figure 2.1 summarizes the k-NN classification process through data reduction. The
whole process includes two phases, preprocessing and classification. Certainty, the pre-
processing phase is optional. In general, there are four possible types of preprocessing: (i)
no-preprocessing, (ii) only editing, (iii) only condensing, and (iv) both editing and condens-
ing. If the training set does not contain noise and misleading data and its size is small, no
preprocessing is required. When the size of the training set is small, but it contains noise,
only an editing algorithm should be executed during preprocessing. On the other hand, in
cases of large and noise-free training sets, data reduction without editing should be executed.
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Finally, in cases of large and training data with noise, both kinds of preprocessing algorithms
must be ran. All four types of preprocessing are available on WebDR1 (see Appendix A).

The goal of a complete data reduction preprocessing procedure is to build a noise-free
condensing set by keeping or generating for each class a sufficient number of prototypes that
are essential for the k nearest neighbours classification. We should mention that many DRTs
have been implemented under the KEEL software [7], which is an open-source Java-based
framework.

2.1.2 Prototype selection algorithms for data editing

Editing algorithms improve the quality of the training data by removing outliers, noise and
mislabelled items as well as by smoothing the class decision boundaries. Ideally, an editing
procedure tries to create a training set without overlaps between classes. Figure 2.2 presents
the type of data that editing algorithms try to remove. In this section, three state-of-the-art
editing algorithms are explained in detail. They have been coded in C and are used for com-
parison purposes in Chapter 3. Moreover, they are available on WebDR and can be executed
on-line. In addition, the most popular editing algorithms are briefly surveyed.

(a) Initial training set (b) Edited set

Figure 2.2: Smoothing decision boundaries and removing noise

1https://ilust.uom.gr/webdr
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The Edited Nearest Neighbor (ENN) rule

The reference editing algorithm is Wilson’s Edited Nearest Neighbor (ENN) rule [132]. It con-
stitutes the base of all other editing algorithms. ENN-rule is very simple. Algorithm 1 lists the
pseudo-code of ENN-rule. Initially, the edited set (ES) is set to be equal to the training set
(TS) (line 1). For each item x of TS, the algorithm scans TS and retrieves its k nearest neigh-
bours (line 3). If x is misclassified by the majority vote of the retrieved nearest neighbours,
it is removed from ES (lines 4–7). ENN-rule considers wrongly classified items to be noise or
close-border items and, thus, they must be removed. Note that, in each algorithm iteration,
ENN-rule searches for nearest neighbours in the original training set and not in the “under
construction” edited set.

Algorithm 1 ENN-rule
Input: TS, k
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: NNs← find the k nearest to x neighbors in TS − {x}
4: majorClass← find the most common class of NNs
5: if xclass ̸= majorClass then
6: ES ← ES − {x}
7: end if
8: end for
9: return ES

Obviously, the cost of editing depends on the size of the training set. In cases of large
datasets, ENN-rule is a time-consuming algorithm. ENN-rule must compute all distances be-
tween the training items. Therefore, N×(N−1)

2
distances must be computed, where N is the

number of items in the training set.
A crucial issue that should be addressed is the determination of the value of k that deter-

mines the size of the examined neighbourhood. [131, 49, 84] consider k = 3 to be a typical
value. This is adopted in many papers (e.g. [113]), whereas, other papers use k = 3 and ad-
ditional k values (e.g., [118, 58]). In some cases, researchers determine the value of k that
achieves the best performance through trial-and-error procedures (e.g., [126]). In [132], the
impact of k is discussed in detail. Furthermore, in [58], a large number of k values are ex-
perimentally evaluated. It turns out that the best value of k depends on the dataset at hand
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and should be determined by considering the distribution of items in the multidimensional
space. Even the best value of k may not be optimal and it may remove items that are not noise
(see [49]) or keep items that are noise. This happens because ENN-rule uses a unique k value
for the entire training set. Different k values may be optimal for different regions in space.

All k-NN

All-kNN [120] is a popular variation of ENN-rule. It iteratively executes ENN-rule with dif-
ferent k values (see Algorithm 2). All-kNN adopts kmax as an upper limit for the value of
k. Initially, the edited set (ES) is set to be the whole training set (TS) (line 1). For each item
x in TS (line 2), All-kNN applies the k-NN classifier on the items of TS (lines 6–7), initially
with k = 1, and tries to remove x from ES in a way similar to ENN-rule. If x is misclassified,
it is removed and the procedure continues with the next item (lines 8–10). Otherwise, k is
incremented by one (line 12) and the algorithm retries to remove x. If the item is not removed
after kmax iterations (line 5), x remains in the final ES and All-kNN continues with the next
item.

Algorithm 2 All-kNN
Input: TS, kmax
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: k ← 1
4: flag ← FALSE
5: while (k ≤ kmax) and (flag == FALSE) do
6: NNs← find the k nearest to x neighbors in TS − {x}
7: majorClass← find the most common class in NNs
8: if xclass ̸= majorClass then
9: ES ← ES − {x}
10: flag ← TRUE
11: end if
12: k ← k + 1
13: end while
14: end for
15: return ES

Since All-kNN uses more than one values for k, it removes more items than ENN-rule.
Although All-kNN is an iterative version of ENN-rule, an efficient implementation of it does
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not re-compute the same distances again and again. Therefore, All-kNN computes as many
distances as ENN-rule and is parametric, too. The value of kmax must be determined by the
user. This usually implies tuning via trial-and-error. Garcia-Borroto et al. consider kmax = 7

or kmax = 9 to be appropriate values [49].

Multiedit

Multiedit [34] is another well-known editing approach. Its pseudo-code is presented in Al-
gorithm 3. Initially, the edited set (ES) is set to be equal to the training set (TS) (line 1).
Then, TS is divided into n random subsets, s1, s2, . . . , sn (line 5). The algorithm continues by
applying ENN-rule over each item x ∈ si (line 7) of each subset si (line 6), but searching for
the single nearest neighbor (1-NN) in the modulo n following subset, i.e., s(i+1) mod n (line 8).
The misclassified items are removed from ES (line 10). If at least one item is removed, TS is
set to be ES (line 20) and the whole process is repeated. Multiedit continues until the last R
iterations produce no editing (lines 11,15–16,21).

Here, parameter k is not used since multiedit utilizes the 1-NN classifier. However, pa-
rameters n and R influence the resulting edited set. Parameter n ≥ 3 determines the number
of subsets. In many papers (e.g., [49, 118]), n = 3 is either adopted or proposed. Parameter R
determines the number of non-editing iterations. In [49], R = 2 is suggested as an appropri-
ate value. Nevertheless, the best values for these parameters can not be determined without
tuning through a trial-end-error procedure.

Multiedit usually achieves higher reduction rates than ENN-rule. It can successfully re-
move noise, outliers and close-border items. However, it may also remove items that are not
noise. If items of two or more classes are close to each other, multiedit may eliminate en-
tire classes [49]. Another drawback of multiedit is that it is based on a random formation of
subsets, i.e., repeated applications may build a completely different edited set from the same
training set.

Multedit is usually more time-consuming than ENN-rule. However, it may compute even
fewer than N×(N−1)

2
distances. An implementation of multiedit that does not compute a dis-

tance more than once should have the distances that have been already computed available
until the end of the execution. Therefore, such an implementation requires more memory. In
case of a simple implementation where each distance may be computed more than once, the
computational cost of the algorithm highly depends on the value of R.
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Algorithm 3 Multiedit
Input: TS, n,R
Output: ES

1: ES ← TS
2: r ← 0
3: repeat
4: flag ← FALSE
5: S ← set of n random subsets, s1, s2, . . . , sn of TS
6: for each si ∈ S do
7: for each x ∈ si do
8: nn← find the nearest neighbor in s(i+1) mod n

9: if xclass ̸= nnclass then
10: ES ← ES − {x}
11: flag ← TRUE
12: end if
13: end for
14: end for
15: if flag == FALSE then
16: r ← r + 1
17: else
18: r ← 0
19: end if
20: TS ← ES
21: until r == R {until none of the last R iterations edit data}
22: return ES

Other editing algorithms

Three state-of-the-art editing algorithms were previously presented. They are used for com-
parison purposes in our experimental study in Chapter 4. Many more editing approaches have
been proposed in the literature.

EENProb and ENNth [126] are extensions of ENN-rule. Both retrieve the k nearest neigh-
bors, and then perform editing based on probability estimations. Repeated ENN (RENN)
rule [120] is also a variation of ENN-rule. Actually, it is quite similar to All-kNN. RENN-
rule applies ENN-rule in an iterative way until each item’s majority of k nearest items have
the same class. In [58], another simple variation of ENN-rule is proposed that places an item
in the edited set, only if all its k nearest neighbours have the same class label with it (distance
ties increase the value of k).
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Sanchez et al. proposed two editing algorithms that are based on geometric information
provided by proximity graphs [118]. They are also based on the concept of removal of mis-
classified items. To the best of our knowledge, they are the only non-parametric editing al-
gorithms. Nevertheless, the type of proximity graphs used influence the resulting edited set.
In [118], two types of proximity graphs were used. Consequently, four editing approaches
were obtained and evaluated. From this point of view, even these algorithms can be charac-
terized as parametric methods.

k-NCN editing and its iterative version [113] are also based on ENN-rule. Particularly, they
use the k nearest centroid neighbourhood classifier [117] instead of the k-NN classifier. Both
are based on the following simple idea: the appropriate neighbourhood that should be exam-
ined for each item is determined by taking into consideration not only its nearest neighbours
but also the symmetrical distribution of neighbours around it.

In [13, 113] a depuration algorithm is proposed for editing training data. In addition to
removing some training items, the algorithm also changes the class labels of some items. To
achieve this, it uses two input parameters (see [13] or [113] for details). [66] considers and
evaluates editing approaches based on the depuration algorithm and proposes the Neural Net-
work Ensemble Editing (NNEE).Thismethod is also parametric. NNEE trains a neural network
ensemble that is then used to relabel some items. Last by not least, a recent paper [115] pro-
poses the use of local support vector machines for noise reduction. Like the other methods,
its performance depends on parameter tuning.

2.1.3 Prototype selection algorithms for data condensation

This subsection presents in detail three state-of-the art condensing algorithms. These algo-
rithms were coded in C and can be executed on-line through WebDR2 (see Appendix A). They
are used for comparison purposes in the next chapters of the dissertation. Moreover, the sec-
tion presents a short survey of other well-known condensing algorithms.

Condensing Nearest Neighbour rule

The Condensing Nearest Neighbour (CNN) rule [57] is the earliest and also a reference con-
densing algorithm. It is used in many papers for comparison purposes. CNN-rule (and many
other DRTs) builds its condensing set based on the following simple idea. Items that lie in

2https://ilust.uom.gr/webdr
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the “internal” data area of a class (i.e., far from class decision boundaries) are useless during
the classification process. Consequently, they can be removed without loss of accuracy. By
adopting this idea, CNN-rule tries to place into the condensing set only the items that lie in
the close-class-border data areas. They are the only essential items for the classification pro-
cess. Figure 2.3 depicts this strategy. The idea is that the k-NN classifier will be able to have
similar accuracy using either the training set or the condensing set. However, the usage of
the condensing set involves much lower computational cost and storage requirements than
the training set.

(a) Training set (b) Condensing set

Figure 2.3: Initial training data and close-class-border data

CNN-rule tries to keep the close-class-border items as follows (see Algorithm 4). Initially,
an item of the training set (TS) is moved to the condensing set (CS) (line 2). Then, CNN-rule
applies the 1-NN rule and classifies the items of TS by scanning the items of CS (line 6). If an
item is misclassified, it is moved from TS to CS (lines 7–11). The algorithm continues until
there are no moves from TS to CS during a complete pass of TS (line 13). This ensures that
the content of TS is correctly classified by the content of CS. The remaining content of TS
is discarded (line 14).

CNN-rule considers that misclassified items are probably close to decision boundaries and
so they must be placed in the condensing set. Obviously, items that are noise are misleading.
CNN-rule wrongly places that kind of items with their neighbourhood (items that are close
to them) in the condensing set. Therefore, the reduction rate (and the preprocessing cost) is
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Algorithm 4 CNN-rule
Input: TS Output: CS

1: CS ← ∅
2: pick an item of TS and move it to CS
3: repeat
4: stop← TRUE
5: for each x ∈ TS do
6: NN ← Nearest Neighbour of x in CS
7: if NNclass ̸= xclass then
8: CS ← CS ∪ {x}
9: TS ← TS − {x}
10: stop← FALSE
11: end if
12: end for
13: until stop == TRUE {no move during a pass of TS}
14: discard TS
15: return CS

affected by high levels of noise. Of course, the number of discrete classes may also affect the
reduction rate. The more classes, the more boundaries probably exist and as a consequence
more prototypes are collected.

An advantage of CNN-rule is that it is a non-parametric approach. It determines the num-
ber of the prototypes automatically, without user-defined parameters. Another desired prop-
erty is that CNN-rule through the multiple passes over the data guarantees that the removed
training items can be correctly classified by executing 1-NN rule in the context of the final
condensing set. A drawback is that the resulting condensing set depends on the ordering of
the training set items. Therefore, CNN-rule builds a different condensing set by examining
the same training data in a different order.

Furthermore, CNN-rule cannot handle new training data, i.e., is non-incremental3. This
means that new training data cannot update an already constructed condensing set. CNN-
rule involves multiple passes over the data and it cannot use training data available at a later
time to update its condensing set. To construct an updated condensing set, CNN-rule needs to

3In the literature [48, 123], DRTs can be incremental or decremental depending on the way they build their
condensing set. An incremental DRT begins with an empty condensing set and adds items to it, whereas a decre-
mental DRT uses the whole training set as the initial condensing set and then removes items. In this dissertation,
the use of term incremental refers to the ability of the DRT to update an already constructed condensing set
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Algorithm 5 IB2
Input: TS Output: CS

1: CS ← ∅
2: pick an item of TS and move it to CS
3: for each x ∈ TS do
4: NN ← Nearest Neighbour of x in CS
5: if NNclass ̸= xclass then
6: CS ← CS ∪ {x}
7: end if
8: TS ← TS − {x}
9: end for
10: return CS

be executed from scratch over the complete training set (new and old training data). Therefore,
the training items that do not enter the condensing set should be retained. Hence, CNN-rule is
inappropriate for dynamic / streaming environments [1] where new training data is gradually
available. In addition, CNN-rule requires that all training items are memory resident.

The IB2 algorithm

IB2 belongs to the well-known family of Instance-Based Learning (IBL) algorithms [5, 4] and
is based on CNN-rule. In effect, IB2 constitutes a simple one pass variation of CNN-rule.
Algorithm 5 presents IB2 in pseudo-code. Each training item x ∈ TS is classified using the
1-NN classifier on the current CS (line 4). If x is classified correctly, it is discarded (line 8).
Otherwise, x is transferred to CS (line 6).

Similarly to CNN-rule, IB2 is non-parametric and its condensing set highly depends on
the order of items in the training set. Contrary to the CNN-rule, IB2 does not ensure that all
discarded items can be correctly classified by the final version of the condensing set. However,
since it is a one-pass algorithm, it is very fast, i.e., it involves low preprocessing computational
cost.

In addition, IB2 builds its condensing set incrementally. New training items can be taken
into consideration after the creation of the condensing set. In other words, new training data
segments can update an existing condensing set in a simple manner and without considering
the “old” (removed) data that had been used for the construction of the condensing set. Each
new training item can be examined, be placed or not in the condensing set, and then, removed.
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Moreover, IB2 can handle new class labels. Therefore, IB2 is an appropriate DRT for dynamic
/ streaming environments, whereby new training data may be gradually available. Certainly,
IB2 can not deal with data streams with concept drift [125]. IBL-DS [15] adopts the idea of the
family of IBL algorithms and can deal with such data.

Last but not least, contrary to the CNN-rule and to many other DRTs, IB2 does not require
that all training data reside in main memory. Therefore, it can be applied in devices whose
memory is insufficient for storing all the training data.

Prototype selection by clustering

Prototype Selection by Clustering (PSC) [86, 85, 87, 93] is a recently proposed condensing al-
gorithm whose main goal is fast execution of the data reduction procedure rather than high
reduction rates. It is also based on the concept that the non-close-class-border items are re-
dundant and can be removed. PSC uses k-means clustering [79, 133] in order to find clusters
in the training set. For each homogeneous cluster (i.e., clusters that contain only items of a
specific class), it keeps only the training item that is the closest to the cluster mean. For each
non-homogeneous cluster, it keeps only the items that define the decision boundaries between
different classes in the cluster.

A disadvantage of PSC is that it is parametric. The user has to determine the number of
clusters that will be created through a trial-and-error procedure. Although, its condensing set
is independent of data order (it builds the same condensing regardless the order of data in the
training set), the choice of the initial means for k-means clustering influences the contents of
the final condensing set. Different initial means, lead to different clusters, and consequently,
different condensing sets are built.

Section 6.3 presents PSC in more detail and proposes improvements.

Other condensing algorithms

There are many other condensing algorithms that either extend CNN-rule or are based on the
same idea, that is, the removal of the non-close-border data. Some of these algorithms are the
ReducedNearest Neighbour (RNN) rule [50], the Selective Nearest Neighbour (SNN) rule [107],
the Modified CNN rule [33], the Generalized CNN rule [25], the Fast CNN algorithms [9, 10],
Tomek’s CNN rule [121], the Patterns with Ordered Projection (POP) algorithm [106, 3], the

22



recently proposed Template Reduction for k-NN (TRkNN) [42] and, of course, the IB2 algo-
rithm [5, 4].

Before concluding this short review, we should mention that some condensing algorithms
integrate the idea of editing. These algorithms are called hybrid [48]. Hybridization is achieved
by combining condensing and editing mechanisms in a data reduction procedure. These pro-
totype selection algorithms try to remove the non-close-border items and, at the same time,
smooth border areas and remove noise and mislabelled items. Algorithms that belong to the
DROP family [131] (or RT algorithms as called in [130]) are characteristic examples of hy-
brid algorithms. IB3 [5, 4] and C-Pruner [143] are other typical examples than belong to this
category.

For the interested reader, in Garcia et al [48], all types of prototype selection algorithms
(editing, condensing and hybrid) are reviewed and compared to each other. Moreover, the
paper introduces taxonomies of existing prototype selection algorithms.

2.1.4 Prototype abstraction algorithms

Although prototype abstraction algorithms have the same motivation with condensing ap-
proaches, they differ on the way they build the condensing set. Contrary to condensing algo-
rithms that select some “real” training items as prototypes, prototype abstraction algorithms
generate new prototypes by summarizing on similar items. Actually, a k-NN classifier that
adopts the idea of prototype abstraction runs over an artificial training set. In this subsection,
we present some well-known prototype abstraction algorithms.

The algorithm of Chen and Jozwik

Chen and Jozwik have proposed a well-known and effective prototype abstraction algorithm.
Chen and Jozwik’s algorithm (CJA) [23] initially retrieves the most distant items, x and y in
the training set. The distance between x and y determines the diameter of the dataset. Then,
based on these two items, CJA divides the training set into two subsets: items that lie closer to
x are placed in Sx whereas items that lie closer to y are placed in Sy. CJA proceeds by selecting
to divide subsets that contain items of more than one classes (non-homogeneous subsets). The
non-homogeneous subset with the largest diameter is divided first. If all subsets are homoge-
neous, CJA continues by dividing the homogeneous subsets. This procedure continues until
the number of subsets becomes equal to a user specified value. In the end, for each created
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subset S, CJA averages the items in S and creates a mean item that is assigned the label of the
majority class in S. The mean items created constitute the final condensing set.

The mean item m of each subset S, is computing by averaging the t attribute values of
items xi, i = 1, 2, . . . , |S| that belong to S. Therefore, the t average attributes m.dj of m are
computed as follows:

m.dj =
1

|S|
∑
xi∈S

xi.dj, j = 1, 2, . . . , t

Algorithm 6 lists in pseudo-code a possible implementation of CJA. It accepts a training
set (TS) and the number of prototypes, n, that will be generated. The algorithm uses a data
structure to store the subsets created. Initially, the entire TS constitutes a subset and is stored
in TS (lines 1–2). Then, the non-homogeneous subset C with the largest diameter is divided
into two subsets (lines 4,8). If all subsets are homogeneous, CJA divides the homogeneous
subsetC with the highest diameter (lines 5–7). Both subsets are added toS, whileC is removed
(lines 9–11). The procedure of constructing subsets continues until n subsets have been created
(line 3). The last step is the mean computation (or prototype generation) for each subset and
its inclusion in the condensing set CS (lines 13-18).

CJA selects the next subset that will be divided by examining its diameter. The idea is
that a subset with a large diameter probably contains more training items. Therefore, if this
subset is divided first, a higher reduction rate will be achieved. A desirable property is that
CJA builds the same condensing set regardless of the ordering of the data in the training set.
However, it has two weak points. The first is that the algorithm is parametric. The user has
to specify the number of prototypes. This usually involves tuning via a costly trial-end-error
procedure. In certain domains, this property may be desirable, since it allows one to control
the size of the condensing set. However, it prohibits the automatic determination of the size of
the condensing set in accordance with the nature of the available data. The second weakness is
that the items that do not belong to the most common class of the subset are not represented
in the condensing set. Since the mean item of each subset is labelled by the most common
class, items that belong to other classes are practically ignored.

Reduction by Space Partitioning algorithms

The Chen and Jozwik algorithm constitutes the ancestor of the family of Reduction by Space
Partitioning (RSP) algorithms [114] that are a popular set of three prototype abstraction algo-
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Algorithm 6 CJA
Input: TS, n
Output: CS

1: S ← ∅
2: add(S, TS)
3: for i = 2 to n do
4: C ← select the non-homogeneous subset ∈ S with the largest diameter
5: if C == ∅ {All subsets are homogeneous} then
6: C ← select the homogeneous subset ∈ S with the largest diameter
7: end if
8: (Sx, Sy)← divide C into two subsets
9: add(S, Sx)
10: add(S, Sy)
11: remove(S, C)
12: end for
13: CS ← ∅
14: for each subset T ∈ S do
15: r ← compute the mean item by averaging the items in T
16: r.label ← find the most common class label in T
17: CS ← CS ∪ {r}
18: end for
19: return CS

rithms known as RSP1, RSP2, and RSP3. RSP1 deals with the second drawback of CJA. More
specifically, RSP1 computes as many mean items as the number of different classes in each
subset. Therefore, it averages the items that belong to each class in the subset. Obviously,
RSP1 builds larger condensing sets than CJA. However, it attempts to improve accuracy since
it takes into account all training items (it does not ignore items).

RSP1 and RSP2 differ on how they select the next subset to be divided. Similar to CJA,
RSP1 uses the subset diameter as the splitting criterion, based on the idea that the subset with
the larger diameter may contains more training items, and so, a higher reduction rate could
be achieved. In contrast, RSP2 uses as its splitting criterion the highest overlapping degree.
This criterion assumes that items that belong to a specific class lie as close to each other as
possible while items that belong to different classes lie as far as possible. According to [114], it
is better to divide the subset with the highest overlapping degree. The overlapping degree of
a subset is the ratio of the average distance between items belonging to different classes and
the average distance between items that belong to the same class.
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RSP3 adopts the concept of homogeneity. It continues splitting the non-homogeneous
subsets and terminates when all of them become homogeneous (i.e., contain items of a spe-
cific class only). RSP3 can use either the largest diameter or the highest overlapping degree
as spiting criterion. Actually, since all non-homogeneous subsets are divided, the choice of
splitting criterion becomes an issue of secondary importance. RSP3 is the only RSP algorithm
(CJA included) that automatically determines the size of the condensing set (it does not use
any input parameter). Consequently, RSP3 eliminates both weak points of CJA. It is worth
mentioning that like CJA, RSP1 and RSP2, the condensing set built by RSP3 does not depend
on the data order in the training set.

Algorithm 7 lists the pseudo-code of RSP3. It utilizes a simple data structure S to hold
the unprocessed subsets. Initially, the whole training set (TS) is an unprocessed subset and is
placed in S (line 2). At each repeat-until iteration, RSP3 selects the subset C with the highest
splitting criterion value (line 5) and checks if C is homogeneous or not. If it is homogeneous,
the mean item is computed by averaging the items in C and is paced in the condensing set
(CS) as prototype (lines 6–9). Otherwise, C is divided into two subsetsD1 andD2 (line 11) in
the CJA fashion. These new subsets are added to S andC is removed from S (lines 12–15). The
repeat-until loop continues until S becomes empty (line 16), i.e., all subsets are homogeneous.

Considering RSP3, we observe that it generates few prototypes for representing non close-
class-border areas, and many prototypes for representing close-class-border areas. Certainly,
the reduction rate achieved by RSP3 highly depends on the level of noise in the data. The
higher the level of noise in the data, the smaller subsets created and, as a consequence, the
lower reduction rate achieved. It is worth mentioning that finding the most distant items in
each subset implies the computations of all distances between the items of the subset. Hence,
they are costly procedures which deteriorate the overall preprocessing cost of the algorithm.
In cases of large datasets, this drawback may render its execution prohibitive.

Other prototype abstraction algorithms

We have implemented RSP3 in C. It is used for comparison purposes in the dissertation. Fur-
thermore, RSP3 is available on WebDR4 (see Appendix A). We presented in detail only this
algorithm as well as its ancestors. However, there are many more prototype abstraction algo-
rithms.

4https://ilust.uom.gr/webdr
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Algorithm 7 RSP3
Input: TS
Output: CS

1: S ← ∅
2: add(S, TS)
3: CS ← ∅
4: repeat
5: C ← select the subset ∈ S with the highest splitting criterion value
6: if C is homogeneous then
7: r ← calculate the mean item by averaging the items in C
8: r.label ← class of items in C
9: CS ← CS ∪ {r}
10: else
11: (D1, D2)← divide C into two subsets
12: add(S, D1)
13: add(S, D2)
14: remove(S, C)
15: end if
16: until IsEmpty(S)
17: return CS

Algorithms that are based on Learning Vector Quantization (LVQ) are traditional algo-
rithms of that type. Initially, Kohonen proposed a set of four LVQ-based algorithms [72] (Also,
see Kohonen et al. [73]). Like Chen and Jozwik’s algorithm, RSP1 and RSP2 ,they allow the
user to choose the trade-off between accuracy and reduction rate by determining the size of
the condensing set via input parameters. To the best of our knowledge, five other LVQ-based
prototype abstraction algorithms based on Kohonen’s work are available in the literature:
VQ [135], LVQ with Training Count (LVQTC) [83], adaptive LVQ [136], hybrid LVQ3 [71]
and LVQ with pruning (LVQPRU) [75]. The experimental study presented in [123] proves
that the LVQ-based approaches achieve generally worse accuracy than the conventional 1-NN
classifier. Moreover, the study notes that LVQ-based approaches do not work well on large
datasets 5.

Some other well-known prototype abstraction algorithms are based on clustering prepro-
cessing procedures. The Self Generating Prototypes (SGP) [43], the Symbolic Nearest Mean
Classifier (SNMC) [31, 30], and the Generalized Modified Chang’s Algorithm (GMCA) [82]

5The study considered that a large dataset contains more than 2000 items. The largest dataset had 19020 items
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are characteristic examples. The latter algorithm is based on the idea of the earliest and well-
known prototype abstraction algorithm introduced by Chang [21].

Interested readers can find a survey of that type of DRTs in Triguero et al. [123]. More
specifically, in this study prototype abstraction algorithms are reviewed, categorized and com-
pared to each other.

2.2 Cluster-based methods

Although cluster-based methods use entire training sets, they reduce the computational cost
of k-NN classification. Each cluster-based method consists of two parts: (i) a preprocessing al-
gorithm that builds clusters in the training set, and (ii) a classifier which utilizes these clusters
in order to perform fast classifications. In the classification phase, the classifier dynamically
forms a subset of the training data at the time an unclassified item should be classified. This
training subset is called reference set and is used to classify the particular item (using k-NN).
Actually, the reference set consists of the items of one or more clusters built by the preprocess-
ing phase. In this way, cluster-based methods compute fewer distances than the conventional
k-NN classifier.

Hwang and Cho proposed an effective cluster-based method [62] that uses the k-means
clustering algorithm [79, 133] to find clusters in the data. Each cluster is divided into the core
and the peripheral sets. Items lying in a certain distance from the cluster mean are character-
ized as “core” items, whereas the rest are characterized as “peripheral” items. If an unclassified
item x lies within the “core area” of the nearest cluster, it is classified by the k-NN classifier
executed on the items of this cluster. Otherwise, the k-NN classifier is executed on the set
dynamically formed by the union of the items of the nearest cluster and the “peripheral” items
of adjacent clusters.

We coded the Hwang and Cho method in C. Algorithms and techniques contributed by the
dissertation are compared to this method in experimental studies presented in chapters that
follow. Section 6.4 presents the Hwang and Cho method in detail. Moreover, it proposes some
improvements that enable it to achieve even better classification performances.

There are many other cluster-based methods of interest. The Cluster-based Tree [140] is
a method that is based on searching in a cluster hierarchy and can be used in either metric
or non-metric spaces. [128] presented an algorithm for fast k-NN classification that prunes
the search space by using the k-means clustering and the triangle inequality. Finally, [69]

28



proposed a cluster-based method for fast time series classification, that can be used for any
type of data.

2.3 Multi-attribute indexing methods

Multi-attribute indexes [112, 139, 22] can greatly reduce distance computations during nearest
neighbour searches. Therefore, they can be used to speed-up the k-NN classifier. Indexes
avoid the exhaustive search of the data by pruning the metric space during search. Chavez et
al [22] published a taxonomy involving the most significant indexing algorithms for nearest
neighbour searching in metric spaces.

The most significant indexes are based on tree data structures. Some of them are the pop-
ular k-dimensional-tree (k-d-tree) [45, 14], the k-dimensional-B-tree (k-d-B-tree) [108], the
Vantage Point-tree (VP-tree) [138], the Fukunaga and Narendra algorithm [46], the Geometric
Near-neighbour Access Tree (GNAT) [18], theM-tree [26], the Approximation and Elimination
Search Algorithm (AESA) [111, 127], the linear AESA [81, 80], and of course, the R-tree [52]
and its variations [77]. The branch and bound algorithm proposed in [122] and enhanced in
[24] and the incremental algorithm introduced in [60] are approaches that efficiently compute
nearest neighbours using indexes of the R-tree family.

Contrary to DRTs, indexes increase the storage requirements. The training data has to be
always available and the index must be stored, too. In addition, such methods can be applied
only on datasets with moderate dimensionality (e.g., 2-10). In higher dimensions, the use of
indexing makes no sense. The phenomenon of “dimensionality curse” renders indexes irrele-
vant since their performance degrades rapidly and can become worse than that of the exhaus-
tive search of the whole database [129]. Many proposals for speeding up nearest neighbour
searches rely on dimensionality reduction in order to effectively apply an index (e.g., Principal
Component Analysis (PCA) [67]). However, this can often lead to significant information loss.
Moreover, each query (unclassified) item has to be transformed before the search. A model
on the effect dimensionality reduction has on the similarity search performance is presented
in [2].
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2.4 k-means clustering

The k-means clustering algorithm [79, 133] is the base of most algorithms and techniques pro-
posed in the dissertation. Therefore, a brief overview of the particular algorithm is presented
here. k-means clustering is a simple algorithm that is popular for cluster analysis [41, 63, 16].
It aims to group items into k clusters, where each item belongs to the cluster with the nearest
mean6.

Given a set of items, X = {x1, x2, . . . , xn}, k-means clustering aims to assign the n items
to k clusters (k ≤ n) S = {S1, S2, . . . , Sk} so as to minimize the following function (within-
cluster sum of squares):

E =
k∑

j=1

∑
xi∈Sj

||xi − µj||2

where µj is the mean of cluster Sj and ||xi − µj|| is the chosen distance metric between the
data point xi and the corresponding mean.

Algorithm 8 depicts the pseudo-code of k-means clustering. The algorithm works
as follows: Given a dataset X = {x1, x2, . . . , xn} and a set of k initial means M =

{m1,m2, . . . ,mn}, the algorithm builds k clusters (S). Initially, it assigns each item xi to the
nearest cluster mean mj . This step is called assignment step (lines 6–12). When no item is
pending, it re-calculates the new k means, M , by averaging the corresponding items of the
clusters (lines 13-21), i.e.,

mj =
1

|Sj|
∑
xi∈Sj

xi

Then, the algorithm re-executes the assignment step by taking into consideration the new
means. As a result, the k means are adjusted at each step. The algorithm terminates when the
means do not change in one iteration (cluster consolidation) (line 22). Since each item is closer
to the mean of the cluster where it belongs to, the within-cluster sum of squares function is
minimized.

Certainly, the algorithm is quite sensitive to the selection of the initial means. Different
initial means lead to different clusters. Since the algorithm is very fast, it can be ran many
times in order to reduce this effect. Forgy and random partitions are widely-used initialization
methods [54]. Forgy randomly selects k items and uses them as the initial means. The random

6One should not confuse k of k-NN with k of k-means.
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Algorithm 8 K-MEANS
Input: X = {x1, x2, . . . , xn}, M = {m1,m2, . . . ,mk}
Output: S = {S1, S2, . . . , Sk}
1: for each item xi ∈ X do
2: xi.nearest_mean← NULL
3: end for
4: repeat
5: move← FALSE
6: for each item xi ∈ X do
7: nm← mj , such that mj ∈M is the nearest mean to xi

8: if nm ̸= xi.nearest_mean then
9: xi.nearest_mean← nm
10: move← TRUE
11: end if
12: end for
13: if move == TRUE then
14: for j = 1 to k do
15: Sj ← ∅
16: for each xi with xi.nearest_mean == mj do
17: Sj ← Sj ∪ {xi}
18: end for
19: mj ← compute mean item of Sj

20: end for
21: end if
22: untilmove == FALSE {no item has moved}

partitionsmethod initially assigns a random cluster to each item and then calculates themeans.
Note that kmeans++ is a more efficient initialization method [11].

Many variations of k-means clustering have been proposed in the literature. Here, we
presented only its simplest version. The particular version is the most popular one and has
been integrated in many data mining tools. In addition, it has been coded in the context of
the dissertation and is utilized by the proposed algorithms. Although our goal is not to review
the k-means clustering algorithms, we should mention that [68] presents an efficient version
of k-means clustering that is sped-up by the utilization of k-d-tree [45, 14]. The interested
readers can find a review of k-means clustering algorithms in [133].
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Chapter 3

Data reduction techniques through
forming homogeneous clusters

3.1 Introduction

This chapter focuses on data reduction in terms of item reduction and not attribute or dimen-
sionality reduction. It contributes a family of four novel Data Reduction Techniques (DRTs)
that are based on the concept of forming homogeneous clusters in the training data, i.e., clus-
ters that contain only items of a particular class. The algorithms are quite simple and can be
easily integrated in many existing data mining software tools. Main motives and challenges
behind the proposed algorithms constitute the fast and non-parametric preprocessing of the
training data. Certainly, high classification performance is also a primary goal.

Section 3.2 proposes an effective prototype abstraction algorithm, which is called Re-
duction through Homogeneous Clusters (RHC) [92, 91]. It has low preprocessing cost and
achieves high reduction rates while maintaining accuracy at high levels. The proposed algo-
rithm is based on a recursive fast clustering procedure that forms homogeneous clusters. The
means of these clusters constitute the final condensing set. Moreover, a dynamic RHC version
(dRHC) [91] is introduced that retains all the desired properties of RHC and, in addition, it
can manage datasets that cannot fit in main memory. Hence, it is appropriate for dynamic
/ streaming environments where new training data is gradually available. The latter means
that new training data can update the condensing set without the need of the “old” removed
items. Experimental results, based on several known datasets, illustrate that RHC and dRHC
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are faster and achieve higher reduction rates than state-of-the-art DRTs, while maintaining
high classification accuracy.

The research objective of Section 3.3 is how to improve the quality of the training data.
It presents an editing algorithm, which is called Editing through Homogeneous Clusters
(EHC) [98]. EHC tries to improve the quality of the training data by removing noise and
mislabelled data as well as outliers and overlaps between data regions of different classes. It is
based on the clustering procedure of RHC that forms homogeneous clusters. The clusters that
contain only one item are considered irrelevant (they contain noise, outlier or close-border
items) and are removed. Contrary to all other editing approaches, EHC is independent of
input (tuning) parameters. An experimental study with ten datasets shows that EHC is very
fast and achieves comparable classification accuracy to the well-known editing algorithms.

Section 3.4 combines the idea of RHC with that of EHC and proposes the Editing and Re-
duction through Homogeneous Clusters (ERHC) algorithm [89], a variation of RHC algorithm
that can handle datasets with noise. ERHC is based on the clustering procedure of RHC. How-
ever, the clusters that contain only one item are considered to be noise and are removed. The
mean items of the other homogeneous clusters are placed in the condensing set as prototypes.
The experimental study illustrates that ERHC is as fast as RHC, but it achieves higher reduction
rates and accuracy, especially when the dataset contains noise.

3.2 Data abstraction through homogeneous clusters

3.2.1 Motivation and contribution

Although many condensing and prototype abstraction algorithms that have been proposed in
the past decades can be characterized as effective methods, they usually exhibit one or more
of the following weaknesses:

1. They usually involve a costly, time-consuming preprocessing step on the training set,
which may be prohibitive for large datasets.

2. Many condensing and prototype abstraction algorithms are parametric. The user has to
provide the values for a number of parameters in advance. This usually involves tuning
via an iterative execution of a trial-and-error procedure.
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3. The resulting condensing set of many condensing and prototype abstraction algorithms
depends on the order of items in the training set. This means that some algorithms may
build a different condensing set when processing the items of a specific training set in a
different order.

4. Usually, there is a trade-off between data reduction and classification accuracy. Al-
though some condensing and prototype abstraction algorithms can achieve high re-
duction rates, the accuracy of the classifier is negatively affected. On the other hand,
there are algorithms that produce condensing sets that achieve accuracies close to those
achieved by the non-reduced training sets, but their reduction rates are not high.

5. Most condensing and prototype abstraction algorithms are memory-based. This implies
that the whole training set must reside in main memory. Thus, they are inappropriate
for very large datasets that cannot fit into mainmemory or for devices with limited main
memory (e.g., sensor devices).

6. Most condensing and prototype abstraction algorithms cannot consider new training
items after the construction of the condensing set. These algorithms are inappropri-
ate for dynamic/streaming environments [1] where new training items are gradually
available.

To address the last two weaknesses one needs incremental (or dynamic) algorithms that
are capable of updating their condensing set when additional training data segments become
available after the construction of the condensing set andwithout requiring all previously used
training items. The aforementioned observations and the need for fast k-NN classification in
large and high dimensional datasets constitute the motivation of the work presented in this
section. The contribution of the section is summarized as follows:

• We proposed a prototype abstraction algorithm able to cope with the first four weak-
nesses. In particular, we propose and evaluate a fast, non-parametric, independent of
data order, and easy to implement prototype abstraction algorithm that achieves high
reduction rates and accuracy measurements. The algorithm, which we call RHC (Reduc-
tion through Homogeneous Clusters) [92], is based on the well-known k-means cluster-
ing algorithm, and thus, it can be easily integrated in many existing environments.
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• We propose and evaluate a dynamic version of RHC (dRHC) [92, 91] that retains all the
properties of RHC and, in addition, it is capable of dynamically updating its condensing
set. Consequently, dRHC can deal with very large datasets which cannot fit into the
device’s memory and it is appropriate for dynamic/streaming environments.

The rest of this section is organized as follows. Subsection 3.2.2 considers in detail the
proposed RHC algorithm. Subsection 3.2.3 presents its dynamic variation. In Subsection 3.2.4,
both algorithms are experimentally compared to known condensing and prototype abstrac-
tion algorithms on several datasets. The experimental results are statistically validated by the
Wilcoxon signed ranks test. Finally, Subsection 3.2.5 concludes the section.

3.2.2 The Reduction through Homogeneous Clusters (RHC) algorithm

TheReduction throughHomogeneous Clusters (RHC) algorithm is a non-parametric prototype
abstraction algorithm. It is based on a simple idea that recursively applies the well-known
k-means clustering. Particularly, RHC keeps on constructing clusters until all of them are
homogeneous, i.e., they contain items only of a specific class.

Initially, RHC considers the whole training set as a non-homogeneous cluster. The algo-
rithm begins by computing the mean for each class by averaging the attribute values of the
corresponding items in the training set. Therefore, for a dataset with n classes, the algorithm
computes n class-means. Then, RHC executes k-means clustering using the n aforementioned
class-means as initial means and builds n clusters. For each homogeneous cluster, its mean
is placed in the condensing set as prototype. For each non-homogeneous cluster, the above
procedure is applied recursively. The algorithm stops when all clusters are homogeneous. In
the end, the condensing set contains all the mean items of the homogeneous clusters. Note
that using the class-means as initial means for k-Means clustering, the number of clusters is
determined automatically.

The mean item m of each cluster or class C , is computing by averaging the n attribute
values of items xi, i = 1, 2 . . . |C| that belong to C . More formally, the n attributesm.dj ofm
is estimated as follows:

m.dj =
1

|C|
∑
xi∈C

xi.dj, j = 1, 2, . . . , n
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(a) initial data (b) initial class-means (c) k-means on initial data

(d) Cluster-mean and class-means
in a non-homogeneous cluster

(e) k-means on a
non-homogeneous cluster

(f) final set of homogeneous
cluster-means (condensing set)

Figure 3.1: Data abstraction through RHC

Figure 3.1 presents a two-dimensional example of RHC execution. Suppose that a dataset
contains twenty six items of two classes: squares and circles (Figure 3.1(a)). RHC computes
a class-mean for the squares and a class-mean for the circles (Figure 3.1(b)). Then, k-means
clustering uses the two class-means as initial means and constructs two clusters. One cluster
contains only squares while the other cluster contains items of both classes (Figure 3.1(c)). For
the homogeneous cluster, RHC stores the cluster-mean in the condensing set as a prototype of
class square (Figures 3.1(d)). For the items of the non homogeneous cluster, RHC recursively
builds two homogeneous clusters (Figures 3.1(d,e)). Consequently, two more prototypes are
stored in the condensing set. Thus, the final condensing set contains three prototypes instead
of the twenty six items of the initial training set (Figure 3.1(f)).
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Obviously, RHC generates many prototypes for close-class-border data areas and few pro-
totypes for the “central” class data areas. Therefore, the more classes and noise in the data,
the more borders exist, and thus, lower reduction rate is achieved. In effect, when the algo-
rithm is executed over a noise-free dataset, it forms few large clusters. On the other hand, if
a dataset with high level of noise is used, many small clusters are constructed. Moreover, by
using the class-means as initial means for the k-means clustering, RHC increases the proba-
bility of quickly finding large homogeneous clusters and achieving a high reduction rate (the
larger the homogeneous clusters constructed, the higher the reduction rate achieved).

Algorithm 9 shows a non-recursive RHC implementation. It uses a queue data structure,
Queue, to hold unprocessed clusters. Initially, the whole training set (TS) constitutes an
unprocessed cluster and is put inQueue (line 3). At each repeat-until iteration, RHC dequeues
cluster C from the head of Queue (line 7) and checks whether C is homogeneous or not. If
it is (line 8), its mean is placed in the condensing set (CS) as a prototype (line 10) and its
items are removed. Otherwise, RHC computes a list of class-means (M ), one for each of the
distinct classes that exist in C (lines 13–16). Then, RHC calls k-means, with parameters the
current non homogeneous cluster C and the list of the initial class-means M to be used as
initial means. The result is a new set of unprocessed clusters (NewClusters) (line 17) all of
which are put intoQueue (lines 18–20). The repeat-until loop continues untilQueue becomes
empty (line 22), i.e., there are no more non-homogeneous clusters.

In effect, RHC combines the idea of RSP3 with that of PSC. It retains their advantages and
avoids their weaknesses. Let’s recall that PSC is a fast and parametric algorithm, while RSP3
is a non-parametric algorithm that involves high pre-processing cost due to the procedure for
finding the most distant items in each subset. Thus, RSP3 is inappropriate for large datasets.
Contrary to PSC, RHC is a non-parametric algorithm. Contrary to RSP3, RHC is fast since it is
based on a version of k-means clustering that is sped-up by the class-mean initializations. Note
that we have adopted the full cluster consolidation (no item re-assignment during a complete
pass of data) for the stopping condition of k-means clustering. RHC could have become even
faster had we used a more efficient stopping condition. In addition, contrary to CNN-rule, IB2
and many other prototype abstraction and condensing algorithms, the effectiveness of RHC
does not depend on the order of items in the training set.
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Algorithm 9 RHC
Input: TS
Output: CS

1: {Stage 1: Queue Initialization}
2: Queue← ∅
3: Enqueue(Queue, TS)
4: {Stage 2: Construction of condensing set}
5: CS ← ∅
6: repeat
7: C ← Dequeue(Queue)
8: if C is homogeneous then
9: r ← mean of C
10: CS ← CS ∪ {r}
11: else
12: M ← ∅ {M is the set of class-means}
13: for each class L in C do
14: mL ← mean of L
15: M ←M ∪ {mL}
16: end for
17: NewClusters← K-MEANS(C , M )
18: for each cluster C ∈ NewClusters do
19: Enqueue(Queue, C)
20: end for
21: end if
22: until IsEmpty(Queue)
23: return CS

3.2.3 The dynamic RHC algorithm

Like most DRTs, RHC is a memory based technique. This implies that the whole training
set must be resident in main memory. RHC cannot manage large datasets that cannot fit
in main memory. Therefore, it cannot be executed on a device with limited main memory,
without transferring data to a server over a network for processing. This is a costly and time-
consuming procedure.

In addition, RHC cannot handle new training items, i.e., it cannot update its condensing set
in a dynamic manner. Suppose that RHC is executed over a datasetD and builds a condensing
set. Then, suppose that a data segment S with new training items is available and should be
taken into consideration. For the construction of an updated condensing set, RHC must be
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Figure 3.2: Classification procedure with dRHC

executed from scratch over the complete dataset D ∪ S. This procedure must be repeated
whenever a new data segment is available. In such a dynamic environment, all the training
items, or at least a recent set of them, must always be available. In other words, storage
requirements remain high.

Dynamic RHC (dRHC) is a dynamic variation of RHC. It retains all the advantages of RHC
discussed in Subsection 3.2.2, but, it can cope with the weak points of RHC by considering the
available data in the form of data segments. On one hand, if the dataset cannot fit in main
memory, it is divided into data segments appropriate for the available main memory. On the
other hand, in dynamic and/or streaming environments, since training items arrive continu-
ously, they can be considered as data segments. In this case, the concept of data segment is
implemented by using a buffer, where the new training items are stored. When the buffer is
full, dRHC is run over it. Then, the training items stored in the buffer are removed and the
buffer is ready to receive new training items.

The execution of dRHC has two phases: (i) initial condensing set (CS) construction, and,
(ii) condensing set (CS) update. The Initial CS construction phase is executed only once, while
the CS update phase is executed for each arriving data segment. Figure 3.2 depicts the com-
plete procedure of dRHC. The algorithm begins with the initial CS construction phase on the
available training set (TS Data Seg.1). The procedure is almost similar to RHC execution (see
Algorithm 9). The only difference between RHC and the first phase of dRHC is that the latter,
for each generated prototype, stores a weight value as an extra attribute. This value is the
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number of the training items that were clustered together and are represented by the specific
prototype in the condensing set.

The CS update phase is also based on the concept of cluster homogeneity and the data
weights. In particular, while the original RHC and the initial CS construction phase of dRHC
begin with a single cluster that contains all the items of the training set, the CS-update phase
of dRHC uses the prototypes of the existing condensing set and a data segment to construct a
set of initial clusters and then proceeds similarly to RHC.

Algorithm 10 presents the CS update phase of dRHC. It takes an already constructed con-
densing set (oldCS) and a new data segment (dataSeg) and returns an updated condensing
set (newCS). The algorithm begins by building the queue of unprocessed clusters. First, it ini-
tializes as many clusters, as the number of prototypes in oldCS (lines 3–6). Then, each item x

of dataSeg is assigned to one of these clusters (lines 7–11). Finally, the clusters are enqueued
to the queue data structure (lines 12–14).

The algorithm proceeds to generate newCS in a way analogous to RHC, but taking into
account the weight values. For a homogeneous cluster, the prototype stored in newCS is the
weighted mean of the cluster (lines 19–22). Similarly, for a non-homogeneous cluster C , each
class-mean is computed as the weighted mean of the class items (lines 24–29). These class-
means play the role of the initial means in the call to k-means for that cluster (line 30). Please,
notice that in the case of dRHC, we use a version of k-means that also takes into account the
item weights in the determination of the cluster-means. For a cluster (or class) C , each vector
attribute dj , j = 1, 2, . . . , n of its weight mean mC (lines 20, 26) is estimated as follows:

mC .dj =

∑
xi∈C xi.dj × xi.weight∑

xi∈C xi.weight

Old prototypes (from oldCS) usually have weights that are greater than one and have higher
influence in the computation of a new weighted class or cluster-mean than any item of a new
data segment, whose weight is one.

Figure 3.3 presents an example of the CS update phase. Suppose that an already con-
structed condensing set is available (Figure 3.3(a)). It contains the prototypes generated in
the example of Figure 3.1 with the corresponding weight values. Moreover, suppose that a
new data segment with seven new training item arrives (Figure 3.3(b)). Their initial weight
is set to one. Initially, dRHC assigns each new item to the cluster of the nearest prototype
(Figure 3.3(c)). Since, no items were assigned to cluster B, the corresponding prototype is not
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Algorithm 10 dRHC: The CS update phase
Input: oldCS, dataSeg
Output: newCS

1: {Stage 1: Queue Initialization}
2: Queue← ∅
3: CList← ∅ {empty list of clusters}
4: for each prototypem ∈ oldCS do
5: add new cluster C = {m} in CList
6: end for
7: for each item x ∈ dataSeg do
8: x.weight = 1
9: find Cx ∈ CList with the nearest to x mean
10: Cx← Cx ∪ {x} {do not recompute mean of Cx}
11: end for
12: for each cluster C in CList do
13: Enqueue(Queue, C)
14: end for
15: {Stage 2: Construction of newCS}
16: newCS ← ∅
17: repeat
18: C ← Dequeue(Queue)
19: if C is homogeneous then
20: m← weighted mean of C
21: m.weight←

∑
xi∈C xi.weight

22: newCS ← newCS ∪ {m}
23: else
24: M ← ∅ {M is the set of weighted class-means}
25: for each class L in C do
26: mL ← weighted mean of L
27: mL.weight←

∑
xi∈L xi.weight

28: M ←M ∪ {mL}
29: end for
30: NewClusters← K-MEANS(C , M )
31: for each cluster C ∈ NewClusters do
32: Enqueue(Queue, C)
33: end for
34: end if
35: until IsEmpty(Queue)
36: return newCS
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(a) A condensing set (b) New training data arrival (c) Data assignment to clusters

(d) Repositioning of a prototype
and class weighted means in the
non-homogeneous cluster

(e) k-Means on the
non-homogeneous cluster

(f) The updated condensing set

Figure 3.3: Data abstraction through dRHC (The CS update phase)

modified. Although new items were assigned to cluster A, the latter remains homogeneous.
Hence, the weighted mean of cluster A is computed and placed in the condensing set along
with its new weight. In effect, the old prototype slightly “moves” towards the new items (Fig-
ure 3.3(d)). Cluster C is non-homogeneous. This means that at least one new prototype will be
generated. A weighted class-mean is computed for each class in C (Figure 3.3(d)) and k-Means
is executed. The result is the construction of two homogeneous clusters (Figure 3.3(e)). The
weighted mean of each cluster is computed and placed in the condensing set along with its
weight (Figure 3.3(f)).

Considering dRHC, we realize that the initial CS construction phase is more expensive
than an execution of a CS update phase. This is because the initial CS construction phase
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begins from scratch without already constructed clusters. It begins by considering the whole
dataset as an unprocessed cluster and a small number of class-means as initial means for the
k-means clustering. Consequently, to obtain homogeneous clusters a high number of k-means
executions is needed. In contrast, the CS update phase begins by assigning new data to already
constructed clusters. Now, the probability of having a homogeneous cluster after the new data
assignment is high. Of course, the probability of getting homogeneous clusters depends on
the level of noise in the data.

We should mention that dRHC creates different condensing sets by examining the data
segments in different order. However, the order of data into the data segments is irrelevant.
Finally, we note that although dRHC can deal with fast data streams, it does not take into
account the phenomenon of concept drift [125] that may exist in data streams.

3.2.4 Performance evaluation

Experimental setup

RHC and dRHCwere evaluated using fourteen datasets distributed by the KEEL dataset reposi-
tory1 [6]. The same datasets are also available at the UCI machine learning repository2 [12, 44].
They are summarized in Table 3.1. For comparison purposes, we used three condensing algo-
rithms, namely, CNN-rule, IB2 and PSC, and a prototype abstraction approach, namely, RSP3.
We selected these methods because: (i) CNN-rule and RSP3 are popular algorithms that are
usually used in many research papers for comparison purposes, (ii) IB2, PSC and RHC have
the same goal, that is, fast execution of the reduction procedure (or, low preprocessing cost),
(iii) like RSP3 and PSC, RHC is based on the concept of homogeneity, and, (iv) IB2 is a fast al-
gorithm that dynamically builds its condensing set and, thus, it is appropriate to be compared
with dRHC. In addition to using condensing sets, we also measured the performance of the
conventional 1-NN classifier. We note that the reader can execute RHC and dRHC as well as
the aforementioned algorithms over the particular datasets on the web through WebDR3 (see
Appendix A).

All algorithm implementations were written in C and the Euclidean distance was adopted
as the distance metric. The thirteen datasets (except the KDD dataset) were used without data

1http://sci2s.ugr.es/keel/datasets.php
2http://archive.ics.uci.edu/ml/
3https://ilust.uom.gr/webdr
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Table 3.1: Dataset description

Dataset Size Attributes Classes Segment
size

Letter Recognition (LR) 20000 16 26 2000
Magic G. Telescope (MGT) 19020 10 2 1902

Pen-Digits (PD) 10992 16 10 1000
Landsat Satellite (LS) 6435 36 6 572

Shuttle (SH) 58000 9 7 1856
Texture (TXR) 5500 40 11 440
Phoneme (PH) 5404 5 2 500
KddCup (KDD) 494020/141481 36 23 1000
Balance (BL) 625 4 3 100
Banana (BN) 5300 2 2 530
Ecoli (ECL) 336 7 8 200
Yeast (YS) 1484 8 10 396

Twonorm (TN) 7400 20 2 592
MONK 2 (MN2) 432 6 2 115

normalization. The MGT, LS, TXR and ECL datasets are distributed sorted on the class label
and this affects the methods that depend on the order of data. Consequently, we randomized
the order of the data items for these datasets. With the exception of the KDD dataset, no
other data transformation was performed. All experiments were conducted without previous
knowledge about the datasets such as data distribution, level of noise, etc.

For each dataset and algorithm, we report three average measurements obtained via five-
fold cross-validation: (i) Accuracy, (ii) Reduction Rate, and, (iii) Preprocessing Cost in terms
of distance computations. We report the classification accuracy of k-NN for k = 1 (1-NN).
For all datasets (except the KDD dataset), we used the five already constructed pairs of train-
ing/testing sets hosted by the KEEL repository.

The original form of the KDD dataset has 41 attributes. However, for simplifying our ex-
perimentation procedure, we removed the three nominal and the two fixed-value attributes
that exist in the dataset. In addition, many data items are duplicates. The KDD dataset con-
tains 494,020 items, but only 141,481 of them are unique. Thus, we removed all duplicate items.
Actually, duplicates are useless especially in the context of the 1-NN classification. They do not
influence classification accuracy and negatively affect classification cost. Note that removal
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of duplicates is a common process4 and has been adopted by the prototype selection algo-
rithm presented in [134]. Furthermore, the attribute value ranges of the KDD dataset vary
extremely. Therefore, we decided to normalized them to the range [0, 1]. Then, we random-
ized the transformed KDD dataset and divided it into the appropriate pairs for training/testing
sets.

Although duplicates are useless during classification, they influence the construction of
condensing set. In particular, CNN-rule and IB2 build the same condensing set regardless
the number of duplicates in the training set but with higher preprocessing cost. In contrast,
condensing sets built by RSP3, PSC, RHC, dRHC are influenced by duplicates because they
contribute to the estimation of the mean items. For that reason, our experimental study also
includes the original KDD dataset (without discarding the duplicates).

In addition, we wanted to evaluate RHC and dRHC on noise-free data. Hence, we ran our
tests twice using an edited and a non-edited version of the training data. For editing purposes,
we used ENN-rule and based on [131, 49, 84], we set k = 3. Certainly, we did not edit the
testing portions of each fold. The KDD, BL, ECL and YS datasets contain some rare or weak
classes. ENN-rule eliminates some of these. We note that the execution of ENN-rule over the
KDD dataset is an extremely time consuming procedure. It computes 113,185×113,184

2
× 5 folds

≃ 32 billion distances. It is worth mentioning that the SH dataset also contains rare classes.
However, editing did not eliminate any rare class and, thus, we decided to include the editing
procedure for that dataset in our experimentation.

Apart from PSC, all algorithms are non-parametric. For tuning the value of c for PSC (num-
ber of clusters built), we run experiments by building c = r × j, j = 2, 4, · · · , 10, clusters,
where r is the number of discrete classes in the data, as Lopez et al. did in their experi-
ments [86]. Hence, we built five PSC based classifiers for each dataset.

At this point, we should mention that we coded a RSP3 implementation which may com-
pute a distance more than once. Another RSP3 implementation would not compute the same
distances again and again. However, since the distances that have been already computed
should be available until the end of the algorithm execution, such an implementation requires
more memory and may be inefficient.

Contrary to all other methods, dRHC considers data in segments. To obtain data in a such
form, we split the training sets of the datasets into segments. The last column of Table 3.1
shows the size of the data segment. Note that in some datasets, the last data segment may

4Many datasets distributed by the KEEL repository have been preprocessed to remove duplicates
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not be complete. The size of the data segment corresponds to either the size of the available
main memory (scenario of limited main memory) or the size of the data buffer (scenario of
streaming/dynamic environments). The purpose of the experiment was not to test the method
in a real life situation regarding memory sizes, but to assess the performance of classification
on condensing sets that are constructed in a dynamic manner. Therefore, the sizes of the data
segments used do not correspond to actual memory sizes. Of course, actual memory sizes can
be used in real life situations.

Experimental measurements

The results of our experiments are presented in Tables 3.2–3.4 and Tables 3.5–3.7 for the non-
edited and the edited datasets, respectively. Best measurements are in bold. Preprocessing cost
measurements are in million distance computations (M). For reference, in Tables 3.2 and 3.5,
we report the accuracy values of the conventional k-NN classifier (The 1-NN classifier applied
on the non-edited training set). In addition, we present the measurements of ENN-rule. The
latter reveal the level of noise in the datasets. We note that, in Table 3.7, preprocessing cost
measurements of CNN, IB2, RSP3, PSC, RHC and dRHC algorithms do not include the cost of
editing. In these cases, the total preprocessing cost can be computed by adding the prepro-
cessing cost measurements of the ENN-rule column. In addition, reduction rates presented in
Table 3.6 correspond to the total reduction rate: editing and data reduction. We note that the
measurements of dRHC are estimated after the arrival of all data segments.

An immediate observation is that RHC and dRHC have low preprocessing cost. In almost
all cases, the preprocessing cost of dRHC is lower than that of IB2 and PSC, whose major goal
is to reduce the preprocessing cost.

Almost in all cases, RHC and dRHC achieve the highest reduction rates. This means that
the 1-NN classifier executes faster when using a condensing set generated by these algorithms.
Our measurements confirm that RSP3 is a time-consuming approach that achieves low reduc-
tion rates. However, in many cases, RSP3 has the highest accuracy, which is very close to
the one measured for the conventional 1-NN classifier. RHC and dRHC appear to be more
accurate than IB2 and PSC and as accurate as CNN-rule. RHC and dRHC achieved the highest
accuracies in five datasets (see the BN and MN2 datasets in Table 3.2 and the BN, TN, MN2
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Table 3.2: Experimental results on the non-edited datasets: Accuracy (%)

Dataset 1-NN ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 95.83 94.98 92.84 91.98 95.43 82.73 85.65 87.14 87.73 88.67 93.59 93.93

MGT 78.14 80.44 74.54 71.97 74.69 63.51 63.95 63.95 64.28 64.24 71.97 72.97
PD 99.35 99.30 98.68 98.04 99.05 95.73 96.64 96.26 96.90 96.93 98.30 98.49
LS 90.60 90.29 88.21 86.87 90.57 82.42 83.29 83.93 83.90 84.32 88.95 88.50
SH 99.82 99.79 99.76 99.73 99.75 99.67 98.24 97.93 98.82 95.96 98.09 99.65
TXR 99.02 98.64 97.16 96.35 98.29 96.13 94.96 94.84 94.46 94.78 97.04 97.60
PH 90.10 88.14 87.82 85.57 86.94 71.41 75.19 75.17 74.70 75.63 85.59 85.38
KDD 99.71 - 99.66 99.48 99.60 95.50 96.18 96.68 96.89 96.95 99.39 99.42
BL 78.4 - 70.88 70.72 73.28 65.92 66.40 70.88 68.00 68.32 68.64 70.56
BN 86.91 89.36 85.62 83.81 84.00 57.60 58.00 56.87 57.49 58.70 83.28 82.79
ECL 79.78 - 72.05 66.97 73.53 57.16 63.39 66.97 68.16 66.37 68.76 69.35
YS 52.02 - 49.06 46.02 50.47 46.03 45.01 47.84 46.77 47.71 48.85 48.38
TN 94.88 95.69 92.00 89.15 92.68 78.74 79.08 79.78 80.49 80.12 88.69 93.08
MN2 90.51 89.58 95.84 93.75 91.22 94.43 95.14 90.06 92.58 93.52 94.68 97.68
Avg 88.22 92.62 86.01 84.32 86.39 77.64 78.65 79.16 79.37 79.44 84.70 85.56

Table 3.3: Experimental results on the non-edited datasets: Reduction Rate (%)

Dataset ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 4.33 83.54 85.66 61.98 81.40 79.76 79.46 79.88 79.90 88.08 88.18

MGT 20.08 60.08 70.60 53.70 70.71 71.05 71.58 71.81 71.60 73.76 74.62
PD 0.67 95.36 96.23 89.22 91.44 92.86 93.73 94.42 94.83 96.52 97.23
LS 9.07 80.22 84.62 73.19 84.67 84.79 84.84 84.93 84.95 89.84 88.35
SH 0.18 99.37 99.44 98.59 96.88 97.68 97.87 98.33 98.54 99.55 99.50
TXR 1.24 91.90 93.33 83.31 86.81 89.33 90.62 91.29 91.54 94.70 94.95
PH 11.25 76.04 80.85 69.94 81.31 81.56 81.32 81.39 81.54 80.71 82.34
KDD - 99.12 99.26 98.54 99.13 99.09 99.09 99.09 99.07 99.19 99.22
BL - 65.72 69.36 64.64 77.8 77.44 78.04 77.2 75.88 78.00 78.12
BN 11.53 77.44 83.27 75.21 85.59 85.70 85.77 85.89 85.81 79.68 82.41
ECL - 59.55 68.77 52.27 74.50 72.19 71.08 67.88 65.65 67.58 70.26
YS - 32.68 44.82 27.36 55.32 55.25 53.84 53.81 54.23 49.83 51.23
TN 3.61 82.09 88.25 84.56 95.73 94.85 94.57 94.78 94.98 96.63 95.37
MN2 2.08 87.23 91.68 61.33 45.31 49.02 61.16 57.34 60.23 96.47 96.88
Avg 6.40 77.88 82.58 70.99 80.47 80.76 81.64 81.29 81.34 85.04 85.62
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Table 3.4: Experimental results on the non-edited datasets: Preprocessing Cost (millions of
distance computations)

Dataset ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 127.99 163.03 23.37 326.52 66.32 110.06 129.16 165.32 169.92 41.85 19.57

MGT 115.76 281.49 34.61 511.67 23.95 17.21 22.68 27.09 33.47 4.08 26.03
PD 38.65 11.75 1.78 86.66 6.52 15.93 28.48 35.23 36.97 2.88 1.44
LS 13.25 17.99 2.22 37.70 2.96 5.85 8.41 10.11 10.50 1.69 1.53
SH 1076.46 45.30 8.26 17410.18 127.20 54.07 148.35 222.77 252.61 16.83 7.68
TXR 9.68 5.65 0.84 27.63 3.15 7.90 10.71 14.49 16.76 3.63 0.68
PH 9.35 13.45 1.96 20.31 1.08 0.94 2.08 2.79 3.12 0.66 1.64
KDD - 384.90 55.58 20278.87 212.23 575.80 1161.43 2054.23 1902.41 81.59 57.40
BL - 0.21 0.04 0.3 0.08 0.12 0.16 0.18 0.24 0.05 0.03
BN 8.99 11.49 1.58 18.76 1.91 1.44 2.39 4.63 4.37 0.56 1.53
ECL - 0.06 0.003 0.08 0.06 0.11 0.11 0.12 0.15 0.03 0.02
YS - 1.41 0.19 2.12 0.70 1.17 1.64 1.94 1.99 0.84 0.31
TN 17.52 22.13 2.07 37.13 1.76 5.40 6.76 6.93 8.37 1.64 0.70
MN2 0.06 0.04 0.006 0.13 0.014 0.07 0.08 0.12 0.13 0.007 0.004
Avg 141.77 68.49 9.46 2768.43 32.00 56.86 108.75 181.85 174.36 11.17 8.47

Table 3.5: Experimental results on the edited datasets: Accuracy (%)

Dataset 1-NN ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 95.83 94.98 92.06 91.38 94.61 82.29 85.68 87.00 87.97 88.46 92.72 93.14

MGT 78.14 80.44 79.26 78.01 79.09 72.50 72.71 73.33 73.31 73.35 77.78 78.33
PD 99.35 99.30 98.60 98.17 99.03 97.30 97.04 97.11 97.29 97.11 98.45 98.57
LS 90.60 90.29 88.66 88.05 89.90 83.53 84.60 84.91 84.85 84.99 89.14 88.81
SH 99.82 99.79 99.73 99.72 99.67 99.56 98.40 98.53 98.82 98.41 99.58 99.62
TXR 99.02 98.64 96.93 95.75 97.91 96.15 95.46 95.26 94.91 95.67 97.11 97.38
PH 90.10 88.14 86.88 86.33 86.49 80.74 81.07 81.75 81.42 81.70 85.40 85.55
BN 86.91 89.36 88.87 88.68 88.64 81.98 81.51 82.26 80.68 80.79 88.09 88.94
TN 94.88 95.69 92.30 91.22 94.69 82.58 83.14 83.77 85.23 85.49 93.11 95.45
MN2 90.51 89.58 95.37 94.46 90.07 95.13 93.98 94.90 93.06 94.21 96.75 96.31
Avg 92.52 92.62 91.87 91.18 92.01 87.18 87.36 87.88 87.75 88.02 91.81 92.21
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Table 3.6: Experimental results on the edited datasets: Reduction Rate (%)

Dataset ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 4.33 87.75 88.88 66.12 81.95 80.25 80.14 80.80 81.22 90.34 91.00

MGT 20.08 90.09 92.05 84.20 85.57 85.67 86.61 86.57 86.63 93.06 93.40
PD 0.67 96.44 97.00 90.41 91.95 93.50 94.22 95.11 95.70 97.19 97.79
LS 9.07 91.44 92.98 85.84 90.25 90.65 90.95 91.26 91.48 95.09 94.94
SH 0.18 99.58 99.61 98.88 97.10 97.89 98.04 98.55 98.68 99.66 99.65
TXR 1.24 93.45 94.32 85.00 87.82 90.50 91.76 92.60 92.42 95.58 95.85
PH 11.25 90.49 91.62 85.13 87.70 88.04 87.80 87.94 87.91 92.10 92.43
BN 11.53 95.31 95.87 93.72 95.66 95.78 96.02 96.28 96.40 95.66 95.87
TN 3.61 89.49 92.36 89.63 98.55 98.28 98.07 98.02 97.88 98.52 97.85
MN2 2.08 88.84 93.12 62.25 44.34 53.24 60.92 61.16 62.95 97.05 96.94
Avg 6.40 92.29 93.78 84.12 86.09 87.38 88.45 88.83 89.13 95.43 95.57

Table 3.7: Experimental results on the edited datasets: Preprocessing Cost (millions of distance
computations)

Dataset ENN CNN IB2 RSP3 PSC PSC PSC PSC PSC RHC dRHCj=2 j=4 j=6 j=8 j=10
LR 127.99 112.20 18.35 300.51 55.13 94.76 127.84 138.41 178.45 31.05 15.15

MGT 115.76 68.61 8.48 318.82 11.44 10.15 11.28 12.42 21.75 2.83 6.18
PD 38.65 9.25 1.51 85.16 6.73 17.57 27.65 32.33 33.74 2.83 1.25
LS 13.25 6.49 0.99 30.64 2.86 4.83 6.79 9.97 11.82 1.73 0.72
SH 1076.46 26.02 6.35 15652.75 107.47 52.46 176.21 189.71 213.61 22.41 6.05
TXR 9.68 3.90 0.72 27.04 3.35 10.33 9.60 11.10 15.78 3.00 0.57
PH 9.35 5.57 0.86 15.67 0.68 1.04 1.89 2.18 3.15 0.47 0.73
BN 8.99 2.50 0.435 14.50 1.39 1.43 2.10 2.28 2.96 0.53 0.434
TN 17.52 12.50 1.41 34.20 1.81 3.13 4.02 6.38 9.56 1.36 0.34
MN2 0.06 0.03 0.005 0.12 0.01 0.06 0.07 0.12 0.13 0.007 0.004
Avg 141.77 24.71 3.91 1647.94 19.09 19.58 36.75 40.49 49.10 6.62 3.14
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datasets in Table 3.5). In the case of the MN2 dataset, RHC and dRHC are more accurate even
than the conventional 1-NN and ENN-rule. Although the rest accuracy measurements of RHC
and dRHC are not as good as those of RSP3, they are close enough.

Although IB2 is an one-pass version of CNN-rule, it achieved higher reduction rates with
much lower preprocessing cost. However, CNN-rule seems to be more accurate than IB2. It
is worth mentioning that the measurements for both algorithms would be different had we
examined the same data in a different order.

Concerning the differences between Tables 3.2–3.4 and Tables 3.5–3.7 (non-edited vs edited
data), we observe that except the MGT, BN and TN datasets the reported accuracies are almost
similar. On the other hand, all algorithms that ran over the edited data, executed faster and
generated smaller condensing sets. In the cases of the MGT, LS, PH and BN datasets, ENN-rule
removed many irrelevant items (> 9%) and so, the reduction rate differences are obvious. It is
worth noting that in the case of the edited data, dRHC, RHC and IB2 generate their condensing
set by calculating an extremely low number of distances (see Table 3.7). In addition, we observe
that when RHC and dRHC are executed on the edited data they are able to create extremely
small condensing sets (see Table 3.6). They contain less than 5% of items of the initial training
set on average. Considering the differences between the performance of RHC and dRHC, we
conclude that dRHC may be characterized as a slightly better approach than RHC.

We can make a final comment concerning the average measurements (last rows in Ta-
bles 3.2–3.7): almost in all cases, RHC and dRHC appear to build the smallest condensing
sets with the lowest preprocessing cost, and a high classification accuracy, similar to that of
CNN-rule.

Complementary experiments

As already mentioned, in the context of 1-NN classification, duplicates do not influence classi-
fication accuracy but affect the classification computational cost. However, they influence the
data reduction procedures. Consequently, we wanted to measure the performance of the ex-
amined condensing and prototype abstraction algorithms using the original KDD dataset that
contains a high number of duplicates. Especially for dRHC that dynamically builds its con-
densing set based on aweight-based schema, this experiment is essential. Hence, we ran exper-
iments using the original KDD dataset (494020 items). By applying five-fold cross-validation,
we obtained the measurements presented in Table 3.8.
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Table 3.8: Experimental results on the original KDD dataset: Accuracy (Acc (%)), Reduction
Rate (RR (%)) and Preprocessing Cost (PC (millions of distance computations))

Criterion IB2 RHC dRHC
Accuracy (%): 99.87 99.84 99.82

Reduction Rate (%): 99.78 99.77 99.76
Preprocessing Cost (M) : 209.08 291.91 223.97

Applying the preprocessing of CNN-rule, RSP3 and PSC on such a large dataset is an ex-
tremely time consuming procedure. Especially the execution of RSP3 is prohibitive, due to
the costly retrieval of the most distant points in each subset. We decided to exclude those
algorithms from this phase of our experimentation because of their high preprocessing cost.
Certainly, conventional 1-NN classification is also extremely time-consuming. It needs to
compute over 39 billions distances for each fold, and thus, we did not consider it in this exper-
iment.

The results shown in Table 3.8 are very similar to the ones presented in Tables 3.2–3.4
concerning the KDD dataset. Of course, since the original KDD dataset contains over 70%
more items (duplicates), reduction rate and preprocessing cost measurements in Table 3.8 are
higher than those in Tables 3.3 and 3.4. Furthermore, since the testing portions of the original
KDD dataset contain more items, higher accuracies are achieved.

Another issue that we wanted to explore is how the size of data segment influences the
performance of dRHC.Therefore, we ran experiments by adopting different segment sizes. The
corresponding results are presented in Table 3.9. Considering the measurements, we conclude
that segment size is rather irrelevant during dRHC execution. None of the comparison criteria
is substantially improved by increasing or decreasing the segment size.

For dRHC and IB2, which are dynamic algorithms, we studied how the sizes of condensing
sets are increased over time and estimated the cost needed for the preprocessing of each data
segment. Indicatively, Figure 3.4 presents these measurements for the LR and PD datasets in
their non-edited form. The measurements are similar for all datasets, so we do not include
figures for the other datasets. Let’s recall that IB2 examines each individual item and decides
whether to put it in the condensing set or not. On the other hand, dRHC considers data
in data segments. Regarding the diagram for preprocessing cost measurements, it reports a
preprocessing cost value for each CS update phase of dRHC and for each pass of t items for
IB2, where t is equal to the size of the data segment used by dRHC.
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Table 3.9: Using different segment (Memory/Buffer) sizes during dRHC execution on the non-
edited datasets (Accuracy (Acc (%)), Reduction Rate (RR (%)) and Preprocessing Cost (PC (mil-
lions of distance computations))

Dataset Segment size
500 1000 2000 4000

LR
Acc: 94.20 93.40 93.93 94.12
RR: 88.06 88.10 88.18 88.37
PC: 19.75 19.48 19.57 19.99

MGT
Acc: 72.52 72.68 72.96 72.51
RR: 72.92 73.63 74.59 75.29
PC: 30.28 28.45 26.12 22.77

PD
Acc: 98.42 98.49 98.41 98.40
RR: 97.29 97.23 97.22 96.95
PC: 1.38 1.44 1.63 2.07

LS
Acc: 88.92 87.69 88.73 89.18
RR: 88.24 88.94 89.48 89.41
PC: 1.57 1.43 1.52 1.64

SH
Acc: 99.74 99.68 99.73 99.70
RR: 99.46 99.48 99.45 99.49
PC: 8.12 7.70 8.38 7.48

TXR
Acc: 97.31 97.56 97.82 97.29
RR: 95.25 95.06 94.90 94.56
PC: 0.67 0.75 1.03 2.59

PH
Acc: 85.38 84.97 85.47 85.64
RR: 82.34 82.28 81.88 80.99
PC: 1.64 1.55 1.34 0.82

KDD
Acc: 99.39 99.42 99.42 99.38
RR: 99.22 99.22 99.24 99.25
PC: 57.59 57.32 54.58 51.62

BL
Acc: 68.8 - - -
RR: 78.04 - - -
PC: 0.05 - - -

BN
Acc: 83.15 83.64 82.42 83.19
RR: 82.63 81.98 81.63 79.86
PC: 1.51 1.47 1.22 0.73

YS
Acc: 47.10 48.99 - -
RR: 49.85 49.23 - -
PC: 0.32 0.49 - -

TN
Acc: 93.34 92.96 92.69 92.03
RR: 95.19 95.75 96.37 96.31
PC: 0.72 0.64 0.65 1.06
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(a) LR:Preprocessing cost (b) LR:Data reduction

(c) PD:Preprocessing cost (d) PD:Data reduction

Figure 3.4: Processing per data segment

Both measurements increase over time because the size of the available condensing set
increases, and thus, more distances need to be computed over time. The last PD data segment
contains 874 items instead of 1000. Therefore, lower preprocessing cost is needed for that
segment (see Figure 3.4(c)). Concerning dRHC, as we expected, the initial CS construction
phase is more time-consuming than the following CS update phases (see discussion near the
end of Subsection 3.2.3). Considering Figure 3.4 as well as the measurements in Tables 3.2–3.7,
one can conclude that dRHC achieves better performance than IB2 in terms of all comparison
criteria.

Non-parametric statistical test

We complement the section of the performance evaluation providing the results of a non-
parametric statistical test of significance [116]. In particular, we used the Wilcoxon signed
ranks test [32] in order to validate the experimental results presented in Tables 3.2–3.7. The

54



test compares DRTs in pairs taking into consideration their performance on each dataset. RHC
and dRHC were compared to each other and to each one of the comparison algorithms.

We ran the test four times. Once on the measurements of each comparison criterion (clas-
sification accuracy (ACC), reduction rate (RR), preprocessing cost (PC)) and once on the mea-
surements of the overall classification performance criterion. By following the idea presented
in [48, 47], we computed the measurements of the overall classification performance by aver-
aging the measurements of the three comparison criteria. Therefore, the overall performance
considered the three criteria as having the same significance. Certainly, the computation of
the overall classification performance implies that the measurements of the three criteria are
in the same range. Therefore, first, we normalized the measurements to the interval [0, 1].
Suppose that there are n performance measurements of the criterion a and they must be nor-
malized to the interval [0, 1]. The normalized i-th measurement, i = 1, . . . , n is estimated as
follows:

norm(ai) =
ai − Emin

Emax − Emin

where Emin and Emax are the minimum and maximum measurements for a, respec-
tively. Since low preprocessing cost is desirable, we used 1 − normalized(PC) instead
of normalized(PC).

Also, we ran all the tests twice, one on the measurements obtained on the non-edited
datasets and one on the measurements obtained on the edited data. Notice that we do not
include the measurements obtained by the experimentation on the original form of the KDD
dataset.

Tables 3.10 and 3.11 present the results of the Wilcoxon test. The columns labeled with
“w/l/t” show the number of wins, losses and ties respectively (e.g., in Table 3.10, in the overall
performance of RHC vs CNN case, “12/2/0” means that RHC was better than CNN 12 times
and worse 2 times). TheWilcoxon value (columns labeled with “Wilc.”) depicts how significant
the difference of the corresponding algorithms is. If it is lower than 0.05, one can claim that
the difference between the two methods is statistically significant.

This is true almost in all comparison pair in terms of overall classification performance.
Therefore, the results of the test confirm that RHC and dRHC perform better than the other
algorithms. It is worthmentioning that the results of the statistical tests presented in Table 3.10
reveal that the difference between dRHC and RHC is statistically significant. Thus, the test
confirms that dRHC performs slightly better than RHC. In terms of reduction rate, the tests
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Table 3.10: Results of the Wilcoxon signed ranks test on the measurements obtained from the
non-edited data

Methods ACC RR PC Overall
w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.

RHC vs CNN 2/12/0 0.009 14/0/0 0.001 14/0/0 0.001 12/2/0 0.005
RHC vs IB2 8/5/1 0.311 10/4/0 0.030 5/9/0 0.397 10/4/0 0.022
RHC vs RSP3 1/13/0 0.009 14/0/0 0.001 14/0/0 0.001 14/0/0 0.001
RHC vs PSC (j=2) 13/1/0 0.002 10/4/0 0.245 12/2/0 0.011 13/1/0 0.002
RHC vs PSC (j=4) 12/2/0 0.002 10/4/0 0.245 14/0/0 0.001 13/1/0 0.001
RHC vs PSC (j=6) 13/1/0 0.004 9/5/0 0.221 14/0/0 0.001 11/3/0 0.005
RHC vs PSC (j=8) 13/1/0 0.002 10/4/0 0.109 14/0/0 0.001 13/1/0 0.002
RHC vs PSC (j=10) 14/0/0 0.001 11/3/0 0.074 14/0/0 0.001 13/1/0 0.002
dRHC vs CNN 5/9/0 0.363 14/0/0 0.001 14/0/0 0.001 14/0/0 0.001
dRHC vs IB2 9/5/0 0.026 12/2/0 0.002 11/3/0 0.041 11/3/0 0.005
dRHC vs RSP3 2/12/0 0.026 14/0/0 0.001 14/0/0 0.001 14/0/0 0.001
dRHC vs PSC (j=2) 13/1/0 0.001 10/4/0 0.124 12/2/0 0.019 13/1/0 0.001
dRHC vs PSC (j=4) 14/0/0 0.001 11/3/0 0.064 11/3/0 0.026 14/0/0 0.001
dRHC vs PSC (j=6) 13/1/0 0.001 11/3/0 0.041 13/1/0 0.004 12/2/0 0.002
dRHC vs PSC (j=8) 14/0/0 0.001 12/2/0 0.030 14/0/0 0.001 13/1/0 0.001
dRHC vs PSC (j=10) 14/0/0 0.001 12/2/0 0.026 14/0/0 0.001 13/1/0 0.001
dRHC vs RHC 10/4/0 0.048 11/3/0 0.056 11/3/0 0.109 13/1/0 0.006

confirm that RHC and dRHC perform better than the other algorithms. Although IB2 has more
wins than RHC in terms of preprocessing cost, the difference is not statistically significant
(Wilc. = 0.397). In all other cases, RHC and dRHC perform better than the other algorithms
in terms of preprocessing cost. In terms of accuracy, RHC is statistically better than PSC and
dRHC is statistically better than IB2 and PSC. Although RHC has more wins than IB2 (8/5/1 in
Table 3.10 and 6/4/0 in Table 3.11), the difference is not statistically significant (note that we
have adopted a very strict threshold, i.e.,Wilc. = 0.05, for theWilcoxon significance level). In
addition, the results in Table 3.10 confirm that RSP3 leads to the most accurate classification.
Last but not least, the tests show that RHC and dRHC are as accurate as CNN-rule.

3.2.5 Conclusions

This section presented RHC, a fast non-parametric algorithm for data reduction. It uses k-
means clustering to recursively cluster the training dataset into homogeneous clusters. The
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Table 3.11: Results of the Wilcoxon signed ranks test on the measurements obtained from the
edited data
Methods ACC RR PC Overall

w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.
RHC vs CNN 5/5/0 0.959 10/0/0 0.005 10/0/0 0.005 7/3/0 0.093
RHC vs IB2 6/4/0 0.114 9/1/0 0.013 3/7/0 0.169 7/3/0 0.074
RHC vs RSP3 1/9/0 0.074 10/0/0 0.005 10/0/0 0.005 10/0/0 0.005
RHC vs PSC (j=2) 10/0/0 0.005 8/1/1 0.011 10/2/0 0.005 10/0/0 0.005
RHC vs PSC (j=4) 10/0/0 0.005 9/1/0 0.007 10/0/0 0.005 10/0/0 0.005
RHC vs PSC (j=6) 10/0/0 0.005 9/1/0 0.007 10/0/0 0.005 10/0/0 0.005
RHC vs PSC (j=8) 10/0/0 0.005 9/1/0 0.009 10/0/0 0.005 10/0/0 0.005
RHC vs PSC (j=10) 10/0/0 0.005 9/1/0 0.009 10/0/0 0.005 10/0/0 0.005
dRHC vs CNN 6/4/0 0.386 10/0/0 0.005 10/0/0 0.005 8/2/0 0.017
dRHC vs IB2 8/2/0 0.037 9/0/1 0.008 9/0/1 0.008 8/2/0 0.017
dRHC vs RSP3 3/7/0 0.333 10/0/0 0.005 10/0/0 0.005 10/0/0 0.005
dRHC vs PSC (j=2) 10/0/0 0.005 9/1/0 0.009 9/1/0 0.009 10/0/0 0.005
dRHC vs PSC (j=4) 10/0/0 0.005 9/1/0 0.009 10/0/0 0.005 10/0/0 0.005
dRHC vs PSC (j=6) 10/1/0 0.005 8/2/0 0.013 10/0/0 0.005 10/0/0 0.005
dRHC vs PSC (j=8) 10/0/0 0.005 8/2/0 0.013 10/0/0 0.005 10/0/0 0.005
dRHC vs PSC (j=10) 10/0/0 0.005 8/2/0 0.013 10/0/0 0.005 10/0/0 0.005
dRHC vs RHC 8/2/0 0.114 6/4/0 0.241 8/2/0 0.093 8/2/0 0.059

condensing set consists of the means of the final clusters. RHC combines the advantages of
RSP3 and PSC algorithmswhile avoiding their drawbacks. Furthermore, we presented dRHC, a
dynamic version of RHC, which retains all good properties of RHC and, in addition, it supports
frequent updates of the condensing set. Therefore, it can deal with datasets that cannot fit into
the main memory and/or streaming training training data which are gradually available.

Experimental results, obtained by using the non-edited and edited versions of several
datasets, showed that both algorithms had low preprocessing cost and achieved the highest re-
duction rates without significant loss of accuracy. We claim that these properties render RHC
and dRHC appropriate for environments where fast classification and/or low preprocessing
cost are critical. Moreover, we demonstrated that dRHC is independent of the size of data
segment (memory/buffer).
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3.3 Editing by finding Homogeneous Clusters

3.3.1 Motivation and contribution

The reduction rates of many condensing and prototype abstraction algorithms depend on the
level of noise in the training data. In effect, the higher the level of noise, the lower the reduction
rates achieved. Therefore, effective application of such algorithms implies removal of noise
from the data, i.e., application of an editing algorithm beforehand [29, 76]. Hence, editing has
a double goal: accuracy improvement and effective application of condensing and prototype
abstraction algorithms.

Although editing algorithms contribute in obtaining high quality training data, they con-
stitute a costly preprocessing step. Moreover, the editing algorithms are parametric, i.e., the
user defines the values of certain input (tuning) parameters. This implies time-consuming
trial-and-error procedures to tune the parameters. These observations are behind the motiva-
tion of the work presented in this section. The contribution is the proposal and evaluation of
a fast, non-parametric editing algorithm that is based on a k-means clustering procedure that
forms homogeneous clusters. This procedure is similar to that of RHC (see Section 3.2.2). The
proposed algorithm is called Editing through Homogeneous Clusters (EHC), leads to accurate
k-NN classifiers and has low preprocessing cost.

The rest of the section is organized as follows: Subsection 3.3.2 presents the proposed EHC
algorithm. Performance evaluation experiments are presented in Subsection 3.3.3 and, finally,
Subsection 3.3.4 concludes the section.

3.3.2 The Editing through Homogeneous Clusters (EHC) algorithm

As mentioned in Section 2.1.2, editing algorithms either extend ENN-rule or are based on the
same idea. The proposed EHC algorithm follows a completely different, non-parametric strat-
egy in order to remove noise, mislabelled and close-border data items. Actually, it is based on
the idea of RHC. Therefore, EHC iteratively applies k-means clustering on training data until
all constructed clusters containing items of a specific class only, i.e., they are homogeneous.
In the process, EHC removes all the clusters that contain only one item. We call these clus-
ters one-item clusters. The idea behind EHC is quite simple: one-item-clusters are redundant.
These items are probably outliers or lie in a region of a different class (noise) or lie close to a
decision-boundaries region, and thus, they must be removed.
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Initially, EHC considers the whole training set to be a non-homogeneous cluster. The algo-
rithm computes a mean item for each class (class-mean) by averaging the corresponding items
in the non-homogeneous cluster. If the cluster contains items from c classes, EHC computes
c means. Then, it applies k-means clustering on the cluster, using the class-means as initial
means, and builds c clusters. This clustering procedure is recursively applied on the items of
each non-homogeneous cluster built. One-item clusters are removed. The items assigned to
non-one-item clusters constitute the edited set. Algorithmically, EHC differs from RHC in the
following point: EHC stores in the edited set all training items that have not been assigned
to one-item clusters, while RHC computes the mean item for each homogeneous cluster and
stores it in the condensing set.

Two examples that demonstrate the operation of EHC are depicted in Figures 3.5 and 3.6.
More specifically, Figure 3.5 demonstrates how EHC identifies and removes a close-border
item, while Figure 3.6 demonstrates how the algorithm removes an item that is noise. Note
that non-homogeneous clusters are depicted with dashed borders. EHC identifies and removes
outliers in a similar way. In particular, Figure 3.5(a) presents a dataset with a border item that
should be removed. Initially, EHC computes the class-means by averaging the items that be-
long to each class (Figure 3.5(b)). Then, k-means is executed using the class-means as initial
means and identifies two clusters (Figure 3.5(c)): cluster A is non-homogeneous while cluster
B is homogeneous. Since cluster B is homogeneous and has more than one item, it is ignored.
Then, the class-means in cluster A are computed (Figure 3.5(d)) and k-means is executed on
the data of the particular cluster. The result is the construction of two homogeneous clusters
(Figure 3.5(e)). Since cluster D is a one-class cluster, it is removed (Figure 3.5(f)). In an anal-
ogous way, EHC removes the item that represents noise in Figure 3.6(a). EHC identifies and
removes outliers in a similar way.

Algorithm 11 describes a possible implementation of EHC. It utilizes a queue data structure
Q in order to hold the unprocessed clusters. Initially, the edited set (ES) is set to be the whole
training set (TS) (line 1) and Q holds the whole TS as one unprocessed cluster (lines 2–3). In
each algorithm iteration, cluster C is taken from the head of Q and is examined (line 5). If C
is homogeneous (line 6), the algorithm counts the items in C and if C is a one-item cluster, its
item is removed from ES (lines 7–9). If C is a non-homogeneous cluster, the class-means for
all the classes present in it are computed and added to setR (lines 11–14). SetR and cluster C
are the input parameters to k-means clustering (line 15). The returned clusters are enqueued
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(a) initial data (b) means of classes

(c) k-means on initial data (d) means of classes in cluster A

(e) k-means on
non-homogeneous cluster A

(f) final edited set

Figure 3.5: EHC: Smoothing decision boundaries
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(a) initial data (b) means of classes (c) k-means on initial data

(d) means of classes in cluster A (e) k-means on
non-homogeneous cluster A

(f) final edited set

Figure 3.6: EHC: Removing noise

in Q (lines 16–18). The loop continues as long as there are non-homogeneous clusters (line
20).

EHC may assign a typical data item (that is not noise or a close-border item) to an one-
item cluster and remove it. For instance, suppose that a non-homogeneous cluster with two
items is built. EHC will remove both items even when one of them belongs to the major class
of the region. Concerning the computational cost, we can easily conclude that EHC is a fast
preprocessing algorithm. It uses the fast k-means clustering algorithm that is also sped-up
by considering as initial means the means of the classes that are present in each cluster. One
expects that the resulting clusters are quickly consolidated and the cost is lower than when
opting for random means initialization. It is worth mentioning that contrary to all other edit-
ing methods, EHC does not compute distances between “real” items. It computes distances
between items and mean items. Moreover, contrary to ENN-rule and some of its variations
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Algorithm 11 EHC
Input: TS
Output: ES

1: ES ← TS
2: Q← ∅
3: Enqueue(Q, TS)
4: repeat
5: C ← Dequeue(Q)
6: if C is homogeneous then
7: if |C| = 1 then
8: ES ← ES − C
9: end if
10: else
11: R← ∅ {R is the set of class-means}
12: for each class M in C do
13: R← R ∪mean_of(M )
14: end for
15: Clusters← K-MEANS(C , R)
16: for each cluster Cl ∈ Clusters do
17: Enqueue(Q, Cl)
18: end for
19: end if
20: until IsEmpty(Q) {until all constructed clusters are homogeneous}
21: return ES

that compute a fixed number of distances regardless the item distribution in the multidimen-
sional space, the number of distances computed by EHC is difficult to predict in advance.
It exclusively depends on the item distribution in the data space. The main advantages of
EHC are that, contrary to all other editing approaches, it is very fast and to the best of our
knowledge is the only non-parametric editing algorithm. Hence, costly and time-consuming
trial-end-error procedures for parameter tuning are avoided. Finally, EHC builds the same
edited set regardless of data ordering.
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3.3.3 Performance evaluation

Experimental setup

The proposed EHC algorithm was coded in C and evaluated on ten datasets. We downloaded
eight datasets from the KEEL dataset repository5 [6] and give theit profile in Table 3.12. Ini-
tially, we did not know the level of noise in each dataset. After our experimentation, we
realized that the LIR dataset is an almost noise-free dataset and the LS and PH datasets have
low levels of noise. Since, we wanted to test how editing behaves on noise-free datasets, we
decided to include these datasets in our experimentation. Moreover, we built two additional
datasets by adding 10% random noise in LS and PH. We refer to these datasets as LS-n and
PH-n respectively. The noise was added by setting the class label of the 10% of the training
items to a randomly chosen different class label. No other data transformation was performed.
Finally, the Euclidean distance was adopted as the distance metric.

Table 3.12: Datasets description
Dataset Size (items) Attributes Classes

Magic Gamma Telescope (MGT) 19020 10 2
Landsat Satellite (LS) 6435 36 6

Phoneme (PH) 5404 5 2
Letter Image Recognition (LIR) 20000 16 26

Banana (BN) 5300 2 2
Ecoli (ECL) 336 7 8
Pima (PM) 768 8 2
Yeast (YS) 1484 8 10

For comparison purposes, we coded the three state-of-the-art algorithms presented in de-
tail in Section 2.1.2 (ENN-rule, All-kNN andMultiedit). We coded and used an implementation
of multiedit that may re-compute the same distance more than once. An implementation that
does not re-compute distances, would have to store already computed distances since they
should be available until the end of execution. This may lead to an inefficient implementation
with high memory requirements. We note that EHC and the aforementioned algorithms are
available on WebDR6 (see Appendix A).

5http://sci2s.ugr.es/keel/datasets.php
6https://ilust.uom.gr/webdr
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An important issue that we had to address was the tuning of the parameters of the afore-
mentioned algorithms. For all of them, we adopted the settings proposed in [49]. In particular,
we used k = 3 for ENN-rule, k = 7 and k = 9 for All-kNN and n = 3 andR = 2 for multiedit.
These settings are very common in many experimental studies in the literature. In addition,
we used k = 5 for ENN-rule and n = 5 for multiedit. Finally, we also measured and present
the performance of the conventional 1-NN classifier (classification without editing).

The four editing algorithms were compared to each other in terms of two main criteria:
classification accuracy and preprocessing (editing) cost. The latter was estimated by counting
the distances computed by each algorithm. Accuracy measurements were estimated by exe-
cuting the 1-NN classifier on the edited sets. For each algorithm and dataset, we report the
average accuracy and cost measurements obtained via a five-fold cross-validation. We used
the pairs of training/testing sets distributed by the KEEL repository. Although the reduction
rates achieved by each method do not indicate the best performing algorithm, they reveal the
percentage of data that is considered as noise by each algorithm. Therefore reduction rates
are also reported.

Experimental measurements

The performance measurements of our experimental study are presented in Table 3.13. Each
table cell contains threemeasurements that correspond to the execution of an editing approach
on a particular dataset. The three measurements are: accuracy, reduction rate and preprocess-
ing cost in millions of distance computations. The best measurements are in bold.

As we expected, EHC is the fastest approach. It achieves very low average preprocessing
cost compared to the other algorithms (see the last row of the table). EHC computes the fewest
distances in nine out of ten datasets. Furthermore, we observe that the cost gains are very
high for large datasets. Finally, as we predicted in Section 3.3.2, EHC computes a completely
different number of distances for the LS, LS-n datasets and the PH, PH-n datasets.

Concerning accuracy measurements, we observe that the proposed algorithm is compara-
ble to ENN-rule and All-kNN. Multiedit has the worst accuracy, especially for the LIR and ECL
datasets, where the accuracy measurement is unacceptable. This happens because multiedit
removes data that should not be removed. Although the differences in accuracy between EHC,
ENN and All-kNN are not statistically significant, we observe that EHC has the highest accu-
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Table 3.13: Experimental results: Accuracy (Acc (%)), Reduction Rate (RR (%)) and Preprocess-
ing Cost (PC (millions of distance computations))

Dataset 1-NN ENN ENN Multiedit Multiedit AllkNN AllkNN EHC(k = 3) k = 5) (n = 3, R = 2) (n = 5, R = 2) (k = 7) (k = 9)

MGT
Acc 78.14 80.44 80.57 76.75 75.26 80.76 80.86 79.52
RR - 20.08 19.20 39.98 42.36 29.67 30.38 10.70
PC - 115.76 115.76 2,839.55 1,447.93 115.76 115.76 4.08

LS
Acc 90.60 90.30 90.43 86.79 86.03 90.12 90.16 90.55
RR - 9.07 9.27 24.13 26.17 13.92 14.51 3.11
PC - 13.25 13.25 266.22 139.53 13.25 13.25 1.69

PH
Acc 90.10 88.14 87.53 80.77 79.72 86.55 86.23 89.06
RR - 11.25 11.93 34.14 36.91 17.92 19.30 7.36
PC - 9.35 9.35 166.22 53.71 9.35 9.35 0.66

LIR
Acc 95.83 94.98 94.87 70.94 58.35 94.28 94.00 95.23
RR - 4.33 4.44 43.43 56.59 7.31 7.97 3.95
PC - 127.99 127.99 7,214.38 2,900.53 127.99 127.99 41.85

BN
Acc 86.91 89.36 89.55 89.83 90.38 89.509 89.79 88.60
RR - 11.53 10.98 20.12 21.64 17.10 17.51 10.65
PC - 8.99 8.99 106.69 60.26 8.99 8.99 0.56

ECL
Acc 79.78 81.57 81.86 63.10 46.11 81.26 80.66 82.16
RR - 20.45 20.45 47.29 60.15 28.63 30.48 17.01
PC - 0.036 0.036 0.100 0.055 0.036 0.036 0.035

PM
Acc 68.36 71.87 71.75 71.36 68.89 72.65 73.30 70.32
RR - 30.16 29.43 53.07 58.96 45.56 46.24 16.59
PC - 0.19 0.19 0.51 0.26 0.19 0.19 0.06

YS
Acc 52.16 56.47 57.07 52.90 50.54 58.29 58.42 54.45
RR - 45.73 43.89 74.34 80.93 59.90 61.25 29.58
PC - 0.70 0.70 1.19 0.58 0.70 0.70 0.84

LS-n
Acc 82.58 89.64 89.74 86.47 85.55 89.73 89.84 87.55
RR - 19.82 18.45 38.33 40.19 29.64 30.17 10.93
PC - 13.25 13.25 139.02 78.43 13.25 13.25 2.00

PH-n
Acc 82.14 86.94 86.70 81.31 79.29 86.31 85.90 86.16
RR - 21.20 20.61 44.93 49.85 33.29 34.68 17.66
PC - 9.35 9.35 52.65 31.74 9.35 9.35 0.71

AVG
Acc 80.66 82.97 83.01 76.02 72.01 82.95 82.92 82.36
RR - 19.36 18.87 41.98 47.38 28.29 29.25 12.75
PC - 29.89 29.89 1,078.65 471.30 29.89 29.89 5.25
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racy in four out of ten datasets. However, ENN-rule has the highest average accuracy (see last
row in Table 3.13).

For the LIR, LS and PH datasets that contain low levels of noise, all editing approaches
seem to negatively affect accuracy since the conventional 1-NN classifier is the most accurate
approach. However, in all these cases, EHC is the most accurate editing algorithm. In con-
trast, in the rest seven datasets, most of the editing approaches achieve higher accuracy than
the conventional 1-NN classifier. Therefore, it appears that editing constitutes a necessary
preprocessing step.

The proposed algorithm has the lowest reduction rate. EHC removes items by using the
strict criterion of one-item clusters. For datasets with extremely high levels of noise (e.g. 30%
or more), it is not certain that EHC will improve classification accuracy like ENN-rule with
an appropriate k value does. On the other hand, EHC is not expected to negatively affect
classification accuracy as much as the other methods do.

Non-parametric statistical test

We validated the performance measurements previously presented by applying the Wilcoxon
signed ranks test [32]. In effect, we executed the particular test three times: once on the
ten measurements of each criterion (classification accuracy (ACC), preprocessing cost (PC)),
and once on the ten measurements of the overall classification performance criterion. Sim-
ilar to [48, 47], the overall performance is the average of the normalized measurements of
accuracy and preprocessing cost. Therefore, first, we normalized the measurements of each
criterion to the range [0,1]. The overall performance considered accuracy and preprocess-
ing cost as having the same significance. Since low preprocessing cost is desirable, we used
1 − normalized(PC). Note that since the reduction rate does not indicate if an algorithm
performs better than another, we did not run the test for the particular criterion.

The results of the test are shown in Table 3.14. The columns labelled with “w/l” count the
number of wins and loses respectively. The columns with label “Wilc.” present the Wilcoxon
significance level. If for a pair of algorithms this value is lower than 0.05, one can claim that
there is statistically significant difference between the two algorithms.

Considering the table, we can safely conclude that EHC is statistically better than the other
algorithms in terms of preprocessing cost. Moreover, it is obvious that EHC is statistically
better than multiedit in terms of classification accuracy. On the other hand, the differences
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Table 3.14: Results of the Wilcoxon signed ranks test

Methods ACC PC Overall
w/l Wilc. w/l Wilc. w/l Wilc.

EHC vs ENN (k=3) 4/6 0.126 9/1 0.013 4/6 0.333
EHC vs ENN (k=5) 4/6 0.169 9/1 0.013 4/6 0.333
EHC vs Multiedit (n=3, R=2) 8/2 0.017 10/0 0.005 8/2 0.013
EHC vs Multiedit (n=5, R=2) 9/1 0.009 9/1 0.013 9/1 0.007
EHC vs All-k-NN (k=7) 4/6 0.386 9/1 0.013 4/6 0.646
EHC vs All-k-NN (k=9) 5/5 0.508 9/1 0.013 5/5 0.575

between accuracy measurements of all other pairs are not statistically significant. Concern-
ing the overall classification performance, EHC performs better than Multedit (the difference
between the particular algorithms is statistically significant).

3.3.4 Conclusions

Classification accuracy achieved by the k-NN classifier strongly depends on the quality of the
available training data. Noise and mislabelled data as well as outliers and overlaps between
regions of different classes are the reasons of bad classification performance for the particu-
lar classifier. Editing algorithms can improve classification accuracy by removing such data.
In this section, we proposed a non-parametric algorithm, called Editing through Homoge-
neous Clusters (EHC), which follows a completely different strategy than the other editing
approaches. EHC is based on a clustering procedure that forms homogeneous clusters in the
training data. The clusters that contain only one item are considered irrelevant (they repre-
sent noise, outlier or close-border items) and are removed. An experimental study with ten
datasets showed that the proposed algorithm is very fast and achieves comparable classifica-
tion accuracy to the state-of-the-art editing algorithms.
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3.4 Simultaneous editing and data abstraction by finding ho-

mogeneous clusters

3.4.1 Motivation and contribution

As already mentioned, the application of an editing algorithm is an extra and usually costly
preprocessing step. In Sections 3.2 and 3.3, we presented RHC and EHC, respectively. RHC is a
prototype abstraction algorithm while EHC is an editing algorithm. Both are non-parametric,
very fast and based on a similar k-means clustering procedure that finds homogeneous clusters
in the training data. The motivation here is to ascertain if the aforementioned algorithms can
be effectively combined in a new prototype abstraction algorithm. The contribution is the pro-
posal and the evaluation of an effective fast, non-parametric prototype abstraction algorithm
that integrates the idea of editing. It is called Editing and Reduction though Homogeneous
Clusters (ERHC) and is a descendant of our RHC and EHC algorithms.

The rest of the section is organized as follows. Subsection 3.4.2 presents the proposed
ERHC algorithm. Experimental measurements and the results of the Wilcoxon signed ranks
test are presented in Subsection 3.4.3. Finally, Subsection 3.4.4 concludes the presentaion of
ERHC.

3.4.2 The Editing and Reduction through Homogeneous Clusters (ERHC)

algorithm

ERHC constitutes a combination of RHC and EHC. Practically, it is a RHC variation that can
effectively manage datasets with noise. ERHC works in a way similarly to RHC and EHC.
More specifically, it works as follows. Initially, the whole training set is considered to be
a non-homogeneous cluster. ERHC begins by computing the class-mean for each class by
averaging the corresponding items of the cluster. Therefore, for a dataset with n classes, ERHC
estimates n class-means. ERHC continues by executing k-means clustering adopting the n

class-means as initial means. The result is the construction of n clusters. If a homogeneous
cluster is identified and contains a single item, ERHC removes it. Otherwise, its cluster-mean
is a prototype and is placed in the condensing set. The above clustering procedure is applied
recursively on the items of each non-homogeneous cluster. ERHC terminates when all clusters
become homogeneous. The final condensing set built by ERHC contains the cluster-means of
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the homogeneous clusters that contain more than one item. In effect, RHC, EHC and ERHC,
differ to each other on how they treat the homogeneous clusters. Of course, using the class-
means as initial means for k-means clustering, the number of clusters built is automatically
determined.

The aforementioned procedure is depicted in the example presented in Figure 3.7. Suppose
that the initial training set contains two classes, squares and circles (Figure 3.7(a)). ERHC
computes two class-means (Figure 3.7(b)). k-means is applied on the training set and builds
two clusters, A and B (Figure 3.7(c)). A is homogeneous and contains more than one item.
Therefore, its cluster-mean is placed in the condensing set. B is non-homogeneous since it
contains items from both classes. Therefore, ERHC computes two class-means (Figure 3.7(d)),
and then k-means is applied on B and builds clusters C and D (Figure 3.7(e)). Since D is
homogeneous and contains more than one item, its cluster-mean is placed in the condensing
set. Since C is non-homogeneous, its class-means are computed (Figure 3.7(f)) and k-means is
applied onC building clustersE and F (Figure 3.7(g)). Then, the cluster-mean of the non-one-
item-cluster homogeneous cluster F is placed in the condensing set, while the class-means are
computed for the non-homogeneous clusterE (Figure 3.7(e)). k-means is applied onE and the
result is the clustersG andH . Both are homogeneous (Figure 3.7(i)). However,H is one-item-
cluster. Hence, it is removed (it is not represented in the condensing set). The cluster-mean
of G is placed in the condensing set (Figure 3.7(j)). The final condensing set contains only
four items (reduction rate over 85%). Note that the only difference between RHC and ERHC
is that RHC will place in the condensing set a prototype for cluster H . However, this affects
the quality of the final condensing set.

ERHC is easy to implement. Algorithm 12 is the pseudo-code of a possible implementation.
Like RHC and EHC, It uses a queue structureQueue to store clusters. Initially,Queue holds the
whole training set (TS) as an unprocessed cluster (lines 1–2). In each iteration, the head cluster
C is dequeued fromQueue (line 5). IfC is homogeneous and not a one-item-cluster (lines 6–7),
its mean is placed in the condensing set (CS) (lines 8–9). If C is non-homogeneous (line 11), a
class-mean for each class inC is computed and added to setM (lines 12–16). The latter as well
asC is the input to a k-means clustering call (line 17). The resulting clustersNewClusters are
enqueued in Queue (lines 17–20). The repeat-until loop (lines 4, 22) terminates when Queue

is empty, i.e., all clusters become homogeneous. We should mention that Algorithm 12 differs
from RHC presented in Algorithm 9 in one point: the former includes an extra “if” statement
regarding the one-item-clusters (line 7).
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(a) initial data (b) means of classes (c) k-means on initial data

(d) means of classes in B (e) k-means on cluster B (f) means of classes in C

(g) k-means on cluster C (h) means of classes in E (i) k-means on cluster E

(j) final condensing set

Figure 3.7: ERHC: data abstraction and editing process
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Algorithm 12 ERHC
Input: TS
Output: CS

1: Queue← ∅
2: Enqueue(Queue, TS)
3: CS ← ∅
4: repeat
5: C ← Dequeue(Queue)
6: if C is homogeneous then
7: if |C| > 1 then
8: r ← mean of C
9: CS ← CS ∪ {r}
10: end if
11: else
12: M ← ∅ {M is the set of class-means}
13: for each class L in C do
14: mL ← mean of L
15: M ←M ∪ {mL}
16: end for
17: NewClusters← K-MEANS(C , M )
18: for each cluster C ∈ NewClusters do
19: Enqueue(Queue, C)
20: end for
21: end if
22: until IsEmpty(Queue)
23: return CS

Obviously, ERHC is quite similar to RHC. However, we expect that the simple editing
mechanism integrated in ERHC can effectively improve classification performance especially
when data contains noise. ERHC inherits all the benefits of the algorithm for finding homoge-
neous clusters. Therefore, it is very fast since it is based on k-means that is accelerated by the
class-mean initializations. We used the full cluster consolidation for the stopping condition
of k-means clustering. ERHC could have been even be faster had we used another stopping
condition. Moreover, ERHC does not depend on the data order in the training set. We note
that ERHC is not equivalent to the successive execution of EHC and RHC algorithms (let’s call
this EHC-RHC). Different clusters are built by the two approaches and consequently different
reduction rates are achieved. Also, EHC-RHC has higher preprocessing cost than ERHC since
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it applies the procedure for finding homogeneous clusters twice: once on the non-edited and
once on the edited data. ERHC can simultaneously remove noise from the data and reduce the
size of the training set.

3.4.3 Performance evaluation

Experimental setup

ERHC algorithm was coded in C and tested on eleven datasets. Like all other DRTs imple-
mented during the PhD research, ERHC is available on WebDR7 (see Appendix A). We used
nine datasets from the KEEL dataset repository8 [6]. Six of them were also used in the exper-
imental study presented in Section 3.3. Table 3.15 summarizes the datasets used in this stage
of our experimentations. Our study revealed that the LIR, PD, SH and TXR datasets are noise-
free. All other datasets contain various levels of noise. In addition, the LS and PH datasets
have low levels of noise. Like in the experimental study presented in Subsection 3.3.3, we built
two extra versions of these datasets by adding 10% noise. We refer to them as LS-n and PH-n
respectively. Practically, 10% noise were added by selecting a different class label for 10% of
the training items.

Table 3.15: Datasets description
Dataset Size (items) Attributes Classes

Letter Image Recognition (LIR) 20000 16 26
Pen-Digits (PD) 10992 16 10
Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Banana (BN) 5300 2 2

Landsat Satellite (LS) 6435 36 6
Magic Gamma Telescope (MGT) 19020 10 2

Phoneme (PH) 5404 5 2
Pima (PM) 768 8 2

In Section 3.2, we compared RHC to CNN-rule, IB2, RSP3, PSC on the non-edited and edited
forms of several datasets. Consequently, we do not include experiments for these algorithms.
Here, ERHC is compared to RHC, ENN-RHC and EHC-RHC algorithms. ENN-RHC is the

7https://ilust.uom.gr/webdr
8http://sci2s.ugr.es/keel/datasets.php
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successive execution of ENN-rule for editing and RHC for data abstraction, whereas EHC-
RHC is the successive execution of EHC for editing and RHC for data abstraction.

We used ENN-rule because it is the reference editing algorithm (see Section 2.1.2) and, as
the experimentations in Subsection 3.3.3 showed, it achieves good classification performance.
All other editing algorithms are either variations of ENN-rule or are based on the same idea.
Of’ course, the main disadvantage of ENN-rule is that the user should define the value of k
that defines the size of the examined neighbourhood. Here, we ran experiments with k = 3.
That value is either adopted or suggested by many researchers [131, 49, 84].

The four algorithms were evaluated by estimating three measurements: accuracy, reduc-
tion rate, and, preprocessing cost in terms of distance computations. Accuracy was estimated
by running the 1-NN classifier over the condensing set built by each algorithm. We report the
average values of the measurements obtained via five-fold cross-validation. We used the five
pairs of training/testing sets distributed by the KEEL repository. The distances between items
were estimated using the Euclidean distance.

Experimental measurements

Table 3.16 presents the performance measurements obtained with the best ones shown in bold
font. Preprocessing cost measurements are in million distances. In addition, Table 3.16 reports
the accuracies obtained by applying the conventional 1-NN classifier (Conv-1-NN) on the non-
edited training data (without data reduction).

For the BN, PM, LS-n and PH-n datasets, one or more algorithms achieved higher accuracy
than Conv-1-NN. It is clear that ERHC performs better than RHC (with respect to all compar-
ison criteria). Thus, we conclude that ERHC effectively extends RHC. It is worth mentioning
that no editing approach (ERHC included) negatively affects accuracy of noise-free datasets
(LIR, PD, SH, TXR).

We expected EHC-RHC to have higher reduction rates than ERHC. However, the results
show that this is not always true. In five datasets (LIR, SH, TXR, LS, MGT), ERHC has higher
reduction rate than EHC-RHC. Nevertheless, the differences are almost insignificant.

Concerning the preprocessing cost, we observe that, in all cases, EHC-RHC has almost
the double cost compared to ERHC and RHC. Also, ENN-RHC is the slowest approach. This
is because it involves the execution of the costly ENN-rule procedure. In practice, the actual
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Table 3.16: Experimental results: Accuracy (Acc (%)), Reduction Rate (RR (%)) and Preprocess-
ing Cost (PC (millions of distance computations))

Dataset Conv-1-NN RHC ENN-RHC EHC-RHC ERHC

LIR
Acc 95.825 93.585 92.720 93.045 92.690
RR - 88.081 90.343 90.383 92.029
PC - 41.844 159.039 73.710 41.844

PD
Acc 99.354 98.299 98.453 98.472 98.626
RR - 96.516 97.189 97.589 97.448
PC - 2.882 41.489 5.521 2.882

SH
Acc 99.822 98.095 99.597 98.481 98.038
RR - 99.550 99.658 99.669 99.690
PC 16.827 1098.864 32.695 16.827

TXR
Acc 99.018 97.036 97.109 96.873 97.364
RR - 94.705 95.582 95.732 95.936
PC - 3.629 12.675 6.133 3.629

BN
Acc 86.906 83.283 88.094 87.019 88.000
RR - 79.684 95.660 93.000 90.330
PC - 0.562 9.519 1.014 0.562

LS
Acc 90.598 88.951 89.138 88.392 89.013
RR - 89.841 95.062 92.273 92.949
PC - 1.693 14.984 3.192 1.693

MGT
Acc 78.144 71.966 77.781 74.716 77.014
RR - 73.757 93.057 83.843 84.456
PC - 4.082 118.591 7.480 4.082

PH
Acc 90.100 85.585 85.400 86.158 86.565
RR - 80.708 92.098 89.008 88.053
PC - 0.658 9.812 1.161 0.658

PM
Acc 68.358 63.281 72.653 69.927 69.793
RR - 63.577 91.792 80.977 80.065
PC - 0.062 0.219 0.103 0.062

LS-n
Acc 82.580 78.819 88.578 84.817 85.377
RR - 76.632 95.361 88.465 87.560
PC - 1.999 14.744 3.637 1.999

PH-n
Acc 82.143 75.407 83.993 81.255 84.030
RR - 64.246 92.019 86.394 81.910
PC - 0.706 116.164 1.180 0.706

Avg
Acc 88.441 84.937 88.501 87.196 87.865
RR - 82.482 94.347 90.667 90.039
PC - 6.813 145.100 12.348 6.813
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preprocessing cost of ENN-rulemay even be higher: tuning its parametermay requiremultiple
executions of a trial-and-error-procedure.

Although ENN-RHC is the slowest approach, it seems to be slightly more accurate than
EHC-RHC and ERHC. Moreover, it achieves higher reduction rate measurements on datasets
with high levels of noise. This is because ENN-rule considers as noise more items than EHC
and ERHC do.

Non-parametric statistical test

Like the experimental studies presented in Subsections 3.2.4 and 3.3.3, we validated the per-
formance measurements by applying the Wilcoxon signed ranks test [32]. We ran the test
four times, i.e., once for each comparison criterion (classification accuracy (ACC), reduction
rate (RR), preprocessing cost (PC)) and once on the measurements of the overall classification
performance criterion. Here, the overall classification performance takes into account the re-
duction rates. Therefore, the overall performance is computed by averaging the normalized
measurements (to the range [0, 1]) of the three criteria (we used 1−normalized(PC)). Thus,
all criteria are considered as having the same significance.

Table 3.17 shows the results of the test. The columns labelled with “w/l/t” counts the num-
ber of wins, losses and ties between the corresponding algorithms while the columns labelled
with “Wilc.” list theWilcoxon significance level. Aswe expected, the difference between ERHC
and RHC (Wilcoxon value < 0.05) is statistically significant in terms of accuracy, reduction rate
and overall classification performance. RHC has only two wins against ERHC (slightly higher
accuracy measurements for the LIR and SH datasets). Of course, ERHC is statistically better
than ENN-RHC and EHC-RHC in terms of preprocessing cost. There are not other signifi-
cant differences between ERHC and the other algorithms. On the other hand, we observe that
EHC-RHC is statistically better than RHC in terms of all criteria and than ENN-RHC in terms
of preprocessing cost. EHC-RHC is statistically worse than ENN-RHC in terms of accuracy
and reduction rate.

3.4.4 Conclusions

In this section, we proposed ERHC, an improved variation of the RHC algorithm that can han-
dle datasets with noise. It can achieve high reduction rates regardless the level of noise in the
training data and without requiring as high preprocessing cost as a sequential execution of
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Table 3.17: Results of the Wilcoxon signed ranks test

Methods ACC RR PC Overall
w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.

ERHC vs RHC 9/2/0 0.016 11/0/0 0.003 0/0/11 1 11/0/0 0.003
ERHC vs ENN-RHC 4/7/0 0.286 4/7/0 0.041 11/0/0 0.003 4/7/0 0.248
ERHC vs EHC-RHC 8/3/0 0.033 5/6/0 0.328 11/0/0 0.003 6/5/0 0.790
EHC-RHC vs RHC 8/3/0 0.041 11/0/0 0.003 0/11/0 0.003 10/1/0 0,004
EHC-RHC vs ENN-RHC 3/8/0 0.033 4/7/0 0.041 11/0/0 0.003 4/7/0 0.213

EHC and RHC. The algorithm is based on a k-means clustering procedure that forms homo-
geneous clusters. The clusters that contain only one item are considered to be noise and are
removed. The mean items of the other homogeneous clusters are placed in the condensing set
as prototypes. ERHC inherits all the properties of RHC. Therefore, it is a fast non-parametric
prototype abstraction algorithm and its performance does not depend on the order of training
data. ERHC was empirically evaluated on eleven datasets. The experimental measurements il-
lustrated that ERHC is very fast and achieves high reduction rates and classification accuracy.
In all cases, the performance measurements were better than RHC.
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Chapter 4

Other proposed data reduction techniques

4.1 Introduction

The research objective of this chapter is also the issue of data reduction for improved k-NN
classification. It contributes two additional prototype abstraction algorithms. In Section 4.2,
a prototype abstraction version of the well-known IB2 algorithm is proposed. It is called
AIB2 [96, 88]. IB2 is an effective prototype selection algorithm (see Subsection 2.1.3). Contrary
to many other Data Reduction Techniques (DRTs) and like dRHC (see Subsection 3.2.3), IB2
is a very fast, one-pass condensing algorithm that builds its condensing set in an incremental
(dynamic) manner. AIB2 maintains this property of IB2. However, it generates new proto-
types instead of selecting them. AIB2 attempts to improve the efficiency of IB2 by positioning
the prototypes in the center of the data areas they represent. The empirical experimental study
and the Wilcoxon signed ranks test show that AIB2 performs better than IB2.

Section 4.3 proposes a simple, noise-tolerant prototype abstraction algorithm called
RkM [95]. RkM is based on the popular k-means clustering algorithm. The conducted
experimental study shows that if the condensing set contains only the means of clusters as
prototypes, classification performance is not negatively affected as much by the addition of
noise in the training data.
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4.2 Efficient data abstraction using weighted IB2 prototypes

4.2.1 Motivation and contribution

As already mentioned, IB2 belongs to the popular family of Instance-Based Learning (IBL)
algorithms. IB2 is an one-pass incremental1 condensing algorithm. Actually, it is based on
the well known CNN-rule. Contrary to CNN-rule and many other state-of-the-art condensing
and prototype abstraction algorithms, IB2 can dynamically build its condensing set. In other
words it is an incremental algorithm. It can take into consideration new training items after
the construction of the condensing set and without needing the old removed training items.
Hence, it can be used in dynamic/streaming environments [1] where new training data is
gradually available. In addition, the incremental nature of IB2 allows its execution on training
sets that cannot fit into main memory.

In this section, we attempt to improve the performance of IB2 by considering the idea of
data abstraction. Our contribution is the development and evaluation of a prototype abstrac-
tion version of IB2 that we call Abstraction IB2 (AIB2). The proposed prototype abstraction
algorithm retains all the properties of IB2, but it is faster and achieves higher reduction rates
and improved classification accuracy.

The rest of the section is organized as follows: Subsection 4.2.2 describes in detail the
proposed AIB2 algorithm. Subsection 4.2.3 presents an experimental study where the k-NN
classifier is applied on the original training sets and the corresponding condensing sets built
by CNN-rule IB2 and AIB2, of nine datasets. The experimental study is complemented by
the statistical comparison of the three algorithms through the Wilcoxon signed ranks test.
Subsection 4.2.4 concludes the section.

4.2.2 The Abstraction IB2 (AIB2) algorithm

The proposed AIB2 algorithm adopts the idea of IB2 and CNN-rule: items that lie in the “in-
ternal” data area of a class are useless and can be removed without loss of accuracy. AIB2
is a prototype abstraction version of IB2. Therefore, AIB2 is a non-parametric, fast, one-pass
algorithm. It is also appropriate for dynamic / streaming environments and can handle new
class labels. Like IB2, it can be applied on very large datasets that cannot fit into main memory
or on devices with limited main memory (e.g., sensor networks), without transferring data to

1The term “incremental” is identical in meaning to the term “dynamic” used in Section 3.2

78



a server over a network for processing. The latter is usually costly and time-consuming. Like
IB2, AIB2 does not take into account the phenomenon of concept drift [125] that may exist in
data streams.

The main difference between AIB2 and IB2 is the following. The items that are correctly
classified by the 1-NN rule are not ignored. In effect, they contribute to the construction of
the condensing set by repositioning their nearest prototype in the condensing set. The main
idea behind AIB2 is that prototypes should be at the center of the data area they represent.
To achieve this, AIB2 adopts the concept of prototype weight. Each prototype has a weight
value as an extra attribute that denotes the number of training items it represents. The weight
values are used for updating the prototype attributes in the multidimensional space.

Algorithm 13 presents how AIB2 works. Initially, the condensing set (CS) is populated by
a random item of the training set (TS) whose weight is initialized to 1 (lines 2–3). For each
item x of TS, AIB2 searches in CS and retrieves its nearest prototype NN (line 5). If x is
misclassified, it is placed in CS and its weight is initialized to one (lines 6–8). If x is correctly
classified, NN ’s attributes are updated by taking into consideration its current weight and
the attributes of x. Effectively, NN “moves” towards x in the multidimensional space (lines
10–12). Finally, the weight of NN is increased by one (line 13) and x is removed (line 15).
At the end, CS constitutes the final condensing set. Whenever a training item is available, it
either enters CS or repositions the nearest prototype.

Like IB2 and CNN-rule, AIB2 considers that misclassified items are probably close to de-
cision boundaries and so they must be placed in the condensing set. Although the correctly
classified items are not placed in the condensing set, they are not ignored. They contribute by
updating the nearest prototype without deteriorating reduction rates. The idea is that a con-
densing set built by AIB2 will contain better prototypes compared to the condensing set built
by IB2 and will achieve higher classification accuracy. In addition, we expect that updating
the prototypes will reduce the number of items that enter the condensing set, and thus, AIB2
will achieve higher reduction rates and lower preprocessing cost compared to IB2.

Figures 4.1 and 4.2 illustrate two-dimensional examples of AIB2 execution. Suppose that
the current condensing set contains three prototypes, two of class circle and one of class square
(Figure 4.1 (a) and Figure 4.2 (a)). Suppose that a new square item, a, arrives (Figure 4.1 (b)).
AIB2 should decide whether a will enter the condensing set or it will be used to update an
existing prototype. Since a is closer to a prototype of a different class, a enters the condensing
set and its weight value is initialized to one (Figure 4.1 (c)). In contrast, suppose that the new
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Algorithm 13 AIB2
Input: TS
Output: CS

1: CS ← ∅
2: pick an item y of TS and move it to CS
3: yweight ← 1
4: for each x ∈ TS do
5: NN ← Nearest Neighbour of x in CS
6: if NNclass ̸= xclass then
7: xweight ← 1
8: CS ← CS ∪ {x}
9: else
10: for each attribute attr(i) do
11: NNattr(i) ←

NNattr(i)×NNweight+xattr(i)

NNweight+1

12: end for
13: NNweight ← NNweight + 1
14: end if
15: TS ← TS − {x}
16: end for
17: return CS

item a is a circle item (Figure 4.2 (b)). Since a is closer to P , which is a prototype of the same
class, a updates P . Therefore P moves towards a and its weight is increased by one (Figure 4.2
(c)). In our example, the updated P lies in between the original P and a because the weight
of P was one.

By updating the prototypes, AIB2 ensures that each prototype lies near the center of the
data area it represents. Notice that the weight of a prototype practically denotes the popu-
lation of the original items that it represents. Thus, although each time a new training item
arrives and is assigned to an existing prototype, it causes the prototype to “move” towards
the new item, the larger the weight of the prototype is, the smaller the “move” is towards
the new training item. Like IB2, AIB2 prototypes depend on the order of the training items.
It is possible that over time and because of a non-uniform arrival of training data items, an
AIB2 prototype will gradually move far away from some of the original training items that
it represents. Still, AIB2 prototypes with large weights will move very slowly towards the
new training data items. This is also a problem with IB2 that contrary to CNN-rule cannot
guarantee correct classification of all examined training data.
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(a) Current condensing
set (3 prototypes)

(b) New item arrival (c) The new item enters
the condnensing set

Figure 4.1: AIB2 example: new prototype enters the condensing set

(a) Current condensing
set (3 prototypes)

(b) New item arrival (c) Updating of nearest
prototype

Figure 4.2: AIB2 example: repositioning an existing prototype

4.2.3 Performance evaluation

Experimental setup

AIB2, IB2 as well as CNN-rule were evaluated using eight datasets distributed by the KEEL
dataset repository2 [6] and summarized in Table 4.1. Seven datasets (all except the KDD
dataset) were used without applying data normalization. The MGT, LS and TXR datasets are
distributed sorted on the class label. We randomized the items of these datasets. The Euclidean
distance was the distance metric used. Please note that all the aforementioned algorithms and
datasets are available on WebDR3 (see Appendix A).

2http://sci2s.ugr.es/keel/datasets.php
3https://ilust.uom.gr/webdr
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Table 4.1: Datasets description
Dataset Size Attributes Classes

Letter Image Recognition (LIR) 20000 16 26
Magic Gamma Telescope (MGT) 19020 10 2

Pen Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2
KddCup (KDD) 141481 23 36

The KDD dataset contains 494,020 items and 41 attributes. However, huge amounts of
data are duplicates. Like in case of the experimental study presented in Subsection 3.2.4, we
removed all duplicates. Moreover, we removed the three nominal and the two fixed-value
attributes that exist in the particular dataset, Consequently, the transformed KDD dataset
contains 141,481 items and 36 attributes. In addition, the value ranges of KDD attributes vary
extremely. Therefore, we normalized all attributes to the interval [0, 1]. Finally, we random-
ized the dataset.

We did not includemore algorithms in our experimentation because our purpose was to fo-
cus on incremental and non-parametric algorithms. Of course, CNN-rule is non-incremental,
but it is considered a reference condensing algorithm and is being used in many papers for
comparison purposes. In addition, CNN-rule is the ancestor of IB2 and AIB2 and it makes
sense to use it in our experiments.

The three algorithms were evaluated by estimating three measurements: (i) classification
accuracy, (ii) reduction rate, and, (iii) preprocessing cost in terms of distance computations.
Accuracy measurements were estimated by executing the k-NN classifier with k = 1 over the
condensing set built by each algorithm. For each dataset and algorithm, we report the average
values of these measurements obtained via five-fold cross-validation. With the exception of
the KDD dataset, we used the five already constructed pairs of training and testing sets dis-
tributed by the KEEL repository. For the transformed KDD, we created the appropriate for
cross-validation training/testing pairs. Of course, all measurements were estimated after the
arrival of all training items.

The original (non-edited) form of the MGT dataset contains high level of noise. Noisy
items are misleading for the three algorithms and negatively affect reduction rates and the
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corresponding accuracies. Hence, we tried to build a noise-free version of MGT. To achieve
this, we ran an editing algorithm before the execution of the DRTs. In particular, we used
the ENN-rule algorithm. ENN-rule needs to compute all distances among the training items,
i.e., N×(N−1)

2
distances, where N is the number of items. By applying ENN-rule (with k = 3,

see [131, 49, 84]) on each training portion of each fold, we built an extra dataset that we call
MGT-ENN. Of course, the testing portions were not edited by the ENN-rule. We tested the
three algorithms on both forms of the MGT dataset.

Experimental measurements

The results of our experimental study are presented in Table 4.2. Each column lists the results
related to a classifier. Best measurements are in bold. Preprocessing cost measurements are in
million distance computations. For reference, Table 4.2 presents the accuracy measurements
obtained by the conventional 1-NN classifier on the original training set under the label Conv-
1-NN.

We should clarify that, contrary to the case of the experimental study presented in Sub-
section 3.2.4 the reduction rates of the MGT-ENN dataset do not take into account the items
removed by editing. They concern the size of the condensing set in relation to that of the edited
set. Note that ENN-rule considered as noise 20.08% of MGT items on average. Therefore, the
training portions of the MGT-ENN dataset contains 20.08% fewer items than the MGT dataset
on average.

Although the three algorithms did not reach the accuracy levels of Conv-1-NN, they were
very close to them. With the exception of the LIR, LS and TXR datasets, CNN-rule was more
accurate than IB2 and AIB2. However, it required much higher preprocessing cost and it
achieved lower reduction rates than IB2 and AIB2.

As we anticipated, the proposed algorithm performed better than IB2 in most datasets and
in terms of all comparison criteria. The KDD dataset is the only dataset where IB2 seems to
be better than AIB2. In the LIR, LS and TXR datasets, AIB2 was more accurate than CNN-rule.
Although we expected even better performance, we believe that the improvements achieved
by AIB2 are noteworthy.

Moreover, as we expected, ENN-rule improved the efficiency of the classification process
on the MGT data. Accuracies and reduction rates achieved by the three algorithms on the
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Table 4.2: Experimental results: Accuracy (Acc (%)), Reduction Rate (RR (%)) and Preprocessing
Cost (PC (millions of distance computations))

Dataset Conv-1-NN CNN-rule IB2 AIB2

LIR
Acc: 95.83 92.84 91.98 94.12
RR: - 83,54 85.66 88.12
PC: - 163.03 23.37 20.10

MGT
Acc: 78.14 74.54 71.97 73.36
RR: - 60.08 70.60 71.90
PC: - 281.49 34.61 33.05

MGT-ENN
Acc: 80.44 79.26 78.01 78.81
RR: - 87.62 90.07 91.06
PC: - 68.61 8.48 7.65

PD
Acc: 99.35 98.68 98.04 98.33
RR: - 95.36 96.23 97.19
PC: - 11.75 1.78 1.38

LS
Acc: 90.60 88.21 86.87 89.42
RR: - 80.22 84.62 86.72
PC: - 17.99 2.22 1.92

SH
Acc: 99.82 99.76 99.73 99.72
RR: - 99.37 99.44 99.46
PC: - 45.30 8.26 7.89

TXR
Acc: 99.02 97.16 96.35 97.69
RR: - 91.90 93.33 94.95
PC: - 5.65 0.84 0.66

PH
Acc: 90.10 87.82 85.57 84.92
RR: - 76.04 80.85 81.75
PC: - 13.45 1.96 1.84

KDD
Acc: 99.71 99.66 99.48 99.41
RR: - 99.12 99.26 99.21
PC: - 384.90 55.58 58.78

Average
Acc: 92.56 90.88 89.78 90.64
RR: - 85,92 88.90 90.04
PC: - 110.24 15.23 14.81
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MGT-ENN dataset (edited data) are higher than the corresponding measurements measured
for the MGT dataset (non-edited data).

Non-parametric statistical test

We complement this section by presenting the results of aWilcoxon signed ranks test [32]. The
test was ran four times: once on the nine measurements of each comparison criterion (classi-
fication accuracy (ACC), reduction rate (RR), preprocessing cost (PC)), and once on the nine
measurements of an extra criterion which estimates the overall classification performance.
This criterion adopts the idea presented in the statistical comparissons in [48, 47]. More specif-
ically, the overall classification performance measurements were computed by averaging the
normalized measurements of the three criteria. Therefore, the measurements were normalized
to the interval [0, 1]. Since the higher preprocessing cost, the lower the classification perfor-
mance, we used 1 − normalized(PC) as the preprocessing cost. The overall classification
performance criterion combines the three criteria by considering all of them as having the
same significance.

Table 4.3 illustrates the results of the Wilcoxon tests. The columns with labels “W/L”
counts the number of wins and loses, respectively. The columns with label “Wilcoxon” lists the
Wilcoxon significance level. When that value is lower than 0.05, we claim that the difference
between the compared algorithms is statistically significant. Of course, this threshold is very
strict. We observe that this is true in the most cases. In terms of accuracy, CNN-rule has more
wins than AIB2 and AIB2 has more wins than IB2. However, there is not statistical difference
between the corresponding algorithms. In addition, AIB2 is statistically better than CNN-rule
and IB2 in terms of reduction rate, and AIB2 is statistically better than CNN-rule in terms of
preprocessing cost. On the other hand, although it is clear that AIB2 is faster than IB2, this is
not statistically supported (note that we have adopted the strict thresholdWilcoxon = 0.05).
Finally, we observe that AIB2 is statistically better than the other algorithms in terms of the
overall classification performance. Therefore, AIB2 is preferable when the three criteria have
the same significance.

Concerning CNN-rule and IB2 (last table row), we observe that, in all cases, there is statisti-
cal significant differences between their performance measurements. IB2 is statistically better
than CNN-rule in terms of reduction rate and preprocessing cost. In contrast, CNN-rule is
statistically better than IB2 in terms of accuracy.
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Table 4.3: Results of Wilcoxon signed ranks test

Methods ACC RR PC Overall performance
W/L Wilcoxon W/L Wilcoxon W/L Wilcoxon W/L Wilcoxon

AIB2 vs CNN 3/6 0.767 9/0 0.008 9/0 0.008 9/0 0.008
AIB2 vs IB2 6/3 0.066 8/1 0.015 8/1 0.086 7/2 0.028
IB2 vs CNN 0/9 0.008 9/0 0.008 9/0 0.008 9/0 0.008

4.2.4 Conclusions

This section proposed the AIB2 algorithm, an prototype abstraction algorithm that is based on
the well-known condensing IB2 algorithm. The main concept behind AIB2 is that each gener-
ated prototype should be near the center of the data area it represents. Like IB2 and contrary
to CNN-rule and many other condensing and prototype abstraction algorithms, AIB2 is in-
cremental. This property renders AIB2 appropriate for dynamic domains where new training
data is gradually available and for datasets that cannot fit into the main memory.

The experimental results illustrated that AIB2 can achieve higher reduction rates and clas-
sification accuracy and lower preprocessing cost than IB2. In addition, AIB2 is preferable to
CNN-rule when preprocessing cost and / or reduction rates are more crucial criteria than ac-
curacy and, of course, when an incremental algorithm is required. The improvement offered
by AIB2 was statistically confirmed by the Wilcoxon signed ranks test.

4.3 A simple noise-tolerant prototype abstraction algorithm

4.3.1 Motivation and contribution

We have already mentioned that the size of the condensing set, and, therefore, the effective-
ness of condensing and prototype abstraction algorithms, depends on the level of noise in
the training data as well as the number of distinct classes (the more classes, the more close-
class-border items selected or generated). Consequently, a complete preprocessing step may
include an editing procedure to remove the noise from the training data. However, editing
may be inappropriate because either it may be not able to remove all items that are noise or it
may remove useful data. Moreover, editing constitutes an extra, costly preprocessing step that
may be unacceptable in some application domains. Thus, there is a need for a noise-resistant or
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noise-tolerant algorithm. These observations are behind the motivation of the work presented
in this section.

The contribution of this section is summarized as follows:

• to examine how the addition of noise affects the performance of two state-of-the-art
DRTs, the condensing algorithm CNN-rule and the prototype abstraction algorithm
RSP3, and,

• to propose the use of the cluster means produced by k-means clustering on the training
sub-datasets belonging to each class as a simple, noise-tolerant prototype abstraction
algorithm.

The rest of the section is organised as follows. In Subsection 4.3.2, the noise-tolerant Re-
duction through k-Means (RkM) algorithm is presented. Subsection 4.3.3 presents a weighing-
based RkM variation. Subsection 4.3.4 shows the experimental results and Subsection 4.3.5
concludes the section.

4.3.2 The Reduction through k-Means (RkM) algorithm

A simple but effective prototype abstraction approach could use k-means clustering. More
specifically, we propose the use of the k-means for the construction of the condensing set. Cer-
tainly, there are many approaches that use clustering either to summarize similar items [31, 30,
61] or to condense the initial training set [86, 85, 87, 93, 40, 8, 82] for speed-up purposes. Here,
we focus on the noise tolerance of DRTs and our purpose is to ascertain if the k-means ap-
proach can improve the classification performance. We term this simple prototype abstraction
approach Reduction through k-Means clustering (RkM) [95].

RkM involves a clustering preprocessing step on the training dataset. Particularly, k-means
clustering is executed on the items of each class. Therefore, for each class, a number of clusters
is identified and the class is represented by the mean vectors of these clusters. Considering
this simple prototype abstraction approach, it is clear that noise belonging to a class (i.e., items
that lie in the data area of another class) and class outliers are represented by a cluster mean
lying in the main area of this class. Therefore, we expect RkM to be a noise-tolerant DRT
and its effectiveness to not depend as much on an editing procedure like CNN-rule, RSP3 and
many other condensing and prototype abstraction algorithms do.
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Algorithm 14 RkM
Input: DRF , TS
Output: CS

1: CS ← ∅
2: for the set of items X that belong to each class C do
3: nc← ⌈ |X|

DRF
⌉

4: M ← Use random nc items of X as the initial means for k-means clustering
5: NewClusters← K-MEANS(X , M )
6: for each cluster CLU ∈ NewClusters do
7: m← mean of CLU
8: CS ← CS ∪ {m} labelled by C
9: end for
10: end for
11: return CS

An issue that needs to be addressed is the determination of the number of mean items
that should represent each class. We deal with this issue by introducing a parameter called
Data Reduction Factor (DRF ). For each class C , RkM builds ⌈ |C|

DRF
⌉ clusters, where |C| is the

number of items that belong toC . The use of ceiling ensures that each class will be represented
by at least one mean. Consequently, the condensing set built by RkM stores only the means
produced by k-means clustering. Although theDRF parameter needs to be adjusted through
a trial-and-error-procedure, it allows the user to determine the desirable trade-off between
accuracy and reduction rate (or, in other words, computational cost). In effect, low DRF

values lead to accurate classifiers with gains in execution cost, whereas, high DRF values
build very fast classifiers that achieve lower accuracy.

The RkM procedure is outlined in Algorithm 14. The algorithms accepts a training set
(TS) and a DRF value and returns a condensing set (CS). Effectively, RkM applies k-means
clustering (line 5, see Algorithm 8) on the items of each classes (line 2). After each k-means
execution, the cluster means built for the particular class are placed in the CS as prototypes
(lines 6–9). Themean itemm of clusterCLU (line 7), is computing by averaging the n attribute
values of the items, xi, i = 1, 2 . . . |CLU |, that belong to C . Each mean attribute m.dj, j =

1, 2, . . . n is estimated as follows:

m.dj =
1

|CLU |
∑

xi∈CLU

xi.dj, j = 1, 2, . . . n
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4.3.3 A weight-based RkM variation

In the RkM algorithm, all prototypes (i.e., mean items) contribute the same to the classification
predictions. We attempt to improve the performance of RkM by weighting the means. More
specifically, we implemented and tested a weight-based RkM variation.

The weight-based RkM algorithm adds a weight to each mean. The weights are computed
by taking into account three factors. Each of them has an equal contribution to the classifica-
tion. The first factor is the number of items that have been summarized in the specific mean.
The second factor considers the dispersion of each cluster. Namely, after the cluster construc-
tion for each class, the algorithm computes their dispersion. The lower the dispersion value is,
the more the corresponding mean contributes to the classification. In aD-dimensional space,
the dispersion value of a cluster C with a mean R is estimated by the following formula:

DispersionC =
D∑
j=1

1

|C|

N∑
i=1

(Rj − itemi,j ∈ C)2

The last factor is based on the distance between the new unclassified item and each mean. The
closer a mean is, the higher weight is computed. The final weight of R is computed by adding
the normalized to the interval [0, 1], individual weights of the three factors:

Rweight = norm(wf1) + norm(wf2) + norm(wf3),

where
norm(wfi) =

wfi −min(wfi)

max(wfi)−min(wfi)
, i = 1, 2, 3

The first two factors are computed for each prototype during preprocessing. The third one
depends on the position of the new item and is computed during the classification step. When
a new item arrives and must be classified, the k nearest prototypes are retrieved, and then, it
is classified to the class that obtains the higher sum of weights.

Unfortunately, the performance of the weight-based RkM algorithm did not meet our ex-
pectations. For the datasets we used, it did not show significantly different performance from
that of RkM. Here, we describe this variation but omit its performance from the experimental
study presented in the following subsection. We should mention that during our experimenta-
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tion, we tried different combinations of the aforementioned factors. However, none achieved
noteworthy performance (higher than that of RkM).

4.3.4 Performance evaluation

Experimental Setup

RkM, CNN-rule and RSP3 were tested against each other using the datasets summarized in
Table 4.4. In this experimental study, the first four datasets were retrieved from the UCI Ma-
chine Learning Repository4 [12, 44], while the TXR and PH datasets from the KEEL dataset
Repository5 [6]. We split the LIR, MGT, TXR and PH datasets into training and testing sets
using a random sampling procedure. Concerning the LS and PD datasets, we used the train-
ing/testing splits provided by the UCI Repository. Of course, RkM can be executed on-line
through WebDR6 (see Appendix A).

To evaluate the performance of the algorithms on datasets with noise, we constructed
and tested eight versions of the LIR, LS, PD, and TXR datasets with varying degree of noise
(from 0% to 70% with step=10). The first version was the original dataset (without extra noise),
whereas the last version contained 70% noise. TheMGT and PH datasets have only two classes
and so they can not afford high levels of additional noise. Hence, we used four versions for
these datasets with noise ranging from 0% to 30%. Note that the original MGT dataset already
contains a considerably high level of noise in its original form.

The datasets with noise for all datasets were constructed by adding random noise of a
specific probability to the datasets. For instance, when a dataset with 20% noise was needed,
the class attribute of each item of the corresponding training set was modified by selecting
another random class-attribute with a probability of 0.2. Therefore, for each tested algorithm,
eight or four pairs of performance measurements (reduction rate and classification accuracy)
were obtained. For each dataset, we present a pair of figures (Figure 4.3–4.8): figures denoted
by (a) show the reduction rates of each algorithm, whereas, figures denoted by (b) show the
corresponding classification accuracy values. The latter figures include an extra curve for the
conventional k-NN (classification by scanning the original training data). Finally, we note that

4http://archive.ics.uci.edu/ml/
5http://sci2s.ugr.es/keel/datasets.php
6https://ilust.uom.gr/webdr
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Table 4.4: Datasets description

Dataset Training Testing Attributes Classesitems items
Letter Recognition (LIR) 15000 5000 16 26
Landsat Satellite (LS) 4435 2000 36 6

Pen Digits (PD) 7494 3498 16 10
Magic Gamma Telescope (MGT) 14000 5020 10 2

Texture (TXR) 4400 1100 40 11
Phoneme (PH) 4000 1404 5 2

the datasets were used without data normalization or any other data transformation, and that
the distance metric used was the Euclidean distance.

We compared the performance of RkM to that of CNN-rule and RSP3 that are good repre-
sentatives of the two different algorithm categories, i.e., condensing and prototype abstraction
algorithms. Initially, each one of these algorithms was executed in order to produce the corre-
sponding condensing set by scanning the initial training data. Then, for each item of the testing
set, the k-NN classifier made a classification prediction by searching for nearest neighbours
over the condensing set produced. The chosen k parameter values for all the aforementioned
classifiers were the ones that achieved the highest classification accuracy. In effect, we ran
each experiment many times for different k values and kept and report the best one. Ties
during voting of the major class were resolved by choosing the class of the nearest neighbour.
Note that we did not follow a tuning procedure that implies that the best parameters should
be obtained by using only the training set. Since all algorithms include only the k parameter
during the classification step, for all of them, we simply report the highest accuracy achieved
by the k parameter when it classifies the testing portion using the corresponding training
portion.

For RkM, recall thatDRF determines the number of means (prototypes) that will be gen-
erated for each one class. The value of this parameter can be used to adjust the computational
cost vs. accuracy trade-off required by the application domain. In our experiments, we wanted
to build RkM classifiers that would achieve accuracy comparable to that of CNN and RSP3. In
particular, in most cases, DRF values were appropriately adjusted to achieve an accuracy
between the corresponding accuracy values of CNN and RSP3.
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(a) Reduction Rate (b) Accuracy

Figure 4.3: LIR (Reduction Rate and Accuracy)

(a) Reduction Rate (b) Accuracy

Figure 4.4: LS (Reduction Rate and Accuracy)

Experimental measurements

As we expected, the experimental measurements illustrated in Figures 4.3–4.8 demonstrate
that RkM can be characterized as a noise-tolerant approach. The preprocessing procedures
of CNN-rule and RSP3 are not able to reduce as much the size of the condensing set when
the initial training set contains noise. In the case of CNN-rule, this is because more items are
misclassified and so, they are moved to the condensing set. In the case of RSP3, the algorithm
keeps on splitting the many non-homogeneous groups that are produced. On the other hand,
RkM does not seem to be affected as much by the addition of noise. Almost in all cases, CNN-
rule achieved higher reduction rates than RSP3 and RSP3 achieved higher accuracy values
than CNN-rule.
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(a) Reduction Rate (b) Accuracy

Figure 4.5: PD (Reduction Rate and Accuracy)

(a) Reduction Rate (b) Accuracy

Figure 4.6: MGT (Reduction Rate and Accuracy)

The reduction rates achieved by RkM were higher in the cases of the LS (Figure 4.4), PD
(Figure 4.5) and PH (Figure 4.8) datasets than that of the LIR (Figure 4.3) and TXR (Figure 4.7)
datasets. This is because, in the latter datasets, the classifiers that use the condensing sets
built by CNN-rule and RSP3 achieved high accuracy values that the corresponding RkM clas-
sifier can not easily reach. Consequently, RkM classifiers that use condensing sets with more
prototypes (lower DRF values) are required in order to achieve comparable performance.
However, even in the cases of the LIR and TXR datastes, it is obvious that the reduction rates
of RkM are higher than that of the other two algorithms.

In the case of the MGT dataset, the RkM classifier did not perform well. However, in
the original version of the MGT dataset, which already contains many items that are noise,
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(a) Reduction Rate (b) Accuracy

Figure 4.7: TXR (Reduction Rate and Accuracy)

(a) Reduction Rate (b) Accuracy

Figure 4.8: PH (Reduction Rate and Accuracy)

RkM had higher reduction rates than CNN-rule and RSP3 and achieved the same accuracy as
CNN-rule. Finally, in many cases, the RkM classifier achieved higher accuracy values than
those we present here. However, they involved lower reduction rates. Our purpose was to
ascertain whether RkM is a noise-tolerant approach and so, we focused on the reduction rates
that it achieved. The user of RkM can define the desirable trade-off between accuracy and cost
through the DRF parameter.

RkM performed very well on edited datasets. We repeated the experiments on the the
LIR, PD, and LS datasets after first applying editing on each dataset in order to remove the
noise. For editing purposes, we used the ENN-rule with k = 3 [131, 49, 84]. RkM managed
to reach or exceed the reduction rates of CNN-rule and RSP3, while achieving comparable ac-
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(a) Reduction Rate (b) Accuracy

Figure 4.9: Edited LS (Reduction Rate and Accuracy)

curacy. Figure 4.9 shows the results obtained on the LS dataset. Finally, we should mention
that the accuracy measurements presented may have been slightly different had we used dif-
ferent training/testing splits. However, we are mainly interested in the reduction rates that
the presented methods achieved and so, the slightly different accuracy measurements are not
critical.

Concluding this section, we focus on the preprocessing cost needed for the construction of
the condensing sets of the three algorithms. Certainly, these cost measurements are relevant
only once, in the beginning of the data mining process. However, there are many application
domains that periodically accept new training items and so the reconstruction of the condens-
ing set may be necessary. Thus, the preprocessing cost may be a critical issue.

Table 4.5 presents these measurements for each original dataset in terms of distance com-
putations. Considering the results, we conclude that RSP3 is the most expensive approach.
This is because RSP3 contains a function that finds the most distant items in each group. The
preprocessing cost of RkM depends on the DRF value. The last column of Table 4.5 lists the
DRF values that we used in order to build the RkM classifiers presented in Figures 4.3–4.8
(noise= 0%). For the LIR, LS, PD and TXR datasets, RkM was cheaper than the other algo-
rithms. On the other hand, for the MGT and PH datasets, its cost was considerably higher. If
the application domain cannot afford the RkM preprocessing step, it can be sped-up by adopt-
ing a more efficient stopping condition for k-means than the complete cluster consolidation
that we used.
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Table 4.5: Experimental results: Preprocessing cost (distance computations)
Dataset CNN-rule RSP3 RkM DRF
LIR 145,386,010 291,151,380 11,576,185 6
LS 13,545,272 28,929,950 5,771,993 5.1
PD 7,940,953 70,561,629 4,409,382 20
MGT 217,900,759 412,752,916 323,718,012 2.8
TXR 5,189,518 25,361,045 1,278,585 18
PH 13,532,827 17,847,352 22,809,139 4

4.3.5 Conclusions

In this section, we examined how the state-of-the-art algorithms CNN-rule and RSP3 are neg-
atively affected by the addition of noise in the training data. In addition, we demonstrated
that the well-known k-means clustering can be used as a noise-tolerant prototype abstraction
algorithm. The experimental results showed that the Reduction through k-Means (RkM) al-
gorithm can be used to achieve comparable accuracy to CNN-rule and RSP3 but with much
higher reduction rates, especially on datasets with high levels of noise. Even on datasets with-
out noise, RkM can compete with CNN-rule and RSP3 in terms of data reduction rate and
classification accuracy.
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Chapter 5

Hybrid methods for fast k-NN
classification

5.1 Introduction

In this chapter, new hybrid methods for fast k-NN classification are proposed. Hybridization
is accomplished by combining two different speed-up strategies in order to achieve the de-
sirable classification performance. The chapter contributes three hybrid methods as well as
variations of these methods. Contrary to prototype abstraction and condensing algorithms,
the methods introduced by this chapter do not reduce the storage requirements of the training
data. However, they can effectively speed-up the classification processes.

Section 5.2 proposes the combination of the minimum distance and the conventional k-NN
classifiers in a hybrid schema. The goal is fast classification without the need of preprocess-
ing [101]. The minimum distance classifier [38] is an extremely fast classification approach
but it usually achieves much lower accuracy than the k-NN classifier. The proposed algorithm
aims at the reduction of computational cost, by keeping classification accuracy at a high level.
The experimental results obtained illustrate that the proposed approach can be applicable in
dynamic, time-constrained environments where model-free classifiers are required.

Section 5.3 presents an adaptive hybrid and cluster-basedmethod for speeding up the k-NN
classifier [102, 90]. It reduces the computational cost asmuch as possiblewhilemaintaining the
classification accuracy at high levels. The method is based on k-means clustering and consists
of two main parts: (i) a preprocessing algorithm that builds a two-level, cluster-based data
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structure, and, (ii) a hybrid classifier that classifies new items by accessing either the first or the
second level of the data structure according to a set of user-defined criteria (input parameters).
The proposed approachwas tested on seven datasets and the experimental measurements were
statistically validated by the Wilcoxon signed ranks test. The results show that the proposed
method can be used either to achieve high accuracy at a slightly higher computational cost or
to reduce the cost at a minimum level by slightly sacrificing accuracy.

The main disadvantage of the aforementioned method is that the preprocessing and the
classification algorithms are parametric and require a trial-and-error procedure to properly
adjust their parameters. In effect, the performance of classification is controlled by these
parameters. In Section 5.4, a non-parametric hybrid method for fast k-NN classification is
introduced [94, 97]. It is also based on a two-level speed-up data structure and on classifiers
that access this structure. The method follows the idea of the homogeneous clusters presented
in Chapter 3. Furthermore, the section demonstrates how the particular method can improve
the classification performance on condensing sets built via Data Reduction Techniques (DRTs).
The proposed method was evaluated using eight datasets and was compared to known speed-
up methods. The experimental measurements were also validated with the Wilcoxon signed
ranks test. The results show that the new method leads to fast and accurate classification, and,
in addition, it involves low pre-processing computational cost.

5.2 Fast hybrid classifiers based on the minimum distance and

the k-NN classifiers

5.2.1 Motivation and contribution

Although condensing and prototype abstraction algorithms are usually effective, they intro-
duce a costly and, in some cases, complicated preprocessing step, since they build a condensing
set to speed-up the nearest neighbours searching procedure. In effect, the condensing set is
the classification model. When the classification is applied on databases where frequent con-
tent changes occur (dynamic environments), the repeated execution of this step, that ensures
the effectiveness of the condensing set, is prohibitive. In such dynamic environments, there
is a need of a lazy, model-free classifier.
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The Minimum Distance Classifier (MDC) [38] can be used as a very fast classification ap-
proach. MDC can be characterized as a very simple prototype abstraction algorithm since
it computes a representative item (centroid or mean) for each one class. This is the vector
obtained by averaging the attribute values of the items of each class. When a new item t is
to be classified, the distances between t and all centroids are calculated and t is classified to
the class of the nearest centroid. MDC avoids the high computational cost of scanning the
whole training data. On the other hand, the accuracy achieved by MDC depends on how the
items of the training set are distributed in the multidimensional space. It is worth mentioning
that the centroid-based model introduced byMDC has been successfully applied for document
categorization [55].

The motivation of the work presented in this section is to explore how the speed of MDC
can be exploited in order to achieve fast and accurate classification that does not depend on
models (e.g., indexes, condensing sets). Moreover, the motivation includes addressing the
problem of classifying large, high-dimensional datasets, where a sequential, exhaustive search
of the whole training set is required to locate the k nearest neighbours (conventional k-NN
classifier). This is the case when indexing is not applicable and dimensionality reduction neg-
atively affects the performance. Furthermore, we want to avoid complicated preprocessing
procedures such as data reduction. The simple centroid based model of MDC involves only
one pass over the training data to compute the mean vector of each class.

This section introduces a new fast hybrid classification algorithm that does not need any
speeding-up data structure (i.e., indexing) or any transformation of the training data (i.e., data
reduction). The reduction of the classification cost is achieved by the combination of the con-
ventional k-NN and the minimum distance classifiers. The proposed algorithm begins by com-
puting a centroid for each class. Then, it tries to classify new items by examining the centroids
and by applying certain criteria. If the set criteria are not satisfied, it proceeds by applying k-
NN search over the entire training set. The contribution of the work is summarized as follows:

• A novel, model-free classification algorithm is proposed that is independent of data di-
mensionality and can be applied for repeated classification tasks on dynamic databases,
where frequent content changes occur, since it avoids expensive preprocessing proce-
dures on the training data, and,
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• The main classification algorithm and two variations that extend its basic idea are con-
sidered in relation to the set goal of achieving high accuracy while reducing the classi-
fication cost as much as possible.

The rest of this section is organized as follows. Subsection 5.2.2 considers in detail the
proposed classification algorithm and its variations. In Subsection 5.2.3, experimental results
based on various datasets are presented. The work concludes in Subsection 5.2.4.

5.2.2 The proposed algorithms

This section presents a fast, hybrid and model-free classification algorithm [101]. In addition
to the main algorithm, two variations that achieve extra classification cost savings are pro-
posed. In the order presented, each one variation comprises an extension to its predecessor.
As expected, the improvement comes at the cost of a decrease in accuracy.

The algorithm and its variations are based on the same idea: They initially search for near-
est neighbours in a new, smaller dataset constructed by one pass over the training data. This
dataset contains only a representative item for each one class. Upon failure to meet the set
acceptance criteria, classification proceeds by the conventional k-NN classifier. Each represen-
tative item is computed by calculating the average value of each attribute in each one class.
Thus, the computed vector can be considered to comprise the centroid of the cluster corre-
sponding to the class. Therefore, if the initial dataset contains one thousand items in fifteen
dimensions and ten classes, the new dataset will have only ten items in fifteen dimensions.
Evidently, the more the dataset of centroids is used, the less the execution time involved. The
following subsections below, outline the main classification algorithm and its two variations.

Fast Hybrid Classification Algorithm

The Fast Hybrid Classification Algorithm (for simplicity FHCA) is based on the difference of
the distances between the new unclassified item and the centroids (see Algorithm 15). More
specifically, for each new item x, the algorithm takes into consideration the two nearest cen-
troids A, B (A is the nearest and B is the second nearest) and their distances from x: d(x, A),
d(x, B). If the difference between d(x, A) and d(x, B) exceeds a predefined threshold (line 5),
x is classified to belong to the class represented by centroid A (line 6), otherwise the k nearest
neighbours are retrieved from the initial training set (TS) in order to determine the class of x
(lines 8-10).
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Algorithm 15 FHCA
Input: TS, Threshold, k
1: Scan TS to compute the centroids
2: for each unclassified item x do
3: Compute the distances between x and the centroids
4: Retrieve the nearest centroidA, and the second nearest centroidB, using the Euclidean

distance metric
5: if (distance(x, B) - distance(x, A)) ≥Threshold then
6: Classify x to the class of centroid A
7: else
8: Retrieve the k NNs from TS
9: Find the major class (the most common one among the k NNs. In case of a tie, it is

the class of the single Nearest Neighbour)
10: Classify x to the major class
11: end if
12: end for

FHCA is more accurate than the two variations presented in the following paragraphs.
In some cases, it reaches the classification accuracy of the conventional k-NN classifier, at a
significantly less classification cost. However, the performance depends on the value of the
predefined threshold.

When the threshold parameter is set to zero, the centroid-based approach (MDC) classifies
all the new samples (since the “if” condition calculates to “true”). On the other hand, if the
threshold is set to a relatively high value, it is possible that all new items are classified by
the conventional k-NN classifier (the “else” clause in line 7 in Algorithm 15). These proper-
ties indicate that the threshold value adjustment should be made carefully, as it comprises a
classification cost vs. accuracy trade-off decision for the application considered.

FHCA - Variation I

The first FHCA variation (FHCA-V1), which is illustrated in Algorithm 16, is an extension of
the main FHCA algorithm, since it uses the distance difference criterion the same way FHCA
does. In addition, FHCA-V1 attempts to classify evenmore new incoming itemswithout falling
back to the conventional k-NN classifier. In particular, if the distance difference criterion fails
to classify the incoming item x (lines 6 and 7 in Algorithm 16), FHCA-V1 considers the region
of influence of each one class centroid involved. We define the class region of influence to be
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the average distance of the training set class items from the corresponding centroid. In case
x lies within the region of influence of only one class (class A in Figure 5.1), x is classified to
belong to the class in question (lines 8 and 9 in Algorithm 16). Otherwise, if x lies within the
region of influence of more than one class, the algorithm proceeds as in the conventional k-
NN classifier (lines 11-13 in Algorithm 16). In practice, the only one difference between FHCA
and FHCA-V1 is the “else if” part of pseudo-code in lines 8 and 9 of Algorithm 16.

Figure 5.1: FHCA-V1 classification case

Contrary to the FHCA, FHCA-V1 requires two preprocessing passes, one for calculating
the class representative items (centroids, as in FHCA: line 1 in Algorithms 15 and 16), and
one for calculating the class regions of influence in the training set (line 2 in Algorithm 16).
Even this extra pass over the training set (TS) is insignificant compared to the preprocessing
procedures involved by DRTs.

FHCA - Variation II

The second FHCA variation (FHCA-V2) extends FHCA-V1 to include one more classification
criterion. The latter handles the case where the unclassified item x lies within more than
one class regions of influence (Figure 5.2, lines 10 and 11 in Algorithm 17). In this case, x
is classified to the class of the nearest centroid whose region of influence embraces it. The
example in Figure 5.2 illustrates such a case: suppose that the distance difference criterion is
not able to classify x, i.e. x lies closer to A than to B, but the difference between the two
distances does not reach the predefined threshold. Also, suppose that x lies within the regions
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Algorithm 16 FHCA-V1
Input: TS, Threshold, k
1: Scan TS to compute the class centroids
2: Re-scan TS to compute the region of influence of each one class centroid
3: for each unclassified item x do
4: Compute the distances between x and the class centroids
5: Find the nearest centroid A, and the second nearest centroid B, using the Euclidean

distance metric
6: if (distance(x, B) - distance(x, A)) ≥Threshold then
7: Classify x to the class of centroid A
8: else if x belongs to the region of influence of only one class then
9: Classify x to this class
10: else
11: Retrieve the k NNs from TS
12: Find the major class (the most common one among the k NNs. In case of a tie, it is

the class of the Nearest Neighbour)
13: Classify x to the major class
14: end if
15: end for

of influence of both A and B. In this case, FHCA-V2 classifies x to belong to the class of the
nearest centroid (the class of centroid A in Figure 5.2), skipping the classification cost of the
conventional k-NN classifier. It is only in cases where unclassified items fail tomeet both of the
FHCA-V1 and FHCA-V2 set criteria that the algorithm proceeds to apply the conventional k-
NN classifier. In this respect, FHCA-V2 involves less computational overhead when compared
to FHCA, FHCA-V1, and, of course, the conventional k-NN classifier.

Discussion

A key factor for the proposed classifier and its variations is the adjustment of the threshold (in-
put) parameter. In the case of FHCA, the value of this parameter influences the number of new
incoming items classified by the centroid-based model: the more the centroid-based approach
is used, the less is the classification cost involved. In the cases of FHCA-V1 and FHCA-V2, the
focus is on the unclassified items that cannot be classified by the distance difference criterion.
Two additional centroid-based classification criteria are introduced, in an attempt to avoid the
classification cost of the conventional k-NN classifier. The latter becomes the only one option
available when both of the FHCA-V1 and FHCA-V2 set criteria fail to classify the unclassified
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Figure 5.2: FHCA-V2 classification case

Algorithm 17 FHCA-V2
Input: TS,Threshold, k
1: Scan TS to compute the class centroids
2: Re-scan TS to compute the region of influence of each one class centroid
3: for each unclassified item x do
4: Compute the distances between x and the class centroids
5: Find the nearest centroid A, and the second nearest centroid B, using the Euclidean

distance metric
6: if (distance(x, B) - distance(x, A)) ≥Threshold then
7: Classify x to the class of centroid A
8: else if x belongs to the region of influence of only one class then
9: Classify x to this class
10: else if x belongs to the regions of influence of more than one class then
11: Classify x to the class of nearest centroid whose region of influence embraces x
12: else
13: Retrieve the k NNs from TS
14: Find the major class (the most common one among the k NNs. In case of a tie, it is

the class of the Nearest Neighbour)
15: Classify x to the major class
16: end if
17: end for
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item. Obviously, FHCA-V2 utilizes the centroids dataset as much as possible (i.e., in all three
set criteria) and represents the fastest variation. In contrast, FHCA is the slowest of the three
approaches, since it applies centroid-based classification solely on the basis of the distance
difference criterion.

A threshold auto-adjustment method is relatively easy to implement in the form of a rou-
tine that accepts a value for the desirable accuracy level, and it iteratively considers a number
of different threshold values. Having reached the desirable accuracy level, the routine returns
the corresponding threshold value.

It is noted that the worst-case scenario for the proposed classification approaches is when
the centroid-based part does not classify any new item. In this case, the execution time in-
volves the k-NN figure, the small overhead of the centroids creation (one pass of the training
data) and the small overhead introduced by the cost of distance computations between new
data and the class centroids (e.g., if there are ten classes, ten distances must be computed for
each new item). In effect, preprocessing cost is almost insignificant.

The proposed algorithm can be modified so that upon failure to use the centroid-model,
the k-NN part takes into account only the items of the two classes with the nearest centroids
to the query point. In this case, both the classification cost and the classification accuracy are
highly depended on the number of classes. Experiments conducted on the datasets presented
in Section 5.2.3, have shown that although this approach is very fast, the accuracy is signif-
icantly reduced. Consequently, it is not included in the experimental study of the following
subsection.

5.2.3 Performance evaluation

Experimental setup

The proposed algorithms were coded in C and tested using five datasets distributed by the
UCI machine learning repository1 [12, 44]. Table 5.1 summarizes the datasets used. The last
table column lists the k value found to achieve the highest accuracy. Since, the k-NN classifier
requires the computation of all distances between each item of the testing set and the training
data, the classification cost of the k-NN classifier can be easily estimated by multiplying the
contents of second table column by the contents of third column. For example, 15, 000 ×
5, 000 = 75, 000, 000 distances are computed for the letter recognition dataset.

1http://archive.ics.uci.edu/ml/
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Table 5.1: Datasets description

Dataset Training Testing Attributes Classes Best
data data k

Letter recognition 15000 5000 16 26 4
Magic gamma telescope 14000 5020 10 2 12

Pendigits 7494 3498 16 10 4
Landsat satellite 4435 2000 36 6 4

Shuttle 43500 14000 9 7 2

In addition, classification procedures are usually applied to training data with high level
of noise. The removal of noise introduces an extra preprocessing procedure (i.e., execution of
an editing routine). However, we are interested in developing classifiers that do not need any
preprocessing task (either to remove the noise or to build a speed-upmodel such as condensing
set or multi-attribute indexing structures).

To evaluate the performance of the proposed algorithm on data with noise, three more
datasets were developed by adding random noise to three of the datasets of Table 5.1. Particu-
larly, 40% of noise was added to the Letter recognition, Pendigits and Landsat satellite datasets.
Namely, for each item of the training set of these datasets, the class attribute was modified by
choosing other class attribute with a probability of 0.4. By executing the conventional k-NN
classifier on these noisy datasets, it was found that the highest accuracy is achieved for k = 13,
k = 18 and k = 21 respectively (the more the level of added noise, the higher the value of k
needed to achieve the highest accuracy). The other two datasets were not transformed into a
noisy mode, since the Magic telescope dataset has already a high level of noise and the Shut-
tle dataset is a skewed dataset with two very rare classes and approximately 80% of the data
belonging to one of the seven classes.

The proposed algorithm and its variations use the distance difference Threshold (T ) as a
parameter. This parameter should be adjusted, so that the desirable trade-off between accuracy
and classification cost can be achieved. For this reason, several experiments with different T
values were conducted. For FHCA and FHCA-V1, only two T values are reported (T1 and T2).
The first value builds an accurate classifier (comparable to the conventional k-NN classifier,
when possible), and the second value builds a faster classifier which achieves up to 5% lower
accuracy than the one build with the first value. For FHCA-V2, which is the fastest approach,
only the T value that achieves a high accuracy is reported. Table 5.2 presents the T values for
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Table 5.2: T parameter values

Dataset FHCA FHCA FHCA-V1 FHCA-V1 FHCA-V2(T1) (T2) (T1) (T2)
Letter recognition 1.6 0.8 1.7 0.7 1.4

Magic gamma telescope 17 10 16 6 14
Pendigits 44 18 35 17 35

Landsat satellite 31 13 31 8 34
Shuttle 30 25 35 28 25

Letter recognition (noisy) 0.9 0.5 0.9 0.5 1.3
Pendigits (noisy) 26 13 33 12 14

Landsate satellite (noisy) 19 14 21 12 10

Table 5.3: Experimental results for CNN-rule: Reduction Rate and Preprocessing Cost in dis-
tance computations

Dataset Condensing Reduction Computations Best
set size rate (%) k

Letter recognition 2517 83.22 145,386,010 1
Magic gamma telescope 5689 59.36 217,900,759 22

Pendigits 312 95.84 7,940,953 1
Landsat satellite 909 79.50 13,545,272 6

Shuttle 300 99.31 57,958,973 1
Letter recognition (noisy) 11806 21.29 205,175,615 16

Pendigits (noisy) 5822 22.31 51,891,038 20
Landsat satellite (noisy) 3469 21.78 17,918,173 30

each dataset. Please note that since the performance of the classifiers are estimated in terms
of two comparison criteria (accuracy and classification cost), there is not a unique dominant
parameter value. A good parameter adjustment in terms of accuracy may deteriorate the
classification cost and vice versa. Therefore, we cannot tune parameters. In effect, in the next
subsection, we just present the performance measurements of good representative cases of the
algorithms.

FHCA and its variations involve the same centroid-based part of pseudocode (lines 5, 6 in
Algorithm 15 and lines 6, 7 in Algorithm 16) which, effectively, comprises a MDC component.
In this respect, the MDC component classifies the same number of items in each one testing
set, despite the classification approach used (FHCA, FHCA-V1 or FHCA-V2). For comparison
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purposes, the experimental measurements of a ’MDC, only’ approach are included in Table 5.4
of the following paragraph.

Furthermore, for comparison purposes, the CNN-rule was executed. Table 5.3 presents
the experimental results obtained from the execution of the CNN-rule reduction procedure
on the eight datasets (the five original and the three datasets with extra noise). Column four
lists the number of distance computations needed for the construction of the condensing set.
The last column lists the k value found to achieve the highest accuracy when the resulting
condensing set is used to classify the items of the corresponding testing sets. Table 5.4 lists the
performance of CNN-rule: accuracy and classification cost obtained from the execution of the
k-NN classifier on the condensing set built by CNN-rule (CNN k-NN). Of course, these values
do not contain the preprocessing computational cost (fourth column in Table 5.3) introduced
by the condensing set construction (preprocessing step on the available training data).

Experimental measurements

Here, the proposed classifier and its variations are compared to each other and to the con-
ventional k-NN, Minimum Distance, and, CNN k-NN classification algorithms, by setting the
T parameters values presented in Table 5.2. For each one dataset, two experimental mea-
surements were taken for each one classification approach: (i) classification accuracy, and (ii)
distance computations as a percentage of the distance computations needed for the conven-
tional k-NN. To give a feeling of the actual classification cost, for the conventional k-NN this
second measurement represents the actual number of distance computations. Experimental
results obtained by varying the value of T are not presented here2.

2Detailed experimental results and diagrams available at:
http://users.uom.gr/~stoug/SISAP2011.zip
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Letter recognition dataset: FHCA almost reached the accuracy level of k-NN, when the
threshold value was set to T = 1.6. In particular, FHCA was found to achieve an accuracy
of 95.24% and a 15.6% reduction in the classification cost. To obtain a faster classifier, one
should decrease the threshold value (T ). For instance, when T was set to 0.8, FHCA achieved
an accuracy of 90.78%, with 35% lower cost than that of k-NN. FHCA-V1 was affected by the
extended overlapping of centroid regions of influence in the given dataset. As a result, the
centroid-based part of FHCA-V1 managed to classify only a few more items (8%–10%) than
that of FHCA. For T = 1.6, FHCA-V1 was measured to classify the testing data with an
accuracy of 91.96% and 25% less classification cost. Finally, for T = 1.6, FHCA-V2 needed
only 27% of the distance computations. However, the accuracy was only 71.6%.

Magic gamma telescope dataset: In this dataset, the proposed algorithm and its variations
were measured to perform better than in the previous dataset. In addition, their measurements
are comparable to these of CNN k-NN. Concerning FHCA, T = 17 comprises a good choice for
the threshold parameter, since FHCA achieves an accuracy value of over 80% while it reduces
the cost by almost 56%. Although not shown in Table 5.4, for T = 38, FHCA can achieve an
accuracy of 81.36% that is very close to the accuracy of k-NN but with only a 10% improvement
in classification cost. A fast classifier can be developed by setting T = 10. In this case, FHCA
makes predictions with an accuracy of 75.26% with only 23.48% of the k-NN cost. FHCA-V1
achieved its best accuracy performance (74.72%) for T = 16, with 28.98% of the classification
cost. For T = 6, FHCA-V1 has only 9.64% of the k-NN cost (90.36% reduction) and classifies the
testing data with an accuracy of 72%. FHCA-V2 was found to never exceed the accuracy value
of 73% (for T = 14, accuracy: 72.39%). However, FHCA-V2 executed very fast (for T = 14,
the cost was reduced by almost 90%).

Pendigits dataset: Concerning FHCA, two reference-worthy experimental measurements
are obtained by setting T = 44 and T = 18. These adjustments achieved an accuracy of 97.08%
and 92.02% respectively and had 62.74% and 30.89% of the k-NN cost. It is noted that for T =

55, FHCA reached the k-NN accuracy, executing with almost 23% lower cost. Furthermore, for
T = 32, the cost is 51.4% and the accuracy 95%. FHCA-V1 achieved its best accuracy (88.54%)
with 32.2% of the cost for T = 35. For T = 17, FHCA-V1 achieved an accuracy of 87.22% and
required almost 25% of the k-NN cost. FHCA-V2 was measured to execute faster. For T = 35,
it needs 19.92% of the distance computations of k-NN and it achieves an accuracy of 86.54%.

Landsat satellite dataset: FHCA performed a little better than k-NN. More specifically,
for T = 38, it achieved the best possible accuracy value (90.85%), with a 32.8% decrease in
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computations. For all other threshold values, it fell a little behind in accuracy, but executed
even faster. For instance, by setting T = 31, FHCA achieved an accuracy of 90.05% (very close
to the k-NN accuracy) and spent 57.03% of the k-NN classification cost. Also, for T = 13,
only 25% of the cost was required (accuracy: 85.1%). Finally, for T = 26, FHCA achieved
an accuracy of 89% with almost half the cost. The two variations performed almost the same
in accuracy, with FHCA-V1 executing faster than FHCA-V2. For T = 34, the two variations
achieved their best accuracy levels (83.05% and 82.4%) and had 67% and 80% lower cost than
k-NN, respectively.

Shuttle dataset: This is an imbalanced (skewed) dataset. Approximately 80% of the data
belongs to one class. Therefore the default accuracy is 80%. When classification tasks execute
against such datasets, the main goal is to obtain a very high accuracy (e.g. over 99%). As
shown in Table 5.4, this goal is successfully fulfilled by k-NN and CNN k-NN. Additionally, to
the very high accuracy that it achieved, CNN k-NN executed extremely fast, since it scanned
a very small condensing set (only 300 items). This happened because the CNN-rule managed
to reduce the training data at the minimum level.

For the dataset in question, FHCA achieved an accuracy of 99.82% with almost the half the
cost (53.23%) of k-NN, for T = 30. By setting T = 25, the was reduced by over 60%, but the
accuracy fell to 99.19%. It is worth mentioning that FHCA achieved its best accuracy (99.84%)
by setting T = 37 and had a cost reduction by 15%. The two variations did not achieve a
reference-worthy accuracy. However, the proposed algorithm and its variations managed to
classify with high accuracy the testing set items belonging to rare classes using their centroid-
based part. There are many application domains where the correct prediction of rare classes
is very critical (e.g. earthquake prediction, rare diseases, etc). In the shuttle dataset, there are
two very rare classes both having only 17 items in the training set and 6 items in the testing set.
For any T value, FHCA, FHCA-V1, and FHCA-V2 made 5 correct and 1 incorrect predictions.

Letter recognition dataset (noisy): For all noisy datasets, CNN k-NN and FHCA-V2 were
affected by the addition of noise. The CNN-rule did not manage to drastically reduce the
training (noisy) sets, and so, the classification cost gains were not significant. In contrast,
the experimental results showed that FHCA and FHCA-V1 were not affected. In particular, for
T = 0.5, the FHCA accuracywas 86.06% and its cost was 35.31% lower than k-NN. For T = 0.9,
the accuracy was 91.06% and the cost was 16.95% lower than k-NN. FHCA achieved even better
accuracy, but the cost savings were not significant. On the other hand, FHCA-V1 had an
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accuracy of 89.14% and 84.36%, for T = 0.9 and T = 0.5 respectively. The corresponding cost
savings were 21.54% and 38.29%.

Pendigits dataset (noisy): On this dataset, FHCA reached the accuracy level of CNN k-NN
at a 10% lower cost. Considering the additional high cost introduced by the construction of
the condensing set of the CNN approach, the cost gains are actually much higher for FHCA.
Moreover, FHCA reached the accuracy of k-NN with the same cost as CNN k-NN. Finally, for
T = 13, FHCA achieved an accuracy of 91.71% and had only 38.75% of the k-NN cost. Sim-
ilarly, FHCA-V1 achieved an accuracy of 93.31% and 88.65% by setting T = 33 and T = 12

respectively. The corresponding savings in classification cost were 33.26% and 70.77% respec-
tively.

Landsat satellite dataset (noisy): The results are similar to the ones obtained on the
pendigits (noisy). FHCA had higher accuracy than CNN k-NN with 15% less cost. For T = 21,
FHCA-V1 had an accuracy of 86.55% with 63.17% of the cost. Finally, for T = 12, FHCA-V1
achieved an accuracy of 82.3% and only 36.08% of the k-NN cost.

Discussion

For the datasets (i) Letter recognition, (ii) Pendigits, (iii) Landsat satellite, and, (iv) Shuttle,
the proposed algorithms seem to be slower than CNN k-NN, however they are model-free,
since they do not need any speed-up model produced by costly preprocessing procedures.
The calculation of the class centroids is quite simple and inexpensive and can be executed
before each classification task to take into account the latest database changes. Furthermore,
in the case of the magic gamma telescope dataset, FHCA reached the accuracy of CNN k-NN
with the same classification cost. This is attributed to the noise that exists in this dataset.

As expected, Hart’s CNN-rule was affected by the addition of noise. The preprocessing
procedure of the CNN-rule could not significantly reduce the items of the datasets that con-
tain noise. Thus, for these datasets, in addition to the cost introduced by the condensing set
construction, the sequential search of the condensing set involved a relatively high classifica-
tion cost. Contrary to CNN-rule, FHCA and FHCA-V1 were not significantly affected by the
noise. The experimental results on the three noisy datasets showed that the latter approaches
manage to reach and exceed the CNN k-NN accuracy at a lower classification cost. FHCA-V2 is
also affected by the addition of noise. This is because the third classification criterion, which
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handles the cases where the new item lies within more than one class regions of influence,
cannot make predictions with high accuracy.

Last but not least, it should be noted that contrary to CNN-rule, the adaptive schema of-
fered by the proposed approach allows for the development of classifiers that reach the accu-
racy of the conventional k-NN classifier with significant savings in the classification cost.

5.2.4 Conclusions

In this section, fast, hybrid and model-free classifiers were proposed. Speed-up was achieved
by combining the minimum distance and the k-NN classifiers. Initially, the fast centroid-based
model of MDC attempts to classify the new incoming item. Upon failure, the new item is
classified via the k-NN approach. Although the proposed approach is quite simple, it managed
to speed-up the classification process. We consider that it can be useful in cases where data
updates are frequent, thus, preprocessing of the training data for data reduction is prohibitive,
or multidimensional index construction involving dimensionality reduction does not achieve
acceptable classification accuracy.

Performance evaluation results demonstrated that significant classification cost reduction
can be achieved, whereas, accuracy remains at high levels. In particular, the main classifica-
tion algorithm (FHCA) met our expectations since it reached the accuracy level of the k-NN
classifier and was not affected by addition of noise. The two proposed variations of FHCA can
be used in applications where there is a need for a less accurate but very fast classification
approach. The decision on which of the three variations should be used and which threshold
value is the most appropriate one depends on the application domain. Namely, these decisions
should be made by taking into consideration the most critical parameter, i.e., the trade-off be-
tween accuracy and classification cost.

The effectiveness of the centroid-based model that the proposed classifier uses in order to
speed-up the classification procedure is depended on the data distribution in the multidimen-
sional space. In particular, it can be affected by the shape and the size of the clusters that the
items of each class form. In the next section, we address this issue by using more than one
representative items for each class in the training data.
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5.3 An adaptive fast hybrid method for k-NN classification

5.3.1 Motivation and contribution

The idea of combining the strategies of data abstraction and cluster based methods (see Sec-
tion 2.2) with the goal of fast k-NN classification is behind the motivation of the work pre-
sented in this section. The contribution is the development of an adaptive, hybrid and cluster-
based method for speeding-up the k-NN classifier.

More specifically, we develop a fast cluster-based preprocessing algorithm that builds a
two level data structure and efficient classifiers that access either the first or the second level
of the data structure and perform the classification task. The first level stores a number of
cluster means (centroids) for each class. The second level stores the set of items belonging
to each cluster. Therefore, a prototype abstraction algorithm and a cluster-based method are
combined in a hybrid classification schema to achieve the desirable performance.

The rest of this section is organized as follows. Subsection 5.3.2 considers in detail the
proposed classification method. Subsection 5.3.3 presents the experimental study based on
seven datasets. The results are validated by the Wilcoxon signed ranks test. Subsection 5.3.4
concludes the work.

5.3.2 The proposed adaptive hybrid method

The proposed method [102, 90] consists of two main parts. The first part is a Two Level Data
Structure (TLDS) built by a clustering preprocessing procedure. We call this procedure TLDS
Construction Algorithm (TLDSCA). The second part is a Fast Hybrid Classifier (FHC) that
accesses TLDS to perform classification. The following paragraphs present TLDSCA and two
versions of the proposed classifier. In the end, some general comments about the proposed
method are presented.

Two-Level Data Structure Construction Algorithm

TLDS is built in a way similar to the construction of the condensing set of RkM algorithm [95]
(see Section 4.3). Thus, TLDS is built by a repeated execution of k-means clustering on the
training data of each class. In particular, for each class, k-means builds a number of clusters.
TLDS consists of a list of cluster centroids (i.e., the mean vectors of all clusters for all classes)
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together with their corresponding class label that we call the first level of TLDS. Each element
of this list points to a list containing the items assigned to the specific cluster centroid. We
refer to the collection of these lists of items as the second level of TLDS. We will be using the
term prototypes for the cluster centroids of the first level of TLDS.

The number of clusters built is determined by the Data Reduction Factor (DRF ), that is a
user-predefined parameter. For each class c, the number of clusters nc is estimated by:

nc = ⌈ |c|
DRF

⌉

where |c| is the population of c. Therefore, DRF determines the length of TLDS. Figure 5.3
illustrates a two-dimensional example with two classes, square and circle. The initial training
set contains 27 squares and 31 circles (Figure 5.3(a)). Thus, if DRF = 10, the classes square
and circle will be represented by 3 and 4 prototypes, respectively (Figure 5.3(b)). The result of
TLDSCA will be the TLDS depicted in Figure 5.3(c). Class square is represented by prototypes
A–C , whereas class circle is represented by prototypes D–G.

TLDSCA is easy to implement (see Algorithm 18). It takes as input a training set and a
DRF value and returns a TLDS. Initially, for each class c, it estimates the number of clusters
that will be built (lines 3–4). The algorithm continues by calling the k-means function with
parameters the set of items that belong to c (SC) and a list (M ) of nc random initial means for
k-means clustering (line 6) (see Section 2.4). Then, the resulting clusters are added in TLDS
(lines 7–9).

TLDSCA is fast because it is based on k-means clustering. Of course, the computational
cost depends on how fast the clusters are consolidated. In addition, DRF also influences the
cost of the algorithm. Typically, the higher the DRF value, the fewer and larger the clusters
created, and consequently, the lower cost involved. Of course, the quality of the clusters built
by k-means clustering depends on the initial means used. We adopt a random initialization.
However, the quality of the clusters can be improved by adopting a more efficient initialization
method (see Section 2.4).

We should mention that the idea of creating multiple class representatives via clustering
has also been proposed by Datta and Kibler in [31, 30]. Their goal was the representation
of distant and disjoint groups formed by items of the same class and the construction of a
classifier capable of managing symbolic (nominal) attributes.
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(a) Initial dataset (b) Clustered dataset

(c) Two-level data structure

Figure 5.3: k-means clustering on the items of each class (DRF = 10) and the resulted two-
level data structure

Algorithm 18 TLDSCA
Input: TS,DRF , Output: TLDS

1: TLDS ← empty list of records of the form [class, prototype, list_of_items]
2: for each class c in TS do
3: SC ← set of items ∈ c
4: nc← ⌈ |SC|

DRF
⌉

5: M ← nc random items ∈ SC {initial means for k-Means}
6: NewClusters← K-MEANS(SC , M )
7: for each CL ∈ NewClusters do
8: add in TLDS element [c, CLcentroid, CLitems]
9: end for
10: end for
11: return TLDS
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Fast Hybrid Classifier I

The first version of the proposed classifier (FHC-I) works by accessing either the first or the
second level of TLDS. It uses three input parameters that let the user define the desirable trade-
off between accuracy and classification cost. The idea behind the algorithm is quite simple (see
Algorithm 19). When a new item x arrives and has to be classified (line 1), FHC-I initially scans
the first level of TLDS and retrieves the pk nearest prototypes to x (line 2). We call this proce-
dure first level search. If the acceptance criterion introduced by the npratio parameter is met,
these prototypes, through a majority vote, determine the class where x belongs to (line 3–5).
Upon failure, x is classified by searching for the k “real” nearest neighbours within the clusters
dynamically formed by the union of clusters indexed by the pk nearest prototypes (lines 7–9).
This procedure is called second level search. Obviously, the more the items classified without
the need of the second level search, the lower is the classification cost involved. Possible ties
during the majority class voting of either the first or the second level search are resolved using
the single nearest neighbour rule.

FHC-I uses parameter npratio to decide when to switch to a second level search. npratio
is a ratio that defines how many nearest prototypes should determine the majority class (the
most common class among the pk nearest prototypes) in order to classify a new item (see
lines 3–5). For example, suppose that the input parameters are set to be k = 3, pk = 10,
and npratio = 0.7. Furthermore, suppose that a new item x has to be classified and a TLDS
with 100 clusters is available. FHC-I, initially, examines the 10 nearest prototypes from the
first level of TLDS. If seven or more of them belong to the majority class, then x is classified
to this class. Otherwise, FHC-I proceeds to a second level search. The three “real” nearest
neighbours are retrieved from the data subset formed by the union of clusters indexed by the
ten (pk) nearest prototypes, and they determine the class of x. Even in the case of the second
level search, FHC-I avoids searching 90 clusters. We note that if we choose npratio = 0,
all incoming items are classified by a first level search. In effect, they are classified by the
condensing set built by RkM algorithm [95].

Fast Hybrid Classifier II

The performance of FHC-I depends on the distribution of the training items with respect to
the classes. If they are uniformly distributed, each class is represented by a similar number of
prototypes in TLDS.Therefore, all unclassified items have the same probability to be classified
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Algorithm 19 FHC-I
Input: TLDS, pk, npratio, k
1: for each unclassified item x do
2: pkprototypes← Find the pk nearest to x prototypes ∈ {prototypes of TLDS}
3: SMC1 ← set of items ∈ majority class MC1 among pkprototypes
4: if |SMC1|

pk
≥ npratio then

5: Classify x toMC1

6: else
7: NNs ← Find the k nearest neighbours to x in the set formed by the union of the

clusters indexed by the pkprototypes
8: MC2 ← Find the majority class among NNs
9: Classify x toMC2

10: end if
11: end for

by a second level search. In contrast, in cases of non-uniform distributions and since the
value of npratio is the same for all classes, the probability of performing a second level search
depends on which is the majority class of the first level search. Items belonging to rare classes
always lose during the voting of the first level search and are classified by a second level search.

The fast hybrid classifier II (FHC-II) attempts to better manage imbalanced datasets. It con-
siders the size of the classes and tries to reduce “costly” second level searches. FHC-II estimates
npratio instead of using a pre-specified value for it. This is accomplished by using a range of
npratio values defined by parameters npratiolow and npratiohigh. The value of npratio is
dynamically adjusted to be between the particular range and depends on the majority class
determined by the first level search.

Algorithmically, FHC-II is similar to FHC-I. However, for each class c, FHC-II counts
how many training items |c| belong to c (or how many prototypes are created for c) and
notes the corresponding min and max values. For each class c, FHC-II computes npratio ∈
[npratiolow, npratiohigh] as follows:

npratio = norm× (npratiohigh − npratiolow) + npratiolow

where
norm =

|c| −min

max−min
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For each new item, the ratio of majority class MC1 votes during first level search should be
greater than the estimated npratio in order to avoid a second level search (see lines 2–5 in
Algorithm 19).

For instance, suppose that a training set contains three classes, A, B and C with 3000,
2000 and 1000 items respectively. Also, suppose that npratiolow = 0.5 and npratiohigh = 1.
If class A is voted to be the majority class during the first level search, then npratio = 1

(because norm = 1). Namely, all np nearest prototypes must vote the majority class in order
to classify the new item without the need of a second level search. Similarly, if class B is the
majority class of the first level search, npratio = 0.75 (because norm = 0.5). Finally, if class
C is the majority class then npratio = 0.5 (because norm = 0). That is, the value of npratio
is adjusted for each class in the range [npratiolow, npratiohigh] depending on the size of the
class, i.e., the smaller the class the lower the npratio and vice versa.

When correct prediction of “weak” (or rare) classes is critical, FHC-I should be used instead
of FHC-II. FHC-II should be adopted when correct predictions for all classes have the same
significance.

Discussion

Considering the proposed classifier, it is obvious that a new item that lies in a close-border area,
is classified by a second level search. On the other hand, an item that lies in the “internal” area
of a class, is classified by first level search. Thus, FHC is neither a cluster-based method nor a
prototype abstraction algorithm, since it dynamically decides on how to classify a new item.
When it classifies via a first level search it behaves like a prototype abstraction method. On the
other hand, when it resorts to a second level search it behaves like a cluster-based method that
uses a dynamically-formed subset of the initial training set. Therefore, the method is hybrid.
Of course, contrary to prototype selection and abstraction algorithms and like cluster-based
methods and indexing methods, the proposed method does not reduce storage requirements.

Concerning the parameters, pk and npratio (or npratiolow and npratiohigh) should be
determined by taking into account the DRF value that was used for TLDS construction. If
accuracy is more critical than cost and a TLDS with few and large clusters is available, pk and
npratio should have high values. If cost is more critical and a TLDS with many and small
clusters is available, low pk and npratio values are recommended. Considering DRF : low
DRF values are recommended for building accurate classifiers with high cost savings and
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highDRF values for building fast classifiers without significant loss of accuracy. If our needs
are not specified at the time that TLDSCA is executed, an intermediate DRF value is the
most appropriate. In this case, the trade-off can be determined afterwards by adjusting pk and
pkratio.

When FHC performs a second level search, it accesses a subset of the initial training set
formed by the union of the pk clusters. Since each cluster contains items of a specific class, this
subset does not contain items of irrelevant classes (it does not contain outliers of classes which
are not represented by the pk prototypes) and, thus, we claim that accuracy is not affected as
much by these outliers. Taking into account this property, FHC may be more accurate than
the conventional-k-NN classifier (the one that uses the non-edited training set) without the
need of editing for noise removal. Of course, noise removal can increase the cluster quality
and the overall performance.

5.3.3 Performance evaluation

Experimental setup

The proposed method was coded in C and was evaluated using seven datasets distributed by
the KEEL repository3 [6] and summarized in Table 5.5. All datasets were used without nor-
malization. The Euclidean distance was adopted as the distance metric. We compared the
performance of our method to six methods: three condensing and two prototype abstraction
algorithms as well as one cluster basedmethod. We used CNN-rule, IB2, PSC, RSP3 andHwang
and Cho method (HCM). We selected the particular methods because: (i) CNN-rule, IB2 and
RSP3 are popular and are usually used in many papers for comparison purposes, (ii) we con-
sider TLDSCA to be a fast algorithm, and, hence, we wanted to compare it to IB2 and RHC
that have been proven to be fast algorithms, and, (iii) the proposed method, PSC, HCM and
RHC are based on k-means clustering, hence, an experiential comparison between them was
desirable. The MGT, LS and TXR datasets are distributed sorted on the class label. This affects
the data order-dependent methods (i.e. CNN-rule and IB2). We randomized these datasets.

We compare the methods by reporting three average measurements obtained via five-fold
cross-validation for each one: (i) accuracy, (ii) classification cost, and, (iii) preprocessing cost.
Costswere estimated by counting distance computations. We used the five already constructed
pairs of training/testing sets distributed by the KEEL repository. Moreover, we wanted to

3http://sci2s.ugr.es/keel/datasets.php
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Table 5.5: Datasets description
Dataset Size Attributes Classes

Letter Image Recognition (LIR) 20000 16 26
Magic Gamma Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2

evaluate all methods on noise-free data. Therefore, we ran all experiments twice, one on the
non-edited and one on the edited training sets. For editing purposes, we used ENN-rule by
setting k = 3 (according to [131, 49, 84], k = 3 is a good value).

All methods involve a k parameter during the classification step: The condensing and
prototype abstraction algorithms execute the k-NN classifier on condensing set. Similarly,
when FHC performs a second level search, it retrieves and examines the k nearest neighbours.
HCM applies the k-NN classifier on the reference set (see Section 2.2). For all methods and
datasets, we used k = 1.

The condensing and prototype abstraction algorithms involve parameter k since they apply
the k-NN classifier on the condensing set during the classification step. Similarly, when FHC
performs a second level search, it retrieves and examines k nearest neighbours. HCM applies
the k-NN classifier on the reference set. For all methods and datasets, we used k = 1.

In addition, our method provides three extra parameters: DRF , pk, and npratio. We used
the following values: (i)DRF = 2i, i = 1, 2, . . . 8 (for the SH dataset, i = 3, 4, . . . 8), (ii) pk =

2, 5, 7, 10, 12, . . . , 27, 30, and, (iii) for FHC-I, npratio = 0.5, 0.7, 1. Therefore, we built 8×12×
3 = 288 FHC-I classifiers. To facilitate the presentation, we plot the most accurate FHCs for
each reported classification cost (see the performance diagrams in Figures 5.4–5.10). In effect,
the performance of a classifier was omitted if it achieved lower accuracy and involved higher
classification cost than another classifier that achieved equal or higher accuracy and involved
lower classification cost. Our purpose was not to fine tune the parameters for each dataset, but
to understand how each parameter influences classifier construction and performance. In real
life applications, the parameters should be chosen by taking into consideration the significance
of accuracy and classification cost as well as the dataset used.

121



HCM also uses three parameters: C is the number of clusters, L is the number of adja-
cent clusters, D is the distance threshold used to define the core and peripheral items (see
Section 2.2 for details). We set C = ⌊

√
n
2i
⌋, i = 1, . . . , 7, where n is the number of items.

Thus, for each dataset, we built 8 classifiers. The first classifier (for i = 1) is based on the
rule of thumb that defines C = ⌊

√
n
2
⌋ [78]. We decided to build classifiers that use small C

values based on the observation that Hwang and Cho defined C = 10 for a training set with
60919 items. Also, we set L = ⌊

√
C⌋ as Hwang and Cho did in their experiments. Moreover,

following the approach of Hwang and Cho, we considered as peripheral items, those whose
distance from the cluster centroid was greater than the double average distance among the
items of each cluster (i.e., D = 2).

Another issue that needs attention is the number of clusters that PSC uses. Like Lopez et
al. did in their experiments [86], we ran experiments by building c = r × j, j = 2, 4, · · · , 10,
clusters, where r is the number of classes. Therefore, we constructed five PSC based classifiers
for each dataset.

Since only a first level search can be used to classify new items, we included its performance
in the comparisons. We call this method first level search classifier (FLSC). It carries out the
whole task when npratio = 0. In effect, FLSC is identical to RkM (see Section 4.3).

Pre-processing performance

Tables 5.6–5.8 present the preprocessing cost measurements in millions of distance compu-
tations. Each cell has two values. The first value (ned) corresponds to preprocessing costs
estimated on the non-edited data whereas the second value (ed) on the edited data. The first
table row shows the preprocessing cost needed for the execution of the editing procedure of
ENN-rule. Of course, the measurements on the edited data do not contain the cost of editing.

RSP3 is the most time-consuming method, since it must retrieve the pair of the farthest
points in each subset. CNN-rule is faster than RSP3. IB2 and RHC seem to be the fastest
approaches. The preprocessing cost measurements of all other methods depend on the param-
eter used and the size and distribution of the data in the multidimensional space. Considering
the measurements of TLDSCA, we can conclude that its preprocessing performance is satis-
factory. We note that we have adopted the full cluster-consolidation as well as the random
initialization of the means. Thus, TLDSCA could have become even faster had we used more
efficient consolidation and initialization criteria.
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Table 5.6: Experimental results: Preprocessing Cost of DRTs (millions of distance computa-
tions)

Method LIR MGT PD LS SH TXR PH
ENN ned 127.99 115.76 38.65 13.25 1076.46 9.68 9.35

CNN or. 163.03 281.49 11.75 17.99 45.30 5.65 13.45
ed 112.20 68.61 9.25 6.49 26.02 3.90 5.57

IB2 or. 23.37 34.61 1.78 2.22 8.26 0.84 1.96
ed 18.35 8.48 1.51 0.99 6.35 0.72 0.86

RSP3 or. 326.52 511.67 86.66 37.70 17410.12 27.63 20.31
ed 300.51 318.82 85.16 30.64 15652.75 27.04 15.67

RHC or. 41.84 4.08 2.88 1.69 16.83 3.63 0.66
ed 31.05 2.83 2.83 1.73 22.41 3.00 0.47

PSC j=2 or. 66.32 23.95 6.52 2.96 127.20 3.15 1.08
ed 55.13 11.44 6.73 2.86 107.47 3.35 0.68

PSC j=4 or. 110.06 17.21 15.93 5.85 54.07 7.90 0.94
ed 94.76 10.15 17.57 4.83 52.46 10.33 1.04

PSC j=6 or. 129.16 22.68 28.48 8.41 148.35 10.71 2.08
ed 127.84 11.28 27.65 6.79 176.21 9.60 1.89

PSC j=8 or. 165.32 27.09 35.23 10.11 222.77 14.49 2.76
ed 138.41 12.42 32.33 9.97 189.71 11.10 2.18

PSC j=10 or. 169.92 33.47 36.97 10.50 252.61 16.76 3.12
ed 178.45 21.75 33.74 11.82 213.61 15.78 3.15

In typical data mining tasks, preprocessing is executed only once. Hence, these measure-
ments may not be so significant in real life applications. However, preprocessing cost is a
comparison criterion and its measurements should be evaluated taking into account the per-
formance that the corresponding classifiers achieve in terms of accuracy and classification
cost.

Classification performance

Each classifier was executed twice, once on the non-edited and once on the edited data. Fig-
ures 5.4–5.10 illustrate the performance measurements. Each figure presents two diagrams,
one for the non-edited and one for the edited data. For each classifier, the diagrams report the
measurements of classification costs on the x-axis (in terms of millions or thousands distance
computations) and the corresponding accuracy values on the y-axis. The closer to the “upper-
left” corner of the diagram a classifier’s point lies, the higher is the performance achieved.
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Table 5.7: Experimental results: Preprocessing Cost of HCM (millions of distance computa-
tions)

Method LIR MGT PD LS SH TXR PH

HCM i=1 ned 88.88 111.22 28.80 12.52 744.82 8.10 9.87
ed 74.60 58.85 26.88 9.13 867.40 7.92 5.58

HCM i=2 ned 88.12 131.45 17.57 9.84 490.57 5.58 5.15
ed 80.87 49.53 17.53 7.81 557.07 5.40 4.15

HCM i=3 ned 63.66 73.69 11.27 6.34 399.23 4.80 3.70
ed 55.31 33.39 12.06 6.32 366.82 3.46 2.65

HCM i=4 ned 47.53 52.88 7.61 3.75 334.99 4.27 1.55
ed 30.23 27.84 7.12 3.32 254.83 4.58 1.78

HCM i=5 ned 26.35 27.69 5.97 3.39 105.13 3.41 1.33
ed 31.45 18.16 5.21 3.06 146.12 2.68 1.03

HCM i=6 ned 18.98 19.51 3.32 2.12 100.66 1.67 0.70
ed 25.96 12.65 2.99 1.37 106.02 1.82 0.77

HCM i=7 ned 10.89 7.50 1.70 0.94 34.78 0.52 0.74
ed 9.93 5.16 1.81 0.67 37.18 0.54 0.48

Table 5.8: Experimental results: Preprocessing Cost of TLDSCA (millions of distance compu-
tations)

Method LIR MGT PD LS SH TXR PH

TLDSCA i=1 ned 19.62 404.23 18.38 10.56 - 3.50 34.69
ed 18.48 258.18 17.78 8.26 3.34 26.27

TLDSCA i=2 ned 15.79 291.78 14.29 9.18 - 2.74 24.65
ed 14.63 221.87 13.78 7.67 2.60 23.51

TLDSCA i=3 ned 11.58 252.06 10.60 6.87 3898.83 1.99 17.50
ed 10.13 177.57 10.78 5.92 4267.59 1.98 18.00

TLDSCA i=4 ned 7.74 192.26 7.28 4.45 2879.39 1.32 12.36
ed 7.01 145.16 7.21 4.51 3027.05 1.38 9.75

TLDSCA i=5 ned 4.80 159.82 4.54 3.75 1983.80 0.94 7.92
ed 4.25 92.64 5.06 3.07 2115.25 0.99 6.47

TLDSCA i=6 ned 2.69 105.35 2.95 1.82 1537.64 0.58 7.00
ed 2.37 64.63 3.29 1.79 1585.51 0.58 4.29

TLDSCA i=7 ned 1.23 54.04 1.68 1.15 855.87 0.28 3.27
ed 1.15 46.55 1.60 0.95 847.11 0.29 2.95

TLDSCA i=8 ned 0.60 34.55 0.69 0.47 551.25 0.08 1.21
ed 0.58 21.79 0.61 0.42 535.73 0.08 1.55
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Since we want to clearly indicate classifiers of high performance, the diagrams present only
a subset of performance points (points of some classifiers are omitted because they are out of
the diagram range). To facilitate the presentation, for the parametric methods (FHC-I, FLSC,
HCM and PSC), the diagrams present the most accurate classifiers for each reported classifi-
cation cost. In addition, we do not show the parameter values used to build the corresponding
classifiers4.

Table 5.9 shows accuracies and classification costs for the conventional 1-NN classifiers,
i.e., classifiers that use the non-edited data (1-NN (ned)) or the edited data (1-NN (ed)). Al-
though editing is used to improve accuracy, ENN-rule achieves that only in the case of the
MGT dataset. This happens because MGT contains high levels of noise. Although, the LS
and PH datasets also contain some noisy items, ENN does not improve accuracy. The other
datasets are almost noise-free.

Table 5.9: Experimental results of Conventional 1-NN: Accuracy (Acc (%)) and Computational
Cost (CC (millions of distance computations))

Method LIR MGT PD LS SH TXR PH

1-NN (ned) Acc 95.83 78.14 99.35 90.60 99.82 99.02 90.10
CC 64.00 57.88 19.34 6.63 538.24 4.84 4.67

1-NN (ed) Acc 94.98 80.44 99.30 90.29 99.79 98.64 88.14
CC 61.23 46.26 19.21 6.02 537.24 4.78 4.14

Almost in all cases, FHC-I achieves high performance (see Figures 5.4–5.10). In the cases
of the LIR, MGT, PD, LS and PH datasets, it is more accurate than 1-NN. This happens because
when FHC-I performs a second level search, it accesses a training subset that does not contain
items of irrelevant classes. With the exception of the SH dataset, FHC-I achieves better perfor-
mance than all DRTs. For the SH dataset, FHC-I can achieve higher accuracy than DRTs, but at
a higher classification cost. Although FHC-I is more accurate than HCM on all datasets, in the
cases of the LIR and SH datasets the latter may be preferable when very fast classifiers are re-
quired. Of course, FHC-I performs better than FLSC. However, the latter achieves noteworthy
performance that is comparable to the other speed-up methods.

All diagrams in Figures 5.4–5.10 show that when the speed-up methods are executed over
edited data, they are faster than when they are executed over non-edited data. Nevertheless,

4Tables with complete parameter values and performance measurements are available on url:
http://users.uom.gr/~stoug/IGPL_experiments.zip
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in some cases, either the classification cost gains are not very high or accuracy is significantly
reduced. In the case of the noisy MGT dataset, editing is necessary for all methods.

A final comment about the preprocessing and classification results is that the proposed
method can perform comparable to or better than the other methods. The user can adapt
the method to the application requirements by appropriately adjusting its parameters. We
conclude that the proposed method can be adjusted to achieve high accuracy with gains in
classification cost or to reduce the classification cost at a minimum level with slightly lower
accuracy.

Non-parametric statistical test

Our experimental study is complemented with the results of a non-parametric statistical test.
We ran the Wilcoxon signed ranks test [32] in order to validate the results presented in the
previous subsections. The Wilcoxon test compares the speed-up methods in pairs taking into
account their performance on each dataset. The test was run four times. Once for each com-
parison criterion, accuracy (ACC), classification cost (CC), preprocessing cost (PC) and once
on the measurements of the overall classification performance. By following the idea pre-
sented in [48, 47], the measurements of the overall performance were estimated by averaging
the normalized to the interval [0, 1] measurements of the three aforementioned comparison
criteria, thus, assuming that they all have the same significance. Here, we should mention
that since low values for costs are desirable, we used the values 1 − normalized(CC) and
1− normalized(PC) in the place of the normalized values for CC and PC, respectively.

We ran the tests twice, once on the results obtained from the non-edited data and once
from the edited data. Of course, we could not test all variations of the parametric classifiers
(FHC-I, FLSC, PSC, HCM). Therefore, for each one of these methods, we used the same fixed
parameter values for all datasets. The fixed values were: (i) for FHC-I:DRF = 32, npratio : 1
and pk = 5; (ii) for FLSC: DRF = 16 and pk = 1; (iii) for PSC: j = 10; (iv) for HCM: i = 4.
We should mention that these values were not obtained via tuning. Therefore, they do not
correspond to the classifiers with the highest accuracy or the lowest cost performance. In
effect, these parameter values constitute a typical setting for each method (default values) and
can be thought of as a starting point for tuning the parameters.

Tables 5.10 and 5.11 present the results of the tests for the non-edited and edited datasets re-
spectively. Columns “w/l/t” list the number of wins/losses/ties for each pair. Columns “Wilc.”
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(a) Non-edited data (b) Edited data

Figure 5.4: LIR (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.5: MGT (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.6: PD (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.7: LS (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.8: SH (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.9: TXR (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.10: PH (Accuracy and Classification Cost)

list the significance level. When that measure is lower than 0.05 (values in bold in Tables 5.10
and 5.11), one can claim that the difference between the two methods is statistically signif-
icant. Note that Wilc. = 0.05 is a very strict threshold. The tests confirm that FHC-I with
the typical parameter values is an accurate method. In many cases, although FHC-I has more
wins, the test does not confirm statistically significant difference. For example, concerning
the overall performance on the non-edited data, FHC-I has 6 wins against CNN, IB2, RHC and
PSC, and 5 wins against HCM. However, the dominance is not statistically validated. This
happens because we have adopted a very strict threshold (i.e.,Wilc = 0.05) for the Wilcoxon
level and, probably, we used a relatively small sample of datasets.

FHC-II performance

Four of the eight datasets are imbalanced. The LS dataset contains six classes with 626, 703,
707, 1358, 1508, 1533 items respectively. TheMGT dataset has two classes with 12332 and 6688
items. Similarly, the SH dataset has seven classes with 45589, 8903, 3267, 171, 49, 13, 10 items
and the PH dataset has two classes with 3818 and 1586 items. FHC-I does not manage fairly
the items of all classes. FHC-II reduces the probability of second level searches for the “weak”
classes. This leads to even faster classifiers.

We ran FHC-II twelve times for each dataset using the following settings: (i) pk = 15, 30,
(ii)DRF = 16, 32 and (iii) (npratiolow, npratiohigh) values: (0.7, 1), (0.5, 1), (0.3, 0.7). These
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Table 5.10: Results of the Wilcoxon signed ranks test on the measurements obtained from the
non-edited data

Methods
ACC CC PC Overall

w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.
FHC-I vs CNN 7/0/0 0.018 6/1/0 0.176 6/1/0 0.237 6/1/0 0.176
FHC-I vs IB2 7/0/0 0.018 6/1/0 0.176 1/6/0 0.128 6/1/0 0.176
FHC-I vs RSP3 5/2/0 0.176 6/1/0 0.043 7/0/0 0.018 7/0/0 0.018
FHC-I vs RHC 7/0/0 0.018 6/1/0 0.237 2/5/0 0.310 6/1/0 0.176
FHC-I vs PSC 7/0/0 0.018 6/1/0 0.128 4/3/0 0.866 6/1/0 0.091
FHC-I vs HCM 5/2/0 0.063 6/1/0 0.043 4/3/0 0.612 5/2/0 0.237
FLSC vs CNN 4/3/0 0.866 6/1/0 0.237 6/1/0 0.237 6/1/0 0.237
FLSC vs IB2 4/3/0 0.310 6/1/0 0.237 1/6/0 0.128 6/1/0 0.237
FLSC vs RSP3 1/6/0 0.128 6/1/0 0.237 7/0/0 0.018 7/0/0 0.018
FLSC vs RHC 5/2/0 0.499 6/1/0 0.237 2/5/0 0.176 6/1/0 0.237
FLSC vs PSC 7/0/0 0.018 5/2/0 0.398 4/3/0 1.000 6/1/0 0.237
FLSC vs HCM 0/7/0 0.018 3/4/0 0.176 3/4/0 0.398 0/7/0 0.018
FHC-I vs FLSC 7/0/0 0.018 7/0/0 0.018 7/0/0 0.018 7/0/0 0.018

Table 5.11: Results of the Wilcoxon signed ranks test on the measurements obtained from the
edited data

Methods
ACC CC PC Overall

w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.
FHC-I vs CNN 6/0/1 0.028 6/1/0 0.237 4/3/0 0.866 6/1/0 0.237
FHC-I vs IB2 6/1/0 0.043 6/1/0 0.237 1/6/0 0.128 6/1/0 0.237
FHC-I vs RSP3 6/1/0 0.128 6/1/0 0.128 7/0/0 0.018 7/0/0 0.018
FHC-I vs RHC 7/0/0 0.018 6/1/0 0.237 2/5/0 0.237 6/1/0 0.237
FHC-I vs PSC 7/0/0 0.018 6/1/0 0.237 4/3/0 0.866 6/1/0 0.128
FHC-I vs HCM 4/3/0 0.237 6/1/0 0.028 4/3/0 0.612 5/2/0 0.398
FLSC vs CNN 4/3/0 1.000 6/1/0 0.237 4/3/0 0.735 6/1/0 0.237
FLSC vs IB2 2/5/0 0.499 6/1/0 0.237 1/6/0 0.128 6/1/0 0.237
FLSC vs RSP3 2/5/0 0.091 6/1/0 0.237 7/0/0 0.018 6/1/0 0.028
FLSC vs RHC 5/2/0 0.735 6/1/0 0.237 2/5/0 0.176 5/2/0 0.310
FLSC vs PSC 7/0/0 0.018 5/2/0 0.612 4/3/0 0.866 6/1/0 0.237
FLSC vs HCM 0/7/0 0.018 3/4/0 0.176 2/5/0 0.310 0/7/0 0.018
FHC-I vs FLSC 7/0/0 0.018 7/0/0 0.018 7/0/0 0.018 7/0/0 0.018
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methods were compared to four FHC-I methods built using the same pk andDRF values and
npratio = 1. Figures 5.11–5.14 present the results. Each FHC-II method is denoted with the
following sequence: DRF, pk, npratiolow, npratiohigh in the figure’s legend. Similarly, FHC-I
is noted with DRF, pk, npratio.

In the case of the noisy MGT dataset, FHC-II improves both accuracy and classification
cost measurements. In the case of the LS dataset, all FHC-II classifiers built using the (0.3, 0.7)
range ofnpratio values aswell as the one that uses settingsDRF = 16, pk = 15, npratiolow =

0.5, npratiohigh = 1 are ineffective. They reduce costs, but they also reduce accuracy. All
other FHC-II classifiers execute faster than the FHC-I classifiers without loss of accuracy. In
the cases of the SH and PH datasets, FHC-I may be preferable to FHC-II. The latter executes
slightly faster than FHC-I. However this speed-up affects the accuracy.

5.3.4 Conclusions

This section proposed an adaptive hybrid method for fast k-NN classification. The method
involves the construction of a two level data structure and classifiers that make predictions
using either the first or the second level of this structure. Actually, the method combines the
idea of data reduction with that of cluster-based methods in a hybrid schema. The method lets
the user determine the trade-off between accuracy and classification cost. Therefore, it can be
used either to improve accuracy at a lower cost, or to reduce cost at a minimum level without
sacrificing accuracy. Experiments showed that cost improvements may be achieved, with the
accuracy remaining high and comparable to that of the conventional k-NN.

5.4 Hybrid k-NN classification based on homogeneous clus-

ters

5.4.1 Motivation and contribution

In Section 5.3, we demonstrated that the ideas of data reduction and cluster-based methods can
be combined in a hybrid classification method to achieve the desirable performance. In partic-
ular, we proposed a pre-processing algorithm to construct a data structure and fast algorithms
to classify new items by accessing this structure. The main disadvantage of our method was
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Figure 5.11: MGT:FHC-I vs FHC-II)

Figure 5.12: LS:FHC-I vs FHC-II)
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Figure 5.13: SH:FHC-I vs FHC-II)

Figure 5.14: PH:FHC-I vs FHC-II)
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that the algorithms were parametric and required a trial-and-error procedure to adjust their
input parameters.

Here, we extend this idea. More specifically, the motivation is the development of a fast
and non-parametric classification method for large and high dimensional data. The proposed
method follows the concept of forming homogeneous clusters (clusters that contain items of
a particular class only) presented in Chapter 3. The contribution of the work presented in this
section is: (i) the development of an efficient and non-parametric classification method that
combines two different speed-up strategies, namely, data reduction and cluster-basedmethods,
(ii) the proposal of a variation of our method that is applied on data stored in condensing sets
and is able to further improve the performance of DRTs. The main goal of the variation is
extra fast classification.

The rest of this section is organized as follows. Subsections 5.4.2 and 5.4.3 consider in detail
the proposed classification method and its variation, respectively. Subsection 5.4.4 presents
the experimental evaluation and the results of the Wilcoxon signed ranks test, and, finally,
Subsection 5.4.5 concludes the section.

5.4.2 The proposed SUDS classification method

Like FHC method, The proposed classification method includes two major stages: (i) pre-
processing, which is applied on the training items in order to construct a two-level Speed-
up Data Structure (SUDS), and, (ii) classification, which uses SUDS and applies the proposed
hybrid classifier. In this subsection, we present the pre-processing algorithm as well as the
hybrid classifier.

Speed-Up Data Structure Construction Algorithm

The pre-processing algorithm builds SUDS by finding homogeneous clusters in the training
data. A cluster is homogeneous if it contains items of a specific class only. The SUDS Con-
struction Algorithm (SUDSCA) repetitively executes the k-means clustering algorithm until
all of the identified clusters become homogeneous. SUDS is a two-level data structure. Its first
level is a list of means (centroids or representatives) of the identified homogeneous clusters.
Each one represents a data area of a specific class and indexes the “real” cluster items that are
in the second level of SUDS. Figure 5.15 shows how SUDS is constructed and Algorithm 20
summarizes the steps of the corresponding algorithm.
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SUDSCA follows the strategy of RHC (see Section 3.2.2). Consequently, the first step of
SUDSCA is to find the mean items of each class in the training set by averaging its items (Fig-
ure 5.15(b)). Then, it executes the k-means clustering using these class means as initial means.
Thus, for a dataset with M classes, SUDSCA initially identifies M clusters (Figure 5.15(c)).
SUDSCA continues by analyzing the M clusters. If a cluster is homogeneous, it is added to
SUDS.The cluster mean is added to the first level of SUDS as representative of the specific class
and indexes the cluster items that are added to the second level. On the other hand, for each
non-homogeneous clusterX , k-means is executed on its items and identifies as many clusters
as the number of distinct classes inX following the aforementioned procedure(Figure 5.15(d)).
The repetitive execution of k-means terminates when all constructed clusters are homoge-
neous. Following this algorithm, SUDSCA constructs few large clusters for internal class data
areas, and many small clusters for close-class-border data areas.

Like all DRTs presented in Chapter 3, SUDSCA can be easily implemented using a sim-
ple queue data structure that stores the unprocessed clusters. Initially, the whole training set
(TS) constitutes an unprocessed cluster and it becomes the head of the queue (line 2 in Algo-
rithm 20). In each iteration, SUDSCA checks if cluster C in the head of the queue is homoge-
neous or not (line 6). If it is, the cluster is added to SUDS (lines 7–9). Otherwise, the algorithm
computes a mean item for each class (ClassCentroids) present in C (lines 11-15). SUDSCA
continues by calling the k-means clustering for the items of C (line 16) (see Section 2.4). This
procedure returns a list of clusters (NewClusters) that are added to the queue structure (line
17-19) as unprocessed clusters. This procedure is repeated until the queue becomes empty
(line 21), which means that all constructed clusters are homogeneous.

Contrary to TLDSCA (see Algorithm 18) proposed in Section 5.3, SUDSCA is non-
parametric. It automatically determines the length of SUDS (i.e., the number of clusters)
based on the dataset used. Certainly, SUDSCA extends the idea of the algorithms presented
in Chapter 3. Here, our purpose is not the development of a prototype abstraction algorithm,
but the development of a hybrid, non-parametric method that combines the idea of data
abstraction with that of cluster-based methods. We note that SUDSCA does not depend on
the order of items in the training set. Contrary to SUDSCA, other speed-up methods based
on k-means clustering highly depend on the selection of the initial means [62, 86, 85, 87].
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(a) (b)

(c) (d)

Figure 5.15: SUDS construction by finding homogeneous clusters in the training dataset
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Algorithm 20 SUDSCA
Input: TS
Output: SUDS

1: Queue← ∅
2: Enqueue(Queue, TS)
3: SUDS ← ∅
4: repeat
5: C ← Dequeue(Queue)
6: if C is homogeneous then
7: M ← mean of C
8: Put M into the first level of SUDS
9: Put the items of C into the second level of SUDS and associate them to M
10: else
11: ClassCentroids← ∅ {M is the set of class means}
12: for each class L in C do
13: CentroidL ← mean of L
14: ClassCentroids← ClassCentroids ∪ CentroidL
15: end for
16: NewClusters← K-MEANS(C , ClassCentroids)
17: for each cluster X ∈ NewClusters do
18: Enqueue(Queue, X)
19: end for
20: end if
21: until IsEmpty(Queue)
22: return SUDS

Hybrid classifiers based on homogeneous clusters

The second part of the proposed method is a classifier that uses SUDS. It is called Hybrid
Classification Algorithm based on Homogeneous Clusters (HCAHC) and is described in Algo-
rithm 21. Although it has similar points to FHC (see Section 5.3), it has two major differences:
(i) HCAHC accesses a completely different data structure than FHC; (ii) Contrary to FHC, HC-
AHC does not use the npratio parameter. More specifically, when a new item x arrives and
must be classified (line 1 in Algorithm 21), HCAHC initially scans the first level of SUDS and
retrieves theRk nearest representatives to x (lines 2-4). We call this scan a first level search. If
allRk retrieved representatives vote a specific class, x is classified to this class (lines 5-6). Oth-
erwise, HCAHC goes to the second level of SUDS and x is classified by searching its k “real”
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Algorithm 21 HCAHC
Input: SUDS, Rk, k
1: for each new item x do
2: Scan 1st level of SUDS and retrieve the Rk nearest representatives to x
3: Find the majority classMC1 of theRk nearest representatives (ties are resolved by near-

est representatives)
4: MCC ← COUNT(representatives of the majority class)
5: if MCC == Rk then
6: Classify x toMC1

7: else
8: Scan within the set formed by the union of clusters of the Rk representatives and

retrieve the k Nearest Neighbours (NNs) to x {Second level search}
9: Find the majority classMC2 of the k NNs (ties are resolved by single nearest neigh-

bour)
10: Classify x toMC2

11: end if
12: end for

nearest neighbours within the data subset dynamically formed by the union of the clusters of
the Rk representatives (lines 8-10). We call this search a second level search.

Α second level search usually involves higher classification cost than a first level search.
However, even in this case, HCAHC searches only a small subset of the initial training data.
For instance, suppose that SUDSCA has built a SUDS with 200 nodes and we have set Rk =

8. HCAHC performs the first level search and retrieves the eight nearest representatives.
Suppose that not all eight of them belong to the same class. As a result, HCAHC searches
for the k nearest neighbours in the union of the eight clusters that correspond to the eight
representatives and performs the classification. Even in this case, HCAHC significantly prunes
the search space by ignoring the items of the rest 192 clusters.

A new item can be classified via either a first or a second level search. Practically, the
first level search is a prototype abstraction algorithm (similar to RHC), while the second level
search is a cluster-based method. That is why HCAHC is a hybrid method. Furthermore,
when HCAHC performs a second level search, it accesses an almost noise-free subset of the
initial training set. Since each cluster contains items of a specific class only, the subset (union
of the Rk clusters) will not contain noisy items of other irrelevant classes, i.e., classes which
are not represented by the Rk representatives. Thus, classification performance may not be
affected as much by noisy data of other classes. Of course, the length of SUDS and the size of
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the constructed clusters depends on the level of noise. The more noise in the training set, the
smaller size of the constructed clusters and the higher is the final number of homogeneous
clusters (or length of SUDS).

Since we aim to a non-parametric method, we must find a way to automatically determine
Rk. In the experiments of the following subsection, we have tested the effect of the value of
Rk on the performance of our method. In addition, we adopt the empirical rule:

Rk = ⌊
√
|SUDS|⌋

where |SUDS| is the number of nodes (clusters) in SUDS. The adoption of this empirical rule
was initially motivated by the rule of thumb [78]:

C = ⌊
√

n

2
⌋

which is used for determining the number of clusters in the context of k-means clustering.
Certainly, we adopted the empirical rule by evaluating the performance of HCAHConmultiple
datasets.

5.4.3 SUDS classification method over condensing sets

The motive behind the SUDS method presented in Subsection 5.4.2 is fast classification. In
addition, we claim that our method could improve the performance of prototype abstraction
and condensing algorithms. More specifically, we suggest our SUDS classification method to
be applied on the data stored in a condensing set that has been constructed by a condensing
or prototype abstraction algorithm. Then, a classifier that uses SUDS will be executed faster
than a classifier that searches for nearest neighbours in the full condensing set and without a
negative impact on accuracy. Since SUDSCA will be applied on a condensing set (i.e., a small
dataset), the preprocessing overhead introduced will be almost insignificant.

Suppose that a condensing set stores the close-class-border items of a dataset with four
classes (Figure 5.16(a)). Figures 5.16 (b)–(d) demonstrate the execution of SUDSCA. The result
is the construction of a SUDS which contains five clusters. The SUDS construction procedure
is similar to that presented in Figure 5.15.
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(a) (b)

(c) (d)

Figure 5.16: SUDS construction by finding homogeneous clusters in the condensing set

Here, the classifier that uses SUDS to perform the classification is almost similar to HC-
AHC. However, there is a major difference: it is rare that all Rk nearest representatives will
belong to the same class. Almost in all cases, HCAHC proceeds to a second level search.
Therefore, when the SUDS method is applied on a condensing set, the “if statement” (line 5 in
Algorithm 21) regarding the first level classification is unnecessary (actually, it is meaningful
only when Rk is very small). Therefore, a classifier that avoids classification though a first
level search is a sufficient approach. We call this approach Homogeneous Clusters Algorithm
(HCA) and we present it in Algorithm 22.

Contrary to HCAHC, HCA is not a hybrid classifier. Basically, it is a typical cluster-based
method. For each new item, it dynamically forms a training subset (reference set) of the initial
condensing set on which the search for the nearest neighbours is executed. The training subset
is the union of the Rk clusters that have been constructed by SUDSCA. As in the case of
HCAHC, HCA adopts the empirical rule Rk = ⌊

√
|SUDS|⌋ for the determination of Rk.
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Algorithm 22 HCA
Input: SUDS, Rk, k
1: for each new item x do
2: Scan 1st level of SUDS and retrieve the Rk Nearest Representatives to x
3: Scan within the set formed by the union of clusters of the Rk representatives and re-

trieve the k Nearest Neighbours (NNs) to x
4: Find the majority classMC of the k NNs (ties are resolved by the nearest neighbour)
5: Classify x toMC
6: end for

5.4.4 Performance evaluation

The experimentation includes two main stages5. First, we evaluate the performance of SUDS
classification method over non-edited data, and then, over condensing sets built by four DRTs.
In all cases, our experiments were conducted using eight datasets distributed by the KEEL
dataset Repository6[6] (see Table 5.12). Like in the other experimental studies of the disserta-
tion, the Euclidean distance is used as distance metric.

The SUDS classification method was compared to five known speed-up methods by mea-
suring three comparison criteria: classification accuracy, classification cost, and, preprocess-
ing cost. We evaluated: (i) CNN-rule, (ii) the fast IB2 algorithm, (iii) RSP3, (iv) the cluster-based
method proposed by Hwang and Cho [62] (HCM), and, (v) our RHC algorithm.

All methods were evaluated using five-fold cross-validation. For each one of the seven
datasets (except KDD), we used the five already constructed pairs of training/testing sets
hosted by the KEEL repository. These sets are appropriate for five-fold cross-validation. With
the exception of KDD, we run all experiments without any previous knowledge about the
datasets. Therefore, we did not perform normalization or any other data transformation.

The KDD dataset contains 41 attributes and 494,020 items. However, three attributes are
nominal, two attributes are fixed-value and huge amounts of data are duplicates. For simpli-
fying our experiments and like in the experimental studies presented in Sections 3.2.2 and 4.2,
we removed these attributes and all duplicate items. Therefore, the transformed dataset con-
tains 36 attributes and 141,481 unique items. Please note that the impact of duplicates on
the classification process has been documented in Subsection 3.2.4. Moreover, we observed

5Detailed experimental results are available at
http://users.uom.gr/~stoug/AIRJ_experiments.zip

6http://sci2s.ugr.es/keel/datasets.php
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Table 5.12: Datasets description
Dataset Size Attributes Classes

Letter Recognition (LIR) 20000 16 26
Magic Gamma Telescope (MGT) 19020 10 2

Pen-Digits (PD) 10992 16 10
Landsat Satellite (LS) 6435 36 6

Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2
KddCup (KDD) 141481 23 36

extreme variation on the value ranges of the attributes of KDD. Thus, we normalized all at-
tributes to the interval [0, 1]. Finally, we randomized the dataset and prepared it for five-fold
cross-validation.

Performance of SUDS classification method over the original data

Experimental setup CNN-rule, IB2, RSP3 and RHC are non-parametric methods, that is, they
do not use user-defined parameters in order to reduce the training data. On the other hand,
HCM is parametric. In addition to parameter k (number of nearest neighbours to search),
which is used by all methods during the classification step, it uses three extra parameters: (i)
C : the number of clusters constructed by the k-means clustering, (ii)D: the distance threshold
used to divide each cluster into core and peripheral sets, and, (iii) L: the number of adjacent
clusters that will be used. C andD are used during the preprocessing step, while L during the
classification step (see Section 2.2 or [62] for details). For each dataset, we built eight HCM
classifiers using eight different C values. More specifically, each classifier i = 1, . . . , 8, used
C = ⌊

√
n
2i
⌋, where n is the number of training items. The first classifier, i.e. i = 1, is based on

the rule of thumb C = ⌊
√

n
2
⌋ [78]. We decided to build additional classifiers that use smaller

C values than C = ⌊
√

n
2
⌋ based on the observation that Hwang and Cho defined C = 10 for

a dataset with 60919 items. For the other two parameters, we adopted the values suggested by
Hwang and Cho in their experiments.

Although SUDSCA is non-parametric, HCAHC is a parametric classifier. In addition to k,
it uses the Rk parameter. We built 29 HCAHC classifiers, for Rk = 2, 3, . . . , 30, and we also
considered the automatic determination ofRk (see Subsection 5.4.2). We refer to that classifier
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as HCAHC-sqrt. To facilitate the presentation of the measurements, for both HCAHC and
HCM, we report only the most accurate classifiers for each reported cost, i.e., the performance
of a classifier was omitted if it was less accurate and involved higher classification cost than
another classifier that was more accurate with lower classification cost.

During the classification step, all methods involve the k parameter. DRTs perform k-NN
classification using their condensing set, while HCM does this over a small reference set that
is dynamically formed for each new item. Finally, HCAHC searches for k nearest neighbours
when it performs a second level search. We used the best k values for eachmethod and dataset,
i.e., the value that achieved the highest classification accuracy. In effect, we ran the cross-
validation many times for different k values and report the best one. Of course, we did not use
different k values for each fold. We note that we did not follow the typical tuning procedure
that implies that the best parameters should be obtained by using only the training data. Since
all methods involve the k parameter, for all methods, we simply report the highest accuracy
achieved by the k parameter when it classifies the testing portion using the corresponding
training portion.

For the first seven datasets, we run all experiments twice: on the non-edited datasets and
on the edited (noise-free) datasets. For editing purposes, we used ENN-rule by setting k =

3 [131, 49, 84]. The goal was to study how noise affects the performance of each method. The
complete procedure that we followed during our experimentation is shown in Figure 5.17. For
the KDD dataset, ENN-rule eliminates all items of some rare classes. More specifically, the
edited form of the KDD dataset contains fewer than 23 classes (from 4 to 7 fewer classes -
depending on the fold). Therefore, we decided to skip the edited version of the KDD dataset.
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Pre-processing performance Tables 5.13 and 5.14 present the pre-processing costs in
terms of millions of distance computations (how many distances were computed during
pre-processing) performed by each method on the non-edited and the edited data. As we
expected, SUDSCA and RHC were executed very fast in comparison to the other approaches,
and were comparable in performance to IB2, which is a one-pass algorithm. This happened
because: (i) the construction of SUDS and of the RHC condensing set are based on the
repetitive execution of the fast k-means clustering algorithm, and, (ii) in both cases, k-means
uses the mean items of the classes as initial means, and thus, clusters are consolidated quickly.

Table 5.13: Experimental results: Preprocessing Cost of SUDSCA on the non-edited data (mil-
lions of distance computations)

Dataset CNN IB2 RSP3 HCM RHC/
i=1 i=3 i=5 i=7 SUDSCA

LIR 163.03 23.37 326.52 88.88 63.66 26.35 10.89 41.85
MGT 277.18 34.61 511.67 120.22 72.64 21.74 10.64 4.09
PD 11.75 1.78 86.66 28.80 11.27 5.97 1.70 2.88
LS 18.59 2.22 37.70 16.74 12.44 4.54 0.81 1.69
SH 45.30 8.26 17410.12 744.82 399.23 105.13 34.78 16.83
TXR 5.57 0.84 27.63 14.86 7.43 3.89 0.83 3.63
PH 13.45 1.96 20.31 9.87 3.70 1.33 0.74 0.65
KDD 384.90 55.58 20278.87 5440.21 2155.75 955.06 309.97 81.59
Avg. 114.97 16.08 4837.43 808.05 340.77 140.50 46.29 19.15

Table 5.14: Experimental results: Preprocessing Cost of SUDSCA on the edited data (millions
of distance computations)

Dataset CNN IB2 RSP3 HCM RHC/
i=1 i=3 i=5 i=7 SUDSCA

LIR 112.20 18.35 300.51 74.60 55.31 31.45 9.93 31.05
MGT 70.27 8.51 318.82 85.28 33.80 16.33 7.06 2.83
PD 9.25 1.51 85.15 26.76 12.06 5.18 1.83 2.83
LS 7.09 1.02 30.63 13.76 9.60 3.43 0.87 1.74
SH 26.02 6.35 15652.75 867.40 367.52 146.12 37.18 22.41
TXR 4.39 0.71 27.04 14.76 7.16 4.27 0.82 3.00
PH 5.57 0.86 15.67 5.58 2.65 1.03 0.48 0.47
Avg. 33.54 5.33 2347.22 155.45 69.73 29.69 8.31 9.19
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Concerning the other methods, RSP3 was the most time consuming approach. HCM for
i ≥ 5 is executed very fast. However, in real applications, the user must perform a trial-
end-error procedure for determining the parameters. This may render pre-processing a hard
and extremely time consuming procedure. Although CNN-rule is quite faster than RSP3, its
pre-processing cost remains at high levels.

Finally, aswe expected, DRTs and SUDSCA are fasterwhen executed on the edited datasets.
This happens because: (i) the edited sets contain fewer items than the non-edited training sets,
and, (ii) noisy items have a negative effect on the methods. One one hand, in RHC, RSP3 and
SUDCA that use the concept of homogeneity, noisy items lead to many and small groups of
items and, thus, these methods involve a high cost to build them. On the other hand, in CNN-
rule, noisy items lead to the execution of many algorithm data passes and of course to a large
condensing set. The preprocessing cost of HCM is not affected by noisy items. However, for
noisy datasets, even this method involved lower preprocessing cost because of the smaller size
of the edited sets.

Nevertheless, to obtain an edited (i.e., noise-free) dataset, the execution of an extra prepro-
cessing procedure is necessary (see Figure 5.17). This procedure involves additional prepro-
cessing cost. Hence, the total preprocessing cost contains the cost of ENN-rule that is N∗(N−1)

2
,

where N is the number of training items. Table 5.15 shows the cost required by ENN-rule as
well as the size of the edited sets and the corresponding reduction rate. We observe that the
MGT, PH, and LS datasets contains noise, while in the rest datasets, the level of noise is almost
insignificant.

Table 5.15: Experimental results of ENN-rule
LIR MGT PD LS SH TXR PH

Edited set size: 15306.8 12160.2 8734 4681 46314.2 4345.6 3837.4
Accuracy (%): 94.98 80.96 99.30 90.41 99.79 98.64 880.14

Reduction Rate (%): 4.33 20.08 0.67 9.07 0.18 1.24 11.25
ENN Cost: 127.99 115.76 38.65 13.25 1076.46 9.68 9.35

Classification performance We performed the classification step by using eight classi-
fication methods on the eight datasets. The methods used were: (i) Conventional k-NN
(conv-k-NN), (ii) IB2, (iii) HCAHC, (iv) HCAHC-sqrt, (v) RHC, (vi) CNN-rule, (vii) RSP3, and,
(viii) HCM. The performance measurements of conv-k-NN are shown in Table 5.16 while the
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Table 5.16: Experimental results: Conventional-k-NN vs HCAHC over the non-edited data
(Accuracy (Acc (%)), Classification Cost (millions of distance computations))

Dataset Conv-k-NN HCAHC
Acc (%) Cost Acc (%) Cost Rk

LIR 96.01 64.00 95.90 9.41 43
MGT 81.32 57.88 81.27 16.26 63
PD 99.37 19.34 99.33 2.45 20
LS 91.22 6.63 91.25 1.10 15
SH 99.82 538.24 99.82 227.26 29
TXR 99.02 4.84 99.02 0.71 18
PH 90.10 4.67 90.23 1.08 11
KDD 99.71 3202.68 99.71 429.31 10
Avg. 94.5715 487.29 94.5663 85.97

measurements of the speed-up methods are depicted in Figures 5.18-5.23. In particular, each
figure presents two diagrams for each dataset, one corresponding to the non-edited training
set and one to the edited set.

The figures show the cost measurements (in terms of millions or thousands distance com-
putations) on the x-axis and the corresponding accuracy on the y-axis. The cost measurements
indicate how many distances were computed in order to classify all testing items. Since, we
used a cross-validation schema, cost measurements are average values.

Almost in all cases, HCAHC and HCAHC-sqrt had very good performance. HCAHC can
even reach the accuracy level of conv-k-NN (see Table 5.16). All diagrams show that rule
Rk = ⌊

√
|SUDS|⌋ is a good choice for the determination of Rk. With the exception of the

SH and KDD datasets, HCAHC achieved better classification performance than all DRTs. On
the other hand, although HCAHC and HCAHC-sqrt achieved higher accuracy than HCM in all
datasets, for the MGT, SH, PH and KDD datasets, HCM may be preferable because it achieved
accuracies close to those of HCAHC and HCAHC-sqrt at a lower classification cost.

Table 5.16 compares the classification performance on the non-edited datasets of conv-
k-NN with that of HCAHC with an Rk value that achieves the highest possible accuracy
(note that we have not conducted experiments for Rk > 30 and for Rk ̸= ⌊

√
|SUDS|⌋).

Please observe that the accuracy measurements are almost similar with significant gains in
classification cost. In the LS and PH datasets, HCAHC achieved slightly better accuracy than
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conv-k-NN. This is because the reference sets formed by HCAHC during the second level
searches do not contain items of irrelevant classes.

Concerning the SH and KDDdatasets, all DRTs built very small condensing sets. Therefore,
the k-NN classifiers that were applied on these condensing sets, were not only accurate but
very fast as well. HCAHC and HCAHC-sqrt were able to achieve even higher accuracy levels
than all DRTs but, it involves higher classification cost.

All figures show that when the speed-up methods are performed over the edited data, they
are faster than when they performed over the non-edited data. However, in some cases, either
the cost gains are not very high or the classification accuracy is significantly reduced. On the
other hand, in the case of the MGT dataset, which is a dataset that contains high level of noise,
editing is a necessary preprocessing procedure for all speed-up methods. In Figure 4.6, we
observe that the cost gains are high, while the classification accuracy is not reduced.

Non-parametric statistical test The experimentation is complemented by the results of the
Wilcoxon signed ranks test [32]. Like the other statistical studies presented in the dissertation,
the test was run four times. Once for each comparison criterion (accuracy (ACC), classification
cost (CC), preprocessing cost (PC)) and once on the measurements of the overall classification
performance. The measurements of the overall classification criterion were estimated by av-
eraging the normalized to the range [0, 1]measurements of the three aforementioned criteria,
thus, assuming that they all have the same significance. Since low values for costs are desir-
able, we used the values (1 − normalized(CC)) and (1 − normalized(PC)) in the place of
the normalized values for CC and PC, respectively.

All the tests were run twice, one on the measurements obtained from the edited datasets
and one on the measurements obtained from the edited datasets. Of course, we could not
include tests for all variations of HCAHC and HCM (for the different tested values of Rk and
i parameters respectively). Since the performance of the algorithms are estimated in terms of
three comparison criteria, there is not a unique dominant parameter value. A good parameter
adjustment in terms of one criterion may deteriorate the measurements of the other criterion
and vice versa. Therefore, for each dataset we chose a good representative variation for each
one of these parametric algorithms. Our criterion was the high performance, i.e., relatively
high accuracy and low classification and preprocessing cost. The parameter values for the
selected classifiers are shown in Table 5.17.
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(a) Non-edited data (b) Edited data

Figure 5.18: LIR (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.19: MGT (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.20: PD (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.21: LS (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.22: SH (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.23: TXR (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.24: PH (Accuracy and Classification Cost)

Figure 5.25: Non-edited KDD (Accuracy and Classification Cost)

Additionally to the parametric HCAHC (HCAHC-Rk), we ran the test for HCAHC-sqrt.
Consequently, HCAHC-sqrt and HCAHC-Rk are compared to each one of the four other
speed-up methods. Note that the execution of HCAHC implies the execution of SUDSCA
during the preprocessing phase. Tables 5.18 and 5.19 illustrate the results of Wilcoxon signed
ranks tests. The columns labelled by “w/l/t” count the number of wins, loses and ties respec-
tively for each pair of methods. The columns labelled “Wilc.” presents the Wilcoxon signifi-
cance level. We consider that If that value is not higher than 0.05, the difference between the
pair of methods is significant. Of course,Wilc = 0.05 is a very strict threshold.

The test confirms that HCAHC is an accurate method. Almost in all cases, the Wilcoxon
significance level is lower than the threshold of 0.05. In addition, in two cases, it is 0.063.
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Table 5.17: Parameter values selected for the Wilcoxon signed ranks test
LIR MGT PD LS SH TXR PH KDD

Non-edited data
Rk 10 23 6 15 9 5 11 2
i 7 3 7 4 3 5 4 1

Edited data
Rk 8 17 5 5 2 3 7 -
i 7 5 7 4 1 5 3 -

Although HCAHC approaches have always more wins than the other methods in terms of
accuracy, in some cases, there is not significant difference. On the other hand, HCAHC seems
to be statistically worse than some other algorithms in terms of classification cost. In terms
of preprocessing cost, HCAHC is statistically better than CNN and RSP3. Although HCAHC
has more wins against HCM in terms of preprocessing cost, its dominance is not statistically
supported. Finally, we observe that HCAHC have more wins than all other methods in terms
of overall classification performance. However, in many cases, It is not statistically supported.
This is because we have adopted the very strict threshold of 0.05 as well as our sample is
small. Please notice that there are many cases where the Wilcoxon value is 0.063 (slightly
higher than the threshold adopted). The difference between the corresponding algorithms
can be also characterized as statistically significant. Furthermore, the test shows that there
is not significant difference between HCAHC-sqrt and HCM-i in terms of preprocessing cost.
However, considering that both the preprocessing and classification algorithms of HCM are
parametric and SUDSCA and HCAHC-sqrt are not parametric, one concludes that the SUDS
method is preferable. Since RHC and HCAHC are based on a similar procedure of forming
homogeneous clusters, they have the same preprocessing cost. On the other hand, HCAHC is
better in terms of accuracy and worse in terms of classification cost than RHC.

Performance of the SUDS classification method over condensing sets

Experimental setup The second part of our experimentation concerns the performance of
the SUDSmethod when applied on condensing sets. To build the condensing sets, we executed
the four DRTs that we had used in the study of the previous subsection, i.e. (i) CNN, (ii) IB2,
(iii) RSP3, and (iv) RHC, on the training sets presented in Table 5.12. Then, we applied the
SUDS method on the four resulting condensing sets. Of course, SUDS can be combined with
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Table 5.18: Results of the Wilcoxon signed ranks test on the measurements obtained from the
non-edited data

Methods ACC CC PC Overall
w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.

HCAHC-sqrt vs CNN 7/1/0 0.017 3/5/0 0.401 8/0/0 0.012 6/2/0 0.674
HCAHC-sqrt vs RSP3 7/1/0 0.017 5/3/0 0.889 8/0/0 0.012 7/1/0 0.161
HCAHC-sqrt vs IB2 7/1/0 0.017 1/7/0 0.069 3/5/0 0.401 6/2/0 0.674
HCAHC-sqrt vs RHC 8/0/0 0.012 0/8/0 0.012 0/0/8 1.000 6/2/0 0.575
HCAHC-sqrt vs HCM-i 7/1/0 0.025 1/7/0 0.025 6/2/0 0.161 5/3/0 0.889
HCAHC-Rk vs CNN 6/2/0 0.036 4/4/0 0.674 8/0/0 0.012 6/2/0 0.208
HCAHC-Rk vs RSP3 6/2/0 0.161 7/1/0 0.161 8/0/0 0.012 7/1/0 0.123
HCAHC-Rk vs IB2 7/1/0 0.025 2/6/0 0.327 3/5/0 0.401 6/2/0 0.161
HCAHC-Rk vs RHC 8/0/0 0.012 0/8/0 0.012 0/0/8 1.000 6/2/0 0.161
HCAHC-Rk vs HCM-i 6/2/0 0.161 2/6/0 0.093 6/2/0 0.161 6/2/0 0.263

Table 5.19: Results of the Wilcoxon signed ranks test on the measurements obtained from the
edited data

Methods ACC CC PC Overall
w/l/t Wilc. w/l/t Wilc. w/l/t Wilc. w/l/t Wilc.

HCAHC-sqrt vs CNN 6/1/0 0.043 0/7/0 0.018 7/0/0 0.018 5/2/0 0.310
HCAHC-sqrt vs RSP3 6/1/0 0.063 3/4/0 0.866 7/0/0 0.018 7/0/0 0.018
HCAHC-sqrt vs IB2 7/0/0 0.018 0/7/0 0.018 2/5/0 0.176 5/2/0 0.310
HCAHC-sqrt vs RHC 7/0/0 0.018 0/7/0 0.018 0/0/7 1.000 5/2/0 0.310
HCAHC-sqrt vs HCM-i 6/1/0 0.028 1/6/0 0.063 5/2/0 0.237 5/2/0 0.735
HCAHC-Rk vs CNN 5/2/0 0.063 3/4/0 0.866 7/0/0 0.018 6/1/0 0.043
HCAHC-Rk vs RSP3 6/1/0 0.128 7/0/0 0.018 7/0/0 0.018 7/0/0 0.018
HCAHC-Rk vs IB2 6/1/0 0.028 1/6/0 0.091 2/5/0 0.176 5/2/0 0.063
HCAHC-Rk vs RHC 7/0/0 0.018 0/7/0 0.018 0/0/7 1.000 5/2/0 0.063
HCAHC-Rk vs HCM-i 6/1/0 0.063 5/2/0 0.237 5/2/0 0.237 6/1/0 0.063
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any condensing or prototype abstraction algorithm. Once again, we executed all experiments
twice, once on the non-edited data and once on the edited data of ENN-rule (with k = 3).
Figure 5.26 depicts the procedure that we followed during this stage of our experimentation.
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During the classification step, we executed HCA (Algorithm 22). Like HCAHC, HCA uses
the Rk parameter. We executed several experiments with different Rk parameter values. In
addition, we built an HCA classifier that uses the empirical rule: Rk = ⌊

√
|SUDS|⌋. In all

cases, this rule was proven to be a good choice for the determination of Rk. For that reason,
in Figures 5.27-5.34, we have included only the performance of the HCA classifier that uses
the empirical rule.

Additionally to the performance of HCA, Figures 5.27-5.34 present the performance mea-
surements obtained by the four DRTs (i.e., application of the k-NN classifier on their condens-
ing sets). In this way, we can easily conclude whether the SUDS method can improve the
performance of data reduction. Finally, for each method and dataset, we used the k parameter
that achieved the highest classification accuracy.

Preprocessing performance SUDS construction constitutes an extra preprocessing step that
is applied after the construction of condensing sets (see Figure 5.26). Thus, additionally to the
cost shown in Tables 5.14 and 5.15, the total preprocessing cost involves the cost overhead
of SUDSCA execution. Table 5.20 shows the preprocessing overheads for each DRT on the
non-edited and edited training sets.

The preprocessing cost overheads depend on the size of each condensing set. RSP3
achieved the lowest reduction rates, and so, it involves the highest overhead. In contrast,
RHC achieves the highest reduction rates and thus it involves a small overhead. In all cases,
overheads added by SUDSCA are almost insignificant. Considering that the preprocessing is
executed only once, the small preprocessing overhead does not constitute a problem in real
life data mining applications. Actually, efficient data preprocessing implies fast predictions
during the classification step.

Classification performance Figures 5.27-5.34 show the performance measurements. Each
figure presents two diagrams, one for the non-edited datasets and one for the edited datasets.
The diagrams show the performance of the four DRTs when using or not using the SUDS
method. Each diagram shows the performance of eight classifiers, two for each DRT: (i) k-NN
classifier over its condensing set, (ii) HCA that uses the empirical rule over SUDS.

As we anticipated, the HCA classifier performed better than the k-NN classifier over con-
densing sets. An HCA classifier avoids a large number of distance computations and, at the
same time, keeps the classification accuracy as high as the k-NN classifier. This happens be-
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Table 5.20: Experimental results: preprocessing overhead of SUDSCA on condensing sets (mil-
lions of distance computations)

Dataset Non-edited data Edited data
CNN IB2 RSP3 RHC CNN IB2 RSP3 RHC

LIR 2.777 2.158 8.489 1.512 1.688 1.478 7.425 1.072
MGT 1.375 0.914 1.577 0.802 0.220 0.159 0.358 0.131
PD 0.072 0.045 0.218 0.035 0.043 0.034 0.161 0.025
LS 0.208 0.122 0.333 0.076 0.054 0.042 0.104 0.025
SH 0.061 0.052 0.188 0.035 0.034 0.028 0.134 0.024
TXR 0.071 0.054 0.243 0.043 0.038 0.035 0.264 0.032
PH 0.102 0.080 0.144 0.083 0.032 0.025 0.055 0.024
KDD 0.323 0.247 0.624 0.285 - - - -
Avg. 0.624 0.459 1.477 0.359 0.301 0.257 1.215 0.190

cause HCA avoids the distance computations between a new item and items that have been
assigned to distant clusters. The performance improvements are significant in both edited and
non-edited data. However, they are higher in the case of the non-edited data.

For RSP3, the cost gains are higher than those of the other two methods. For instance, in
the cases of the LIR, PD, SH, TXR datasets, the class labels of the testing items were predicted
four or three times faster. The performance improvements for CNN-rule and RHC are not as
high but they deserve to be mentioned.

A final comment: SUDS classification method is able to significantly speed-up the pre-
dictions of the class labels without loss of accuracy when it is applied on data stored in the
condensing set built by DRTs by adding a small cost overhead during the preprocessing phase.
This approach is appropriate when extremely fast classification is required.

5.4.5 Conclusions

In this section, we presented and evaluated a new classification method. The motivation of
our work was the development of a non-parametric method that has low pre-processing cost
and is able to classify new items fast and with high accuracy.

We presented an efficient classification method that includes a non-parametric fast pre-
processing algorithm that builds a two-level data structure, and a classifier that makes predic-
tions by accessing this structure. In addition, based on the same motivation, we applied the
proposed classification method on data stored in the condensing sets constructed by DRTs.
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(a) Non-edited data (b) Edited data

Figure 5.27: LIR (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.28: MGT (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.29: PD (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.30: LS (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.31: SH (Accuracy and Classification Cost)

(a) Non-edited data (b) Edited data

Figure 5.32: TXR (Accuracy and Classification Cost)
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(a) Non-edited data (b) Edited data

Figure 5.33: PH (Accuracy and Classification Cost)

Figure 5.34: Non-edited KDD (Accuracy and Classification Cost)
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The goal of this adoption is to improve the performance of such techniques. The proposed
HCAHC and HCA classifiers are parametric since they use parameter Rk (number of clus-
ter representatives to use in a first level search). However, we demonstrated that Rk can
be automatically determined and render the proposed classification method non-parametric.
Experimental results based on eight datasets showed that the proposed method achieved the
aforementioned goals.
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Chapter 6

Additional research tasks and
experimentation

6.1 Introduction

This chapter presents enhancements of existing speed-up methods as well as some additional
research tasks and experimentations.

Section 6.2 focuses on fast time-series classification. It presents an experimental study
where known non-parametric prototype abstraction and condensing algorithms are evaluated
on time-series data [104, 103]. In effect, it proposes the adoption of “general-purpose” Data
Reduction Techniques (DRTs) for fast time-series classification.

Section 6.3 deals with the Prototype Selection by Clustering (PSC) algorithm [86, 85, 87]. It
is a recently proposed condensing algorithm whose goal is the fast generation of the condens-
ing set (i.e., low preprocessing cost) rather than high reduction rates. However, the section
demonstrates that the reduction rate and the classification accuracy achieved by PSC can be
improved by generating a large number of clusters [93].

In Section 6.4, an extensive experimental study of the Hwang and Cho cluster-based
method [62] is presented [100]. The effectiveness of the particular method is based on the
adjustment of three parameters. The results of the study illustrate that if the parameters are
carefully defined, one can obtain better classification performance than that shown in [62].
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6.2 Applying general-purpose data reduction techniques for

fast time-series classification

6.2.1 Time-series classification

The classification methods that are based on similarity search have been proven to be effective
for time-series data analysis. More specifically, the one-nearest neighbour (1-NN) classifier is
a widely-used time-series classification approach. It has been adopted in many time-series
classification systems because of its simplicity and effectiveness. However, its efficiency de-
pends on the size of the training set as well as on data dimensionality. For large and high
dimensional time-series training sets, the high computational cost involved renders the appli-
cation of such classifiers prohibitive. Of course, time-series classification performance can be
improved through indexing, representation and/or data reduction.

Indexing accelerates classification, but, as already mentioned, works well only in low di-
mensionality spaces. Thus, one must first use a dimensionality reduction technique to acquire
a representation of the original data in lower dimensions. A representation may be consid-
ered as a transformation technique that maps a time-series from the original space to a feature
space, retaining the most important features. There have been several time-series represen-
tations proposed in the literature, mainly for the purpose of reducing the intrinsically high
dimensionality of time-series [36].

Data reduction has recently been exploited for fast time-series classification. More specifi-
cally, [19] and [134] propose prototype selection algorithms for speeding-up 1-NN time-series
classification. The main disadvantage of these methods is that they are parametric. The user
must define the size of the condensing set by trial-and-error.

6.2.2 Motivation and contribution

The work presented in this section has been motivated by the following two observations:
(i) to the best of our knowledge, state-of-the-art non-parametric condensing and prototype
abstraction algorithms have not been evaluated neither on original time-series nor on their
reduced dimensionality representations, and, (ii) prototype abstraction algorithms that we
have proposed (RHC, AIB2) have not been evaluated on time-series data.
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The contribution of this section is the experimental evaluation of two condensing algo-
rithms, namely, CNN-rule and IB2, and three prototype abstraction algorithms, namely, RSP3,
RHC and AIB2. The algorithms are evaluated both against original time-series datasets and
their reduced dimensionality representations. Section 6.2.3 presents the experimental setup
and the results obtained.

Our study adopts the Piecewise Aggregate Approximation (PAA) [70, 137] time-series rep-
resentation method. The goal is to investigate the degree to which classification accuracy gets
affected when applying data reduction on dimensionally reduced time-series. PAA is an ef-
fective and very simple dimensionality reduction technique that segments a time-series into h
consecutive sections of equal-width and calculates the corresponding mean for each section.
The series of these means is the new representation of the original data.

6.2.3 Experimental study

Experimental setup

The five DRTs were evaluated on seven known time-series datasets distributed by the UCR
time-series classification/clustering website1. Table 6.1 summarizes on the datasets used. All
datasets are available in a training/testing form. We merged the training and testing parts and
then we randomized the resulting datasets. No other data transformation was performed. The
similarity measure we used was the Euclidean distance. Please note that the aforementioned
techniques and the datasets presented in Table 6.1 are available on WebDR2 (see Appendix A).

We report on the experiment we conducted with a certain value for the parameter of the
PAA representation. We applied the PAA representation on time-series by setting the number
of dimensions equal to twelve (h = 12). Most of the research work provides experimental
results with values of h ranging from 2 to 20. We found that lower values of h have a negative
effect on the classification accuracy, whereas higher values produce time-series that cannot be
efficiently indexed by multi-dimensional indexing methods. Hence, we decided to use h = 12.

All experiments were run twice, once on the original time-series and once on their 12-
dimensional representations. By this way, we wanted to test how the combination of data
reduction and dimensionality reduction affects the performance of 1-NN time-series classifi-
cation.

1http://www.cs.ucr.edu/~eamonn/time_series_data/
2https://ilust.uom.gr/webdr
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Table 6.1: Time-series datasets description
Time-series dataset Size (time-series) Length (Attributes) Classes

Synthetic Control (SC) 600 60 6
Face All (FA) 2250 131 14

Two-Patterns (TP) 5000 128 4
Yoga (YG) 3300 426 2
Wafer (WF) 7164 152 2

Sweadish Leaf (SL) 1125 128 15
CBF 930 128 3

We evaluated the five DRTs by estimating four measurements, namely, accuracy, classifi-
cation cost, reduction rate, and, preprocessing cost. The cost measurements were estimated by
counting the distance computations multiplied by the number of time-series attributes (time-
series length). Of course, the reduction rate and classification cost measurements relate to
each other: the lower the reduction rate, the higher is the classification cost. However, classi-
fication cost measurements can express the cost introduced by the dimensionality of data. We
report on the average values of these measurements obtained via five-fold cross-validation.

Experimental measurements

Tables 6.2 and 6.3 presents the experimental measurements. Table 6.2 presents the results
obtained on the original datasets while Table 6.3 presents the results obtained on the 12-
dimensional representations of the datasets we got after applying PAA on them. Both tables
present the measurements obtained by applying the 1-NN classifier on the non-reduced data
(conventional 1-NN). Each cell of the table contains the four measurements obtained by first
applying a DRT on the original or 12-dimensional time-series datasets (preprocessing step)
and then by using 1-NN on the resulting condensing set (classification step). The cost mea-
surements are in million distance computations. The preprocessing cost measurements do not
contain the small cost overhead introduced by PAA execution. Actually, this cost is almost
insignificant.

It is noted that 1-NN classification on the 12-dimensional datasets is very fast. In most
cases, the preprocessing and classification cost are extremely low, while classification accuracy
remains at high, acceptable levels. Therefore, a first conclusion is that one can obtain efficient
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Table 6.2: Experimental results on the original datasets: Accuracy (Acc (%)), Classification
Cost (CC (millions of distance computations)), Reduction Rate (RR(%)) and Preprocessing Cost
(PC (millions of distance computations))

Dataset
Original dimensionality

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc : 91.67 90.17 89.00 98.33 98.67 99.83
CC : 3.46 0.67 0.53 1.38 0.09 0.34
RR : - 80.50 84.67 60.08 97.29 90.13
PC : - 7.77 1.31 16.22 2.39 1.14

FA

Acc : 95.07 91.60 91.02 95.46 93.02 92.94
CC : 106.11 19.87 18.38 51.65 12.93 16.08
RR : - 81.28 82.68 51.32 87.81 84.84
PC : - 216.36 48.96 533.70 140.41 43.27

TP

Acc : 98.50 94.68 93.60 98.10 93.72 97.06
CC : 512.00 85.66 76.83 243.51 55.50 61.88
RR : - 83.27 85.00 52.44 89.16 87.92
PC : - 1169.75 205.95 2085.42 150.49 177.88

YG

Acc : 93.76 91.58 89.55 92.85 90.94 90.49
CC : 742.26 138.56 108.92 229.82 93.85 100.26
RR : - 81.33 85.33 69.04 87.36 86.49
PC : - 1854.74 254.41 4072.30 162.61 240.73

WF

Acc : 99.87 99.69 99.62 99.82 99.55 99.65
CC : 1248.30 13.59 11.72 26.88 9.37 9.71
RR : - 98.91 99.06 97.85 99.25 99.22
PC : - 165.88 31.42 7196.75 63.69 25.78

SL

Acc : 52.36 49.87 48.18 52.00 52.80 51.56
CC : 25.92 15.94 14.80 19.00 12.80 14.65
RR : - 38.51 42.89 26.69 50.60 43.49
PC : - 112.17 31.39 1537.07 57.01 31.02

CBF

Acc : 98.39 98.17 97.63 99.78 98.60 99.68
CC : 17.71 1.29 1.15 1.97 0.40 0.59
RR : - 92.74 93.49 88.87 97.74 96.67
PC : - 15.06 3.50 78.48 7.26 2.01

Avg

Acc : 89.94 87.97 86.94 90.91 89.62 90.17
CC : 379.40 39.37 33.19 82.03 26.42 29.07
RR : - 79.51 81.87 63.76 87.03 84.11
PC : - 505.96 82.42 2217.13 83.37 74.55
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Table 6.3: Experimental results on the datasets with 12 dimensions: Accuracy (Acc (%)), Clas-
sification Cost (CC (millions of distance computations)), Reduction Rate (RR (%)) and Prepro-
cessing Cost (PC (millions of distance computations))

Dataset
12 dimensions

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc : 98.50 97.00 95.83 98.83 98.17 98.50
CC : 0.69 0.06 0.05 0.12 0.03 0.03
RR : - 90.75 93.13 82.96 95.75 95.13
PC : - 0.89 0.13 3.45 0.52 0.10

FA

Acc : 87.91 83.78 82.31 87.07 84.49 84.36
CC : 9.72 2.89 2.53 4.80 2.08 2.22
RR : - 70.23 74.01 50.58 78.59 77.21
PC : - 30.36 5.95 50.91 13.16 5.30

TP

Acc : 97.56 93.52 91.38 96.66 94.34 94.48
CC : 48.00 8.22 6.86 20.42 6.69 5.39
RR : - 82.89 85.72 57.45 86.06 88.77
PC : - 103.86 17.34 196.00 17.63 14.56

YG

Acc : 92.36 90.39 88.03 91.03 90.03 89.67
CC : 20.91 4.41 3.50 6.71 3.13 3.12
RR : - 78.91 83.26 67.90 85.02 85.06
PC : - 52.23 8.04 110.56 4.26 7.30

WF

Acc : 99.79 99.62 99.51 99.40 99.25 99.50
CC : 98.55 1.21 1.01 1.86 1.01 0.99
RR : - 98.77 98.97 98.11 98.97 99.00
PC : - 15.63 2.57 495.63 4.64 2.44

SL

Acc : 52.62 49.07 48.62 51.20 51.20 49.78
CC : 2.43 1.54 1.37 1.78 1.32 1.35
RR : - 36.76 43.67 26.69 45.69 44.40
PC : - 11.33 2.86 56.00 4.99 2.84

CBF

Acc : 100.00 99.57 99.35 99.68 99.57 99.46
CC : 1.66 0.06 0.06 0.12 0.04 0.04
RR : - 96.34 96.56 92.63 97.47 97.55
PC : - 0.66 0.19 7.32 0.70 0.14

Avg

Acc : 89.82 87.57 86.43 89.12 88.15 87.96
CC : 25.99 2.63 2.20 5.12 2.04 1.88
RR : - 79.24 82.19 68.05 83.94 83.87
PC : - 30.71 5.30 131.44 6.56 4.67
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and effective time-series classifiers by combining prototype selection or abstraction algorithms
with time-series dimensionality reduction representations.

It is worth mentioning that the three prototype abstraction algorithms, RSP3, RHC and
AIB2, achieved higher classification accuracy than the conventional 1-NN. In the case of the SC
dataset, accuracy improvement was very high. Almost in all cases, RSP3 achieved the highest
accuracy. However, it is the slowest method in terms of both preprocessing and classification
cost (RSP3 had the lowest reduction rates). The high preprocessing cost measurements are
attributed to the costly procedure for finding the most distant items in each created subset
(see Subsection 2.1.4 for details).

RHC, AIB2 and IB2 had much lower preprocessing cost than the other two methods. This
happened because IB2 and AIB2 are one-pass algorithms and RHC is based on a version of
k-means that is sped-up by the class mean initializations (see Subsection 3.2.2 for details). In
addition, RHC builds the smallest condensing sets. In all cases, RHC achieved higher reduction
rates than the other DRTs. Thus, the corresponding classifiers had the lowest classification
costs.

The classification accuracy achieved by RHC was usually higher than IB2 and CNN-rule
and as high as AIB2. In some cases, RHC andAIB2weremore accurate than RSP3. Considering
the above, one may conclude that, since RHC and AIB2 deal with all comparison criteria, they
are efficient and effective speed-up methods for time-series data. Finally, the experimental
results illustrate that AIB2 is an efficient variation of IB2. In all cases, AIB2 achieves higher
performance than IB2.

None of the algorithms can be said to comprise the best speed-up choice. If classification
accuracy is the most critical criterion, RSP3 may be preferable. On the other hand, if fast
classification and/or fast construction of the condensing set are more critical than accuracy,
RHC or AIB2 may be a better choice.

6.2.4 Conclusions

Efficient and effective time-series classification is an open research issue that has attracted the
interest of the data mining community. This section proposed the use of non-parametric state-
of-the-art prototype selection and abstraction algorithms for efficient and effective time-series
classification.
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The experimental study conducted demonstrates that by combining prototype selection or
abstraction algorithms with dimensionality reduction, one can obtain accurate and very fast
time-series classifiers. In addition, the study reveals that prototype abstraction algorithms are
preferable to prototype selection algorithms when applied on time-series data. The prototype
abstraction algorithms examined in the study can achieve accuracy higher than the conven-
tional 1-NN classifier.

6.3 Fast and accurate k-NN classification using prototype se-

lection by clustering

6.3.1 Motivation and contribution

Prototype Selection by Clustering (PSC) is a condensing algorithm that has been recently pro-
posed by Lopez et al. [86, 85, 87]. Its main goal is the fast construction of the condensing set
(low pre-processing cost). High reduction rate and classification accuracy continue to be de-
sirable but constitute secondary goals. PSC is based on cluster generation. The main goal of
PSC is achieved by the creation of a small number of clusters for each class.

Themotivation of the work presented in this section is to examine (a) whether the creation
of a larger number of clusters can improve the classification accuracy and the reduction rate
of PSC algorithm, and, (b) how the goal of low pre-processing cost gets affected. The contribu-
tion is an extensive experimental study that compares our improved version of PSC [93] with
two state-of-the-art DRTs, the condensing algorithm CNN-rule and the prototype abstraction
algorithm RSP3.

The rest of this section is organised as follows. Subsection 6.3.2 presents the PSC algo-
rithm and explores how the construction of multiple clusters can improve its performance.
Subsection 6.3.3 presents the experimental results, and Subsection 6.3.4 concludes the section.

6.3.2 Prototype Selection by Clustering

PSC achieves the goal of the low preprocessing cost by creating a small number of clusters
by using the fast and well-known k-means clustering (see Subsection 2.4). In effect, it tries to
keep the close-class-border items as well as some items that lie in non-close-border data area.
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PSC is based on the following simple idea: homogeneous clusters (i.e., clusters that contain
items of a specific class) contain items that lie in non-close-border data areas. On the other
hand, non-homogeneous clusters contain close-border items. Initially, PSC uses k-means clus-
tering in order to partition the training data into clusters. For each homogeneous cluster, the
nearest to the cluster mean item is put in the condensing set as prototype. For each non-
homogeneous cluster, the items that define the decision boundaries are placed into the con-
densing set.

More formally, PSC, initially, creates |C| clusters, Ci where i = 1, 2, . . . , |C|. For each
homogeneous cluster Ci, PSC places the nearest item p ∈ Ci to the cluster mean in the con-
densing set. This item is the prototype that represents the whole data area of that cluster and is
called non-border prototype. For each non-homogeneous cluster Ci, PSC chooses a set of pro-
totypes as follows: Initially, it finds the majority class TM in Ci. Then, for each item pj ∈ Ti,
i ̸= M , it puts in the condensing set the item pM ∈ TM that is the nearest to pj ∈ Ti. Also, it
puts in the condensing set, item pCi

∈ Ti that is the nearest to pM (pCi
may be different than

pj). The prototypes collected from a non-homogeneous cluster are called border prototypes.
The PSC routine is summarized in Figure 6.1. Initially k-means clustering identifies four

clusters in the training data. Clusters A and D are homogeneous. For these clusters, PSC
keeps the nearest items to the cluster means as non-border prototypes. They represent the
corresponding clusters data area. On the other hand, ClustersB andC are non-homogeneous.
Thus, PSC analyses the items of the clusters and keeps only the border prototypes by applying
the methodology described in the previous paragraph.

Of course, the selected number of border and non-border prototypes depends on the num-
ber of clusters that are initially created (|C|). The higher the |C| value, the more homogeneous
clusters are generated and themore non-border prototypes are collected. In contrast, the larger
the clusters, the more border prototypes selected and the lower reduction rate achieved. Lopez
et al. considered a small number of clusters in order to achieve fast execution of the algorithm.
In particular, in their experiments [86], they built only r × j, j = 2, 4, · · · , 10, clusters, where
r is the number of discrete classes. We claim that a larger number of clusters could improve
the classification performance in terms of classification accuracy and reduction rate.

It is worth mentioning that the input parameter of PSC does not allow the user to control
the size of the condensing set (number of prototypes). The parameter concerns the number
of the clusters that will be created. The number of the prototypes collected depends on how
the data is distributed in the data space (level of noise, overlaps between classes, shape of
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(a) training data (b) clustered training data

(c) finding non-border prototypes (d) finding border prototypes

Figure 6.1: Prototype Selection by Clustering
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the class data region, etc). Although the condensing set built by PSC does not depend on the
order of items in the training set, the choice of the initial means for k-means clustering affect
the contents of the condensing set. Therefore, different condensing sets built by selecting
different initial means. Please note that an implementation of PSC is available in WebDR3 (see
Appendix A) and can be executed on-line.

6.3.3 Performance evaluation

Experimental setup

We compared the performance of CNN-rule, RSP3 and PSC by applying the k-NN classifier
on the condensing sets they generate. In all cases, we used the k value that achieved the
highest classification accuracy. Possible ties during nearest neighbour voting (two or more
classes collecting the same highest number of votes) were resolved by choosing the class of
the nearest neighbour. We should mentioned that the value of the k parameter was not tuned
by the typical tuning procedure that implies that the best parameter value should be obtained
by using only the training set. Since the three algorithms use only the k parameter during the
classification step, for all of them, we simply report the highest accuracy achieved by the k

parameter when it classifies the testing data using the corresponding training data.
We used a five-fold cross-validation schema on six datasets distributed by the KEELDataset

Repository4[6]. Thus, we run five training/testing set experiments for each dataset and each
algorithm and we report the averages. Of course, only the training sets was preprocessed by
the algorithms. We used the five already constructed pairs of training/testing splits distributed
by the KEEL repository. The six datasets are summarized in Table 6.4. All algorithm runs were
executed on the original datasets, i.e., without normalization. Moreover, we used the Euclidean
distance as the distance metric.

The three algorithms are compared by estimating three metrics: (i) accuracy, (ii) reduction
rate and (iii) preprocessing cost in terms of million distance computations (we counted the dis-
tances computed during the procedure of the condensing set construction). For each dataset,
we present one diagram for each metric. For PSC, we built 24 condensing sets. Each one was
built by using different number of clusters, k = r × CL clusters, where r is the number of
discrete classes. CL takes 25 different values: CL = 2, 4, 6, 8, 10, 20, · · · , 190, 200. The x-axis

3https://ilust.uom.gr/webdr
4http://sci2s.ugr.es/keel/datasets.php
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Table 6.4: Datasets description
dataset Size Attributes Classes

Letter Recognition (LIR) 20000 16 26
Pen-Digits (PD) 10992 16 10

Landsat Satellite (LS) 6435 36 6
Shuttle (SH) 58000 9 7
Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2

of each comparison diagram represents theCL values. CNN-rule and RSP3 are not parametric
approaches and so their performance is not affected when varying the CL value.

Experimental measurements

Figures 6.2-6.7 present the comparison measurements of the three methods on the six datasets.
Each figure includes three diagrams, one for each metric, i.e., accuracy., reduction rate and
preprocessing cost. The accuracy diagrams include one extra curve for the measurements
achieved by the conventional k-NN classifier (Conv-k-NN), i.e., k-NN over the original training
data (without data reduction).

In all cases 6.2-6.7, CNN-rule executed faster and achieved higher reduction rate than RSP3.
On the other hand, with the exception of the PH dataset, RSP3 achieved higher accuracy mea-
surements than CNN-rule. In some cases, the accuracy of RSP3 is close to the one of Conv-k-
NN.

With the exception of the PH dataset (Figure 6.7), PSC achieves the highest reduction rates
in all datasets when 10 ≤ CL ≤ 50. This means that the corresponding k-NN classifiers
executed faster than the classifiers built using the rest of the CL values. In the case of the PH
dataset, reduction rate continues to improve with higher CL values.

Moreover, in the cases of the LIR (Figure 6.2), PD (Figure 6.3), LS (Figure 6.4), and TXR
(Figure 6.6) datasets, for CL ≤ 50, the preprocessing cost measurements of PSC were lower
than or close to those of RSP3. In the case of the SH dataset (Figure 6.5), which is the largest
one, RSP3 generates its condensing set at an extremely high computational preprocessing
cost. This is the result of the farthest point computations in the subsets created during RSP3
execution (see Subsection 2.1.4).
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In the cases of the LS (Figure 6.4) and SH (Figure 6.5) datasets, PSC could not reach the
accuracy levels of the other two methods, but it was quite close. In all other datasets (Fig-
ures 6.2, 6.3, 6.6, 6.7), PSC achieved higher accuracy measurements than CNN-rule and RSP3.
Furthermore, the PSC classifiers with condensing sets built using CL values greater than ten,
were more accurate and achieved higher reduction rate than those built by lower CL values
(Lopez et al. case [86]). However, the generation of these condensing sets was an “expensive”
procedure since it computed more distances. For non-dynamic environments, there is no need
for periodical condensing set reconstruction. Thus, we claim that thesemeasurementsmay not
be so significant since the condensing set is built only once.

We conclude that PSC is an adaptive algorithm that can be used either for fast condensing
set generation but with lower reduction rate and accuracy (this is the scenario presented by
lopez et al.), or for accurate and fast k-NN classification but with “expensive” condensing set
generation. The desirable performance can be achieved by tuning the CL parameter.

6.3.4 Conclusions

In this section, we compared three known DRTs, namely, CNN-rule, RSP3, and PSC. In addi-
tion, we demonstrated how the creation of a large number of clusters can improve the perfor-
mance of PSC. The experimental measurements derived by a cross-validation schema on six
datasets indicate that PSC can reach and exceed the classification performance of the other
two state-of-the-art algorithms. Therefore, it can be used either when fast execution of the
data reduction procedure is required, or when reduction rate and/or classification accuracy
are more critical than the preprocessing cost. The desirable trade-off between preprocessing
cost and accuracy/reduction rate can be defined by appropriately adjusting the parameter that
defines the number of clusters that will be created.

6.4 An extensive experimental study on Hwang and Cho

method

6.4.1 Motivation and contribution

Hwang and Cho have proposed a cluster-based method for fast k-NN classification [62]. It
is an adaptive approach which provides three parameters. Its effectiveness depends on the
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Figure 6.2: LIR (Accuracy, Reduction Rate, Preprocessing Cost)
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Figure 6.3: PD (Accuracy, Reduction Rate, Preprocessing Cost)
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Figure 6.4: LS (Accuracy, Reduction Rate, Preprocessing Cost)
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Figure 6.5: SH (Accuracy, Reduction Rate, Preprocessing Cost)
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Figure 6.6: TXR (Accuracy, Reduction Rate, Preprocessing Cost)
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Figure 6.7: PH (Accuracy, Reduction Rate, Preprocessing Cost)
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adjustment of these parameters. Hwang and Cho presented experimental results obtained
by specific parameter values and based on only one dataset. Moreover, they did not use the
Euclidean distance as the distance metric. These observations constitute the motivation of
the work presented in this section. The contribution of this work is an extensive experimen-
tal study on this method. It includes experiments on five datasets using different parameter
values. Also, we use the Euclidean distance as the distance metric.

The rest of this section is organized as follows. Section 6.4.2 considers in detail the Hwang
and Cho method and discusses the adaptive schema that it provides. In Section 6.4.3, we
present an extensive experimental study based on five datasets. The work concludes in Sec-
tion 6.4.4.

6.4.2 The Hwang and Cho method

TheHwang and Cho method (HCM) is an effective speed-up approach for k-NN classification.
The method is outlined in Algorithms 23 and 24 . During preprocessing, it uses the well-
known k-means clustering (see Section 2.4) to find clusters in the training set (TS) (lines
1–2 in Algorithm 23). Afterwords, each one cluster is divided into two sets that are called
“peripheral set” (ps) and “core set” (cs). In particular, the cluster items lying within a certain
distance from the cluster mean (centroid) are placed into cs, while the rest, more distant from
the centroid, items are placed into the ps (lines 3–14 in Algorithm 23).

When a new item x must be classified (classification step, see Algorithm 24), the method
finds the nearest cluster C1. If x lies within the core area of C1 (line 3), it is classified by
retrieving its k nearest neighbours fromC1 (lines 4,8–10). Otherwise, the k nearest neighbours
are retrieved from the reference set R formed by the items of the nearest cluster and the
“peripheral” items of the L most adjacent clusters (lines 6,8–10).

If the clusters were not divided and only the items of the nearest cluster were used to
classify the new item (regardless of how distant from the centroid it was), many training items
in the nearby clusters would be ignored. Therefore, Hwang and Cho proposed the use of some
nearby clusters as a safer approach. Themain innovation in theirmethod is that it uses only the
peripheral items of these additional adjacent clusters. If all items (not only the peripheral) of
these clusters were used, the classification computational cost would have been much higher.

A key factor of HCM is the determination of the threshold that defines which items will
be core and which peripheral. This is very critical since it determines how many items are
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accessed during classification. Hwang and Cho consider as peripheral items, those whose dis-
tance from the cluster centroid is greater than the double average distance among the items of
each cluster. Consequently, the average distance among the items in each cluster and the cor-
responding cluster centroid must be computed (line 8 in Algorithm 23, line 3 in Algorithm 24).

In this study, we do not use a particular threshold as Hwang and Cho did in their experi-
ments (they used the double average distance). We introduce parameter D to be responsible
for the splitting of the clusters into core and peripheral sets. An item x is placed into the
peripheral set of cluster C , if:

Distance(x, centroidofC) > D × CAvgDist

For example, if D = 1.5, the “peripheral sets” contain items that are more than 1.5 times the
average distance away from the cluster centroid. The determination ofD is a critical issue and
it should be made by considering the available number of clusters and the desirable trade-off
between classification accuracy and classification cost.

Another issue that must be addressed is related to the number of clusters that are con-
structed (determination of the k parameter in k-means clustering) and the number of adjacent
clusters that are examined when the new item lies within the peripheral area of the nearest
cluster (L parameter). Hwang and Cho empirically define k = 10 and L = ⌊

√
k⌋ for the

dataset they used in their experimental study.

6.4.3 Performance evaluation

The experimental study was conducted using five datasets distributed by the UCI Machine
Learning Repository5 [12, 44]. The datasets are presented in Table 6.5. The fifth column lists
the k value found to achieve the highest accuracy when using the k-NN classifier to classify
the testing data by scanning the whole training set (conv-k-NN). The computational cost was
estimated by counting the distance computations needed to carry out the whole classification
task. Contrary to Hwang and Cho, we estimated all distances using the Euclidean distance. All
datasets were used without data normalization or any other transformation. Also, in all HCM
experiments, we chose the k values of the k-NN classifier that achieved highest classification

5http://archive.ics.uci.edu/ml/
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Algorithm 23 HCM-preprocessing
Input:TS,D, k
Output:CLUSTERS

1: initial_means← use the first k items of TS as initial means
2: CLUSTERS ← K−MEANS(TS, initial_means)
3: for each cluster C ∈ CLUSTERS do
4: CAvgDist ← Compute the average distance of the items in C from the corresponding

cluster centroid
5: Ccs ← ∅
6: Cps ← ∅
7: for each item ti in C do
8: if Distance(ti, Centroid of C) ≤ D × CAvgDist then
9: Ccs ← Ccs ∪ {ti}
10: else
11: Cps ← Cps ∪ {ti}
12: end if
13: end for
14: end for
15: return (CLUSTERS)

Algorithm 24 HCM-classification
Input:CLUSTERS, k,D, L

1: for each unclassified item x do
2: Find L nearest to x clusters (based on clusters centroids), C1, C2, . . . , CL where C1 is

the nearest, C2 is the second nearest and so on
3: if Distance(x, Centroid of C1) ≤ D × CAvgDist then
4: R← C1

5: else
6: R← C1 ∪ C2ps ∪ C3ps ∪ . . . ∪ CLps

7: end if
8: Retrieve the k Nearest Neighbours from R
9: Find the major class (the most common one among the k Nearest Neighbours)
10: Classify x to the major class
11: end for
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Table 6.5: Datasets description and performance of the conventional k-NN classifier (Accuracy
(%) and Computational Cost (millions of distance computations))

Dataset Train/Test Attributes Classes Best Accuracy Costdataset size k (%)
Letter Image Recognition (LIR) 15000/5000 16 26 4 95.68 75
Magic Gamma Telescope (MGT) 14000/5020 10 2 12 81.39 70.28

Pendigits (PD) 7494/3498 16 10 4 97.89 26.21
Landsat Sattelite (LS) 4435/2000 36 6 4 90.75 8.87

Shuttle (SH) 43500/14500 9 7 2 99.88 630.75

accuracy. We resolved possible ties during class voting by selecting the class of the nearest
neighbour.

We define L = ⌊
√
k⌋ as Hwang and Cho did in their experiment. Concerning the k pa-

rameter that determines the number of clusters that are formed, we built 8 classifiers for each
dataset. Classifieri uses k = ⌊

√
n
2i
⌋ clusters, i = 1, . . . , 8, where n is the number of items in

the training set. Classifier1 is based on the rule of thumb that defines k = ⌊
√

n
2
⌋ [78]. We

decided to build classifiers that use low k values based on the observation that Hwang and
Cho set k = 10 for a training set with 60919 items. For each classifier, we chose a varying
value forD (1, 1.5, and 2). Thus, we built and evaluated 8× 3 = 24 classifiers for each dataset.

In Figures 6.8–6.12, for each dataset, the performance of the most accurate classifiers for
a given cost are presented2. The figures do not present the performance of conv-k-NN that is
mentioned in Table 6.5. In particular, in Figures 6.8–6.12, the classifiers built by the three D
values (1, 1.5 and 2) are compared to each other.

For the first three datasets (Figures 6.8–6.10), the classifiers built forD = 1 seem to perform
better than the ones built forD = 1.5 andD = 2. In the cases of the LIR andMGT datasets, the
superiority of the classifiersD=1 is obvious. In the case of the LIR dataset, the two classifiersD=1

presented in Figure 6.8 are build by setting k = ⌊
√

15000
21
⌋ = 86, L = ⌊

√
86⌋ = 9 and k =

⌊
√

15000
25
⌋ = 21, L = ⌊

√
21⌋ = 4, respectively. In the MGT dataset, the parameter values of

the most accurate classifier are D = 1, k = 59 and L = 7. Finally, in the PD dataset, the
fastest and slowest classifierD=1 is built by setting k = 61 and k = 15 respectively.

For the LS and SH datasets (Figure 6.11 – 6.12) there is not a dominantD parameter value
in terms of performance and accuracy. In the LS dataset, the most accurate classifier is built

2Detailed experimental results available at:http://users.uom.gr/~stoug/RSRM.zip
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by setting D = 1 and k = 16, while the fastest classifier that achieves an accuracy value over
89.2% is built using D = 1.5 and k = 23. In the SH dataset, the results are more confusing.
This is because the SH dataset is an imbalanced (skewed) dataset (approximately 80% of the
items belong to one class). However, in the SH dataset, all classifiers presented in Figure 6.12
manage to achieve higher accuracy than that of the conv-k-NN.

6.4.4 Conclusions

In this section, we presented an extensive experimental study on the Hwang and Cho method.
In all experiments we used the Euclidean distance. The classification performance of the
method depends on the determination of k (number of clusters built) and D parameters. In
all cases, they should be adjusted by taking into consideration the application domain and the
desirable trade-off between classification accuracy and classification cost. The experimental
measurements indicate that if accuracy is more critical than cost, low D and high k and L

values (e.g. D = 1) lead to an efficient classification method. On the other hand, if cost is
more critical than accuracy, higher D and lower k and L values may be more appropriate.
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Figure 6.8: LIR (Accuracy and Computational Cost)

Figure 6.9: MGT (Accuracy and Computational Cost)

Figure 6.10: PD (Accuracy and Computational Cost)
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Figure 6.11: LS (Accuracy and Computational Cost)

Figure 6.12: SH (Accuracy and Computational Cost)
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Chapter 7

Conclusions and future work

Improving the performance of the k-NN classifier is an active research problem. In the con-
text of this problem, the dissertation introduced various algorithms and techniques as well as
enhancements for existing methods. The proposed approaches can effectively deal with the
drawbacks and the weaknesses of the classifier. The main findings and contribution of the
conducted research are summarized below and directions for future work are suggested.

A major part of the dissertation deals with the concept of data reduction for efficient and
effective k-NN classification. In that context, the dissertation presented novel Data Reduction
Techniques (DRTs) as well as improvements and experimentations for existing techniques. In
Chapter 3, the family of DRTs based on homogeneous clusters and the corresponding exper-
iments were presented in detail. The family includes four algorithms, namely, RHC, dRHC,
EHC, and, ERHC. Although each algorithm aims to a specific goal, they all follow the com-
mon strategy of forming homogeneous clusters (clusters that contain items of a specific class).
Main motives behind the four algorithms constitute the fast and non-parametric (indepen-
dent of tuning parameters via trial-and-error procedures) preprocessing of the training set.
Certainly, high accuracy and reduction rates are also important goals.

RHC is a simple “general purpose” prototype abstraction algorithm that achieves high
performance. dRHC is an incremental variation of RHC. It incrementally constructs its con-
densing set. Consequently, dRHC is appropriate for dynamic / streaming domains where new
training data is gradually available. Moreover, dRHC effectively manages large datasets that
can not fit in main memory and/or it can be executed on devices with limited main mem-
ory (e.g., sensor devices). EHC is an editing algorithm. It aims to improve the quality of the
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training data - and as a consequence the classification accuracy - rather than speeding-up clas-
sification. This is accomplished through fast and non-parametric preprocessing that removes
outliers and noisy, mislabelled and close-border training items. Last but not least, ERHC is
a simple variation of RHC that integrates the idea of EHC editing. Therefore, it can achieve
high reduction rates regardless the level of noise in the training data and requiring as high
preprocessing cost as RHC.

In Chapter 4 two prototype abstraction algorithms were presented. First, a prototype ab-
straction variation of the IB2 condensing algorithm [5, 4], called AIB2, was investigated. AIB2
inherits all the properties of IB2 but achieves improved classification performance. It is based
on the idea of re-positioning prototypes in order to lie in the center of the data area they repre-
sent. Then, a noise-tolerant prototype abstraction algorithm was presented. It was shown that
a condensing set that stores only themeans of the clusters built by k-means clustering [79, 133]
iteratively executed on the set of training items belonging to each class contributes toward
noise tolerance during the classification process.

Research on data reduction also occupies two sections of Chapter 6. Section 6.3 introduced
improvements for the recently proposed PSC condensing algorithm [86, 85, 87]. In particular,
it demonstrated that the performance of PSC can be improved if a high number of clusters is
built during preprocessing. Section 6.2 demonstrated that typical non-parametric DRTs can
be effectively applied on time series data. The experimental study on several times-series
datasets showed that the prototype abstraction algorithms can achieve even higher accuracy
than the conventional k-NN classifier. Furthermore, in Section 5.4.3, we presented a simple
cluster-based method that improves the performance of DRTs by skipping redundant distance
computations, between unclassified items and prototypes that lie far from them during the
classification step. The proposed method performs classification tasks faster than DRTs, with-
out loss of accuracy and by requiring an extremely small extra preprocessing overhead.

WebDR1 (see Appendix A) is also a contribution of the dissertation. It allows users to exe-
cute data reduction experiments on-line via an interactive web interface. All the contributed
DRTs as well as the DRTs that have been implemented for comparison purposes during the
PhD research have been integrated in the particular web application. All the conducted ex-
periments related to data reduction can be verified using WebDR.

In Chapter 5, hybrid methods for fast and accurate k-NN classification were presented.
The methods do not reduce the size of the training data since they require that training items

1https://ilust.uom.gr/webdr
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are always available. In effect, the proposed methods combine different speed-up approaches
in order to accelerate the classification. Initially, we introduced a hybrid classifier and two
variations that combine the conventional k-NN and the minimum distance [38] classifiers.
The main advantage is that the proposed classifiers are model free, i.e., they do not require
expensive preprocessing on the training data. Then, a classification method that combines the
idea of data reduction with that of cluster-based methods was proposed. The method consists
of a preprocessing algorithm that builds a two-level data structure and efficient algorithms
that access this structure in order to perform fast and accurate classification. Finally, a hybrid,
non-parametric method that extends the aforementioned idea was presented. It is based on
forming homogeneous clusters and constructing a speed-up data structure.

In Section 6.4, we proposed enhancements for the Hwang and Cho method [62]. We
demonstrated that if the input parameters are carefully determined, one can obtain better
classification performance than the one achieved in the study of Hwang and Cho.

In all cases, the proposed algorithmswere experimentally evaluated on known datasets and
compared to popular speed-up methods. In addition, in many cases, the experimental results
were statistically validated using the Wilcoxon signed ranks test. Through the experimental
studies, we demonstrated that the proposed algorithms satisfied the goals for which they had
been developed and led to improved classification tasks.

The challenge of big data has emerged new research directions in the context of k-NN
classification. Traditional algorithms and techniques for efficient and effective k-NN classifi-
cation fail to manage fast and/or large data streams [1] with or without concept drifts [125] and
complex data (imbalanced datasets, items that belong to more than one classes, etc). Hence,
directions for future work could be:

• Development of non-parametric one-pass DRTs that take into account the phenomenon
of concept drift that may exist in data streams.

• Enhancements andmodifications on existing algorithms and techniques so that they can
cope with large and fast data streams (with or without concept drift).

• Parallel implementations of DRTs for fast construction of condensing sets.

• Development of DRTs that can be applied in complex problems such as multi-label clas-
sification [124, 20].
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• DRTs for imbalanced training data (e.g. reduction rates according to the size of each
class, avoidance of rare class item reduction, oversampling of rare and weak classes,
etc).
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Appendix A

WebDR: A Web workbench for Data
Reduction

A.1 System description

All contributed Data Reduction Techniques (DRTs) (i.e., RHC, dRHC, EHC, ERHC, AIB2, RkM)
aswell as theDRTs that were coded and used for comparison purposes during the experimental
studies (i.e., CNN-rule, IB2, RSP3, PSC, ENN-rule, All-k-NN, Multiedit) have been integrated
in a web application, which we call WebDR (Web workbench for Data Reduction)1 [99]. In
effect, WebDR offers all DRTs implemented in the context of the dissertation available on-line.
The motivation behind its development was the absence of software that allows execution of
k-NN classification through data reduction over the web.

More specifically, WebDR allows the users to plan and run experiments and measure the
classification performance through an interactive web interface over several known datasets
distributed by the KEEL2 [6] or/and the UCI3 [12, 44] dataset repositories and time-series
datasets distributed by the UCR time-series classification/clustering website4. All the avail-
able datasets can be explored in detail using the “dataset explorer” tool that is available in
WebDR (see Figure A.2). The performance of DRTs is evaluated by measuring the three crite-
ria presented in Subsection 2.1.1.

1https://ilust.uom.gr/webdr
2http://sci2s.ugr.es/keel/datasets.php
3http://archive.ics.uci.edu/ml/
4http://www.cs.ucr.edu/~eamonn/time_series_data/
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All the possible preprocessing types presented in Subsection 2.1.1 can be executed by
WebDR (see Figure 2.1). The main page of the application offers four links (see Figure A.1).
Each one leads to the corresponding type of preprocessing. The reported performance mea-
surements are averages obtained via five-fold cross-validation. All datasets built during pre-
processing are available to the users in a five-fold form (five pairs of training and testing sets).
They can be downloaded and used by the user locally. Of course, the number of the nearest
neighbours and the DRT specific parameters (if any) can be adjusted through the interface.
Note that WebDR adopts the Euclidean distance as the distance metric.

Currently, WebDR is hosted on a Debian GNU/Linux server with two 64-bit Quad-Core
CPUs and 2GB of main memory. All algorithms were coded in C. The web interface was de-
veloped using PHP (server-side programming) and html/CSS and javascript (client-side pro-
gramming). The executable binaries of the implemented algorithms are located and executed
on the server.

WebDR aspires to support teaching and research on data reduction. We consider that it
can be used by the academia for educational and experimental purposes. In the future, we
plan to integrate more DRTs and datasets in WebDR. Moreover, we will develop a mechanism
that will allow users to run experiments on their own datasets.

A.2 Case study

The screen-shots presented in Figures A.1– A.6 demonstrate a case study of an experiment
through WebDR. More specifically, the figures present a complete data reduction preprocess-
ing procedure, i.e., successive application of editing and data abstraction, over the Landsat
satellite dataset (see Figure A.2), the application of the k-NN classifier (with k=1) on the con-
densing set built and the corresponding performance results. ENN-rule with k = 3 is utilized
for editing and RHC is used for data abstraction. Please note that the successive execution of
both types of preprocessing is not mandatory. WebDR allows the execution of only editing
or data condensing / abstraction during preprocessing. Of course, only classification (without
preprocessing) is also offered (see Figure A.1).
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Figure A.1: Initial page of WebDR

Figure A.2: Dataset explorer tool: Exploration of the Landsat Satellite dataset
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Figure A.3: Editing of the Landsat Satellite dataset through ENN-rule (with k=3)

Figure A.4: Results of ENN-rule and data abstraction through RHC
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Figure A.5: Results of RHC and selection of k = 1 for the classification step

Figure A.6: Results of the k-NN classification
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Appendix B

Publications

B.1 Journals

1. Stefanos Ougiaroglou, Georgios Evangelidis, “RHC: Non-parametric cluster-based
data reduction for efficient k-NN classification”, Pattern Analysis and Applications,
Springer, accepted with minor revision, revision is under review (Impact factor: 0.814)

2. Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient k-NN classification based on
homogeneous clusters”, Artificial Intelligence Review, Springer (Impact factor: 1.565)

3. Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient data abstraction usingweighted
IB2 prototypes”, Computer Science and Information Systems (ComSIS), accepted, to
appear (Impact factor: 0.549)

4. Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos “FHC: An adaptive fast
hybrid method for k-NN classification”, Logic Journal of the IGPL, Oxford journals,
accepted with major revision, revision is under review (Impact factor: 1.136)

5. Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient editing and data abstraction by
finding homogeneous clusters”, under review
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B.2 Book chapters

1. Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou, Georgios Evange-
lidis, Dimitris A. Dervos, “Applying prototype selection and abstraction algorithms
for efficient time series classification”, In “Artificial Neural Networks - Methods and
Applications in Bio-/Neuroinformatics (Series in Bio-/Neuroinformatics)”, Springer, ac-
cepted, to appear

B.3 Conferences

1. Stefanos Ougiaroglou, Georgios Evangelidis, “EHC: Non-parametric editing by finding
homogeneous clusters”, In proceedings of 8th International Symposium on Founda-
tions of Information and Knowledge Systems (FoIKS 2014), Springer/LNCS, accepted,
Bordeaux, France, 2014

2. Stefanos Ougiaroglou, Georgios Evangelidis, “WebDR: A Web Workbench for Data
Reduction”, In proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2014),
Springer/LNAI, demo paper, accepted, Nancy, France, 2014

3. Stefanos Ougiaroglou, Georgios Evangelidis, “AIB2: An abstraction data reduction
technique based on IB2”, In proceedings of 6th Balkan Conference in Informatics (BCI
2013), ACM ICPS, pp. 13-16, Thessaloniki, Greece, 2013

4. Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou, Georgios Evange-
lidis, Dimitris A. Dervos, “Applying general-purpose data reduction techniques for
fast time series classification”, In proceedings of 23rd International Conference on Ar-
tificial Neural Networks (ICANN 2013), Springer/LNCS 8131, pp. 34-41, Sofia, Bulgaria,
2013

5. Stefanos Ougiaroglou, Georgios Evangelidis, “A fast hybrid k-NN classifier based on
homogeneous clusters”, In proceedings of 8th IFIPWG12.5 International Conference on
Artificial IntelligenceApplications and Innovations (AIAI 2012), IFIPAICT 381, Springer,
pp. 327-336, Halkidiki, Greece, 2012
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6. Stefanos Ougiaroglou, Georgios Evangelidis, “Efficient dataset size reduction by find-
ing homogeneous clusters”, In proceedings of 5th Balkan Conference in Informatics
(BCI 2012), ACM ICPS, pp. 168-173, Novi Sad, Serbia, 2012

7. Stefanos Ougiaroglou, Georgios Evangelidis, “Fast and accurate k-nearest neighbour
classification using prototype selection by clustering”, In proceedings of 16th Panhel-
lenic Conference on Informatics (PCI 2012), IEEE CPS, pp. 168-173, Piraeus, Greece,
2012

8. Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “An adaptive hybrid
and cluster-based model for speeding up the k-NN classifier”, In proceedings of
7th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2012),
Springer/LNCS 7209, pp. 163-175, Salamanca, Spain, 2012

9. Stefanos Ougiaroglou, Georgios Evangelidis, “A simple noise-tolerant abstraction al-
gorithm for fast k-NN classification”, In proceedings of 7th International Conference
on Hybrid Artificial Intelligence Systems (HAIS 2012), Springer/LNCS 7209, pp.210-221,
Salamanca, Spain, 2012

10. Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “A fast hybrid classi-
fication algorithm based on the minimum distance and the k-NN classifiers”, In pro-
ceedings of 4th International Conference on SImilarity Search and APplications (SISAP
2011, ACM), pp. 97-104, Lipari island, Italy, 2011

11. Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos, “An extensive exper-
imental study on the cluster-based reference set reduction for speeding-up the k-
NN classier”, In proceeding of International Conference on Integrated Information, IC-
ININFO 2011, pp. 12-15, Kos island, Greece, 2011
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