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Abstract

Recent studies in data mining have proposed a new
classification approach, called associative classification,
which, according to several reports, such as [7, 6],
achieves higher classification accuracy than traditional
classification approaches such as C4.5. However, the
approach also suffers from two major deficiencies: (1)
it generates a very large number of association rules,
which leads to high processing overhead; and (2) its
confidence-based rule evaluation measure may lead to
overfitting.

In comparison with associative classification, tra-
ditional rule-based classifiers, such as C4.5, FOIL and
RIPPER, are substantially faster but their accuracy, in
most cases, may not be as high. In this paper, we
propose a new classification approach, CPAR (Classi-
fication based on Predictive Association Rules), which
combines the advantages of both associative classifica-
tion and traditional rule-based classification. Instead of
generating a large number of candidate rules as in asso-
ciative classification, CPAR adopts a greedy algorithm
to generate rules directly from training data. Moreover,
CPAR generates and tests more rules than traditional
rule-based classifiers to avoid missing important rules.
To avoid overfitting, CPAR uses expected accuracy to
evaluate each rule and uses the best k rules in predic-
tion.

1 Introduction

In recent years, a new approach called associative
classification [7, 6] is proposed to integrate association
rule mining [1] and classification. It uses association rule
mining algorithm, such as Apriori [1] or FPgrowth [5], to
generate the complete set of association rules. Then it
selects a small set of high quality rules and uses this rule
set for prediction. The experiments in [7, 6] show that
this approach achieves higher accuracy than traditional
classification approaches such as C4.5 [8]. However,
associative classification suffers from efficiency due to
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the facts that it often generates a very large number of
rules in association rule mining, and also it takes efforts
to select high quality rules from among them.

In this paper, we propose a novel approach called
CPAR (Classification based on Predictive Association
Rules). CPAR inherits the basic idea of FOIL [9] in
rule generation and integrates the features of associa-
tive classification in predictive rule analysis. In compar-
ison with associative classification, CPAR, has the fol-
lowing advantages: (1) CPAR generates a much smaller
set of high-quality predictive rules directly from the
dataset; (2) to avoid generating redundant rules, CPAR
generates each rule by considering the set of “already-
generated” rules; and (3) when predicting the class label
of an example, CPAR uses the best k rules that this ex-
ample satisfies.

Moreover, CPAR employs the following features
to further improve its accuracy and efficiency: (1)
CPAR uses dynamic programming to avoid repeated
calculation in rule generation; and (2) when generating
rules, instead of selecting only the best literal, all the
close-to-the-best literals are selected so that important
rules will not be missed.

CPAR generates a smaller set of rules, with higher
quality and lower redundancy in comparison with asso-
ciative classification. As a result, CPAR is much more
time-efficient in both rule generation and prediction but
achieves as high accuracy as associative classification.

The outline of this paper is as follows. section 2
reviews the general ideas of rule-based classification.
Section 3 describes the rule generation process in CPAR.
Section 4 discusses how to predict class labels for unseen
examples using the rules generated. The experimental
results and performance study are presented in section
5, and we conclude the study in section 6.

2 Rule-Based Classification

Let T be a set of tuples. Each tuple ¢ in T follows the
scheme (A1, As, ..., Ay), where Aj,Ag, ..., Ay are k
attributes. Each continuous attribute is first discretized
into a categorical attribute.



DEerFINITION 2.1. (literal) A literal p is an attribute-
value pair, taking the form of (A;,v), in which A; is
an attribute and v a value. A tuple t satisfies a literal
p=(A;,v) if and only if t; = v, where t; is the value of
the it" attribute of t.

DEFINITION 2.2. (rule) A rule r, which takes the form
of “pr ANp2 A--+- ANpp — ¢,” consists of a conjunction of
literals p1, p2, ..., pi, associated with a class label c. A
tuple t satisfies rule r’s body if and only if it satisfies
every literal in the rule. Ift satisfies r’s body, r predicts
that t is of class c. If a rule contains zero literal, its
body is satisfied by any tuple.

Two important association rule-based classifiers are
CBA [7] and CMAR [6]. CBA first generates all the
association rules with certain support and confidence
thresholds as candidate rules. It then selects a small set
of rules from them to form a classifier. When predicting
the class label for an example, the best rule (i.e., with
the highest confidence) whose body is satisfied by the
example is chosen for prediction.

CMAR  generates and evaluates rules in a similar
way as CBA (but uses a more efficient FPtree structure
[5]). A major difference is that it uses multiple rules in
prediction, using weighted x2. Their experiments show
that CMAR outperforms CBA in accuracy.

When datasets contain a large number of rows
and/or columns, both rule generation and rule selection
in CBA and CMAR are time consuming. In this paper,
a novel approach is proposed to overcome this problem:
Instead of generating candidate rules, a small set of
predictive rules are directly generated from the dataset
based on the rule prediction and coverage analysis.

3 Rule Generation

The basic idea of CPAR is from FOIL, which is intro-
duced in section 3.1. The rule generation algorithm of
CPAR is developed step-by-step in sections 3.2 and 3.3.

3.1 FOIL: A Brief Introduction. FOIL (First Or-
der Inductive Learner), proposed by Ross Quinlan in
1993 [9], is a greedy algorithm that learns rules to dis-
tinguish positive examples from negative ones. FOIL re-
peatedly searches for the current best rule and removes
all the positive examples covered by the rule until all
the positive examples in the data set are covered. The
algorithm FOIL is presented in Figure 1. For multi-class
problems, FOIL is applied on each class: for each class,
its examples are used as positive examples and those of
other classes as negative ones. The rules for all classes
are merged together to form the result rule set.

When selecting literals, Foil Gain is used to measure
the information gained from adding this literal to the

ALGORITHM 3.1. FOIL

Input: Training set D = PUN. (P and N are the sets of
all positive and negative examples, respectively.)

Output:
examples.

A set of rules for predicting class labels for

Procedure FOIL
rule set R «+— @
while |P| >0
N « N,P « P
rule r «— empty_rule
while |[N’| > 0 and r.length < max_rule_length
find the literal p that brings most gain
according to P’ and N’
append p to r
remove from P’ all examples not satisfying r
remove from N’ all examples not satisfying r
end
R+— RU{r}
remove from P all examples satisfying r’s body
end
return R

Figure 1: The FOIL algorithm

current rule. Suppose there are |P| positive examples
and |N| negative examples satisfying the current rule
r’s body. After literal p is added to r, there are |P*|
positive and |N*| negative examples satisfying the new
rule’s body. Then the Foil gain of p is defined as,

P

(3.1) gain(p) = |P"| <10g TR T
|P*[ 4 | N*|

s )

[P+ [N
where gain(p) is the number of bits saved in represent-
ing all the positive examples by adding p to 7.

LEMMA 3.1. (The running time of FOIL). FOIL
takes O(nkm|R)|) time, where there are n examples, each
having k attributes, and each attribute having m values
on average, and FOIL generates |R| rules.

Proof. There are km possible literals. When searching
for the first literal of a rule, there are O(n) examples
left. So it takes O(nkm) time to identify the first
literal. Suppose each literal covers B of all remaining
examples. When searching for the i*" literal, there are
O(B'n) examples left (0 < < 1). So searching for one
rule takes O(nkm) time, and generating |R| rules takes
O(nkm|R|) time.

3.2 Predictive Rule Mining. In this section we
propose Predictive Rule Mining (PRM), an algorithm
which modifies FOIL to achieve higher accuracy and
efficiency. One reason that FOIL does not achieve as
high accuracy is that it generates a very small number
of rules. In PRM, after an example is correctly covered
by a rule, instead of removing it, its weight is decreased



by multiplying a factor. This “weighted” version of
FOIL produces more rules and each positive example
is usually covered more than once.

The most time consuming part of FOIL is evalu-
ating every literal when searching for the one with the
highest gain. In fact, similar to [4], to calculate the gain,
we only need to know the information stored in a data
structure called PNArray.

DEFINITION 3.1. (PNArray) A PNArray stores the
following information corresponding to rule r.

1. P and N: the numbers of positive and mnegative
examples satisfying r’s body.

2. P(p) and N(p): for each possible literal p, the numbers
of positive and negative examples satisfying the body
of rule ', the rule constructed by appending p to r.

If there exists a PNArray corresponding to the
current rule, the gain of every literal can be calculated,
with the best one found, in O(km) time, independent
of the size of the dataset. The PNArray for the empty
rule can be easily computed from the training set. We
can scan every attribute of every tuple and increase
the number of positive (or negative) examples satisfying
every predicate. It takes O(nk) time to compute this
initial PNArray. If one adds/removes an example
to/from the dataset, it takes O(k) time to update the
PNArray. By using PNArray, the algorithm Predictive
Rule Mining (Figure 2) achieves much higher efficiency
than FOIL on large datasets.

LEMMA 3.2. Predictive rule mining presented in Algo-
rithm 3.2 takes O(nk|R|) time.

Proof. During the process of building a rule, it removes
each example at most once. Moreover, it takes O(k)
time to update the PNArray when removing an example.
So it takes O(nk) time to build a rule. After building a
rule, it changes the weights of at most n examples, and
it takes O(nk) time to update the PNArray. Therefore,
Predictive Rule Mining (PRM) takes O(nk|R|) time.

3.3 Rule Generation in CPAR. In associative
classification, association rule mining is used to gener-
ate candidate rules, which includes all conjunctions of
literals that meet the support threshold. Then a subset
of rules are selected from the candidates. This subset
is built by combining the best § rules for every example
(6 =1in [7], and 6 =4 in [6]). This can be considered
as doing exhaustive search in rule generation.

PRM has higher efficiency but lower accuracy than
associative classification. In PRM, every rule is gener-
ated from the remaining dataset. Suppose an example
t in the remaining dataset is covered by a rule r that is

ALGORITHM 3.2. Predictive Rule Mining (PRM)

Input and output: The same as Algorithm 1.

Procedure Predictive Rule Mining
set the weight of every example to 1
rule set R «— &
totalWeight — TotalWeight(P)
A «— Compute PNArray from D
while TotalWeight(P) > ¢ - totalWeight
N «N,P «P,A —A
rule r «— emptyrule
while true
find best literal p according to A’
if gain(p) < min_gain then break
append p to r
for each example ¢t in P’ U N’ not satisfying
r’s body
remove t from P’ or N’
change A’ according to the removal of ¢
end
end
R— RU{r}
for each example ¢ in P satisfying r’s body
t.weight «— a - t.weight
change A according to the weight decreased
end
end
return R

Figure 2: The Predictive Rule Mining algorithm

just generated. We are not sure whether r is the best
rule for ¢ because (1) r is generated by greedy algorithm;
and (2) r is generated from the remaining dataset in-
stead of the whole dataset. In PRM, we also generate
at least a certain number of rules for each example (de-
pending on the weight decay factor ). However, these
several rules are not necessarily the best rules for the
reasons illustrated above.

When selecting literals during the rule building
process, PRM selects only the best literal and ignores all
the others. There are often a few literals with a similar
gain. Thus there are usually many rules with similar
accuracy based on the remaining dataset. The “best”
rule among them may not be the best rule based on the
whole dataset. However, PRM selects only one of them,
which may lead to missing some important rules.

Here a novel approach called CPAR is proposed.
It stands in the middle between exhaustive and greedy
algorithms and combines the advantages of both. CPAR
builds rules by adding literals one by one, which is
similar to PRM. However, instead of ignoring all literals
except the best one, CPAR keeps all close-to-the-best
literals during the rule building process. By doing so,
CPAR can select more than one literal at the same time
and build several rules simultaneously.



The following is a detailed description of the rule
generation algorithm of CPAR. Suppose at a certain
step in the process of building a rule, after finding the
best literal p, another literal ¢ that has similar gain as p
(e.g., differ by at most 1%) is found. Besides continuing
building the rule by appending p to r, ¢ is also appended
to the current rule r to create a new rule r’, which is
pushed into the queue. Each time when a new rule is to
be built, the queue is first checked. If it is not empty, a
rule is extracted from it and is taken as the current rule.
This forms the depth-first-search in rule generation.

Ezample. Figure 3 shows an example of how CPAR
generates rules. After the first literal (A; = 2) is
selected, two literals (As = 1) and (A3 = 1) are
found to have similar gain, which is higher than other
literals. Literal (As = 1) is first selected and a rule
is generated along this direction. After that, the rule
(A; = 2, A3 = 1) is taken as the current rule. Again
two literals with similar gain (A4 = 2) and (Ag = 1) are
selected and a rule is generated along each of the two
directions. In this way, three rules are generated:

(A1 =2, Ay =1, Ay = 1).
(A1 =2, A3 =1, Ay =2, Ay = 3).
(A1 =2, A3 =1, Ay = 1).

AlR2—T1 > A2=1—>A4=1

—-A3=1 ~[AA;2 ——=A23
A2=1

Figure 3: Some rules generated by CPAR.

LEMMA 3.3. CPAR’s rule generation takes O(nk|R|)
time.

Proof. When ezamining whether an example t satisfies
a rule r’s body, we examine whethert satisfies r’s literals
one by one. Thus it takes constant expected time to
determine whether an example satisfies a rule’s body.
In CPAR’s rule generation algorithm, when a rule is
extracted from the queue, we need to find examples
satisfying this rule’s body from the remaining examples
and calculate the PNArray for them, which takes O(nk)
time. With Lemma 3.2, we know that it still takes O(nk)
to build a rule and takes O(nk|R|) time to build the rule
set.

4 Prediction Using Rules

4.1 Rule Evaluation. Before making any predic-
tion, every rule needs to be evaluated to determine its

prediction power. For arule r = “py Apa A---Ap; — 7,
we define its expected accuracy as the probability that
an example satisfying r’s body belongs to class ¢, or
Prob(t € c | t satisfies r's body).

We use the Laplace expected error estimate [2] to
estimate the accuracy of rules, which is defined as
follows. The expected accuracy of a rule is given by:

(4.2)  LaplaceAccuracy = (n. + 1)/ (nior + k)

where k is the number of classes, ny; is the total number
of examples satisfying the rule’s body, among which n,
examples belong to ¢, the predicted class of the rule.

4.2 Classification. Given a rule set containing rules
for each class, we use the best k rules of each class for
prediction, with the following procedure: (1) select all
the rules whose bodies are satisfied by the example; (2)
from the rules selected in step (1), select the best k rules
for each class; and (3) compare the average expected
accuracy of the best k rules of each class and choose
the class with the highest expected accuracy as the
predicted class.

We use multiple rules in prediction because (1) the
accuracy of rules cannot be precisely estimated, and (2)
one cannot expect that any single rule can perfectly
predict the class label of every example satisfying its
body. Moreover, we use the best k rules instead of all
the rules because there are different number of rules for
different classes, and we do not want to use lower ranked
rules in prediction when there are already enough rules
to make prediction.

5 Experimental Results

We have conducted an extensive performance study to
evaluate accuracy and efficiency of CPAR and compare
it with that of C4.5 [8], RIPPER [3], CBA [7] and
CMAR [6].

As in [7] and [6], 26 datasets from UCI Machine
Learning Repository are used. All the experiments
are performed on a 1.7GHz Pentium-4 PC with 1GB
main memory. All the approaches are implemented by
their authors. The parameters of CPAR are set as the
following. In the rule generation algorithm, ¢ is set to
0.05, min_gain to 0.7, and a to 2/3. The best 5 rules
are used in prediction.

Table 1 shows the accuracy of the five approaches
on 26 datasets from UCI ML Repository. 10-fold cross
validation is used for every dataset.

Table 2 compares the running (training) time of
RIPPER, CMAR (which is claimed to be more efficient
than CBA) and CPAR on the 26 datasets. Notice that
Table 2 uses both arithmetic and geometric average.
This is because the running times of different datasets



| Dataset | c4.5 ‘ ripper | cba | cmar | cpar | ‘ | RIPPER | CMAR | CPAR |
anneal 94.8 95.8 979 | 97.3 | 984 Arithmetic average 8.20 305 244
austral 84.7 87.3 849 | 86.1 86.2 Geometric average 5.74 185 106
auto 80.1 72.8 783 | 78.1 | 82.0
breast 95.0 051 96.3 | 96.4 | 96.0 Table 3: Number of rules: RIPPER, CMAR and CPAR
cleve 78.2 82.2 82.8 | 82.2 | 81.5
cerx 84.9 84.9 847 | 849 | 8.7 the following distinguished features: (1) it uses greedy
diabetes 74.2 4.7 74.5 75.8 75.1 approach in rule generation, which is much more effi-
german 72.3 | 69.8 | 734 | 749 | 734 cient than generating all candidate rules, (2) it uses a
glass 68.7 | 69.1 | 739 | 70.1 | 744 dynamic programming approach to avoid repeated cal-
heart 80.8 | 80.7 | 81.9 | 822 | 826 culation in rule generation, (3) it selects multiple literals
hepatic 80.6 76.7 81.8 | 80.5 | 794 and builds multiple rules simultaneously, and (4) it uses
horse 82.6 84.8 82.1 82.6 | 84.2 expected accuracy to evaluate rules, and uses the best
hypo 99.2 98.9 98.9 98.4 98.1 k rules in prediction.
iono 90.0 91.2 92.3 | 91.5 | 92.6 CPAR represents a new approach towards efficient
iris 95.3 94.0 94.7 | 94.0 | 94.7 and high quality classification. It is interesting to
labor 79.3 84.0 86.3 | 89.7 | 84.7 further enhance the efficiency and scalability of this
led7 73.5 69.7 719 | 725 | 73.6 approach and compare it with other well-established
lymph 73.5 79.0 77.8 | 83.1 82.3 classification schemes. Moreover, the strength of the
pima 75.5 73.1 72.9 75.1 73.8 derived predictive rules also motivates us to perform
sick 98.5 97.7 97.0 97.5 96.8 an in-depth study on alternative approaches towards
sonar 70.2 78.4 775 794 | 79.3 effective association rule mining.
tic-tac 99.4 98.0 99.6 | 99.2 | 98.6
vehicle 72.6 62.7 68.7 68.8 69.5 References
waveform | 78.1 76.0 80.0 | 83.2 | 80.9
wine 92.7 91.6 95.0 | 95.0 | 95.5 0 R A L and R. Srikant. Fast aleorithms f o
. rawal an . Orikant. rfast algorithms 1or minin
700 922 88.1 J6.8 7.1 9.1 assocgi;ation rules. In VLDB’9/, pp.g48774997 San‘ciagog7
| Average | 83.34 ‘ 82.93 | 84.69 | 85.22 | 85.17 | Chile, Sept. 1994.

Table 1: Accuracy: C4.5, RIPPER, CBA, CMAR and
CPAR

differ a lot, and the arithmetic average is dominated
by the most time-consuming datasets. Using geometric
average, equal weight is put on every dataset. Thus
we consider geometric average as a more reasonable
measure. Table 3 shows the average number of rules
used in RIPPER, CMAR and CPAR.

y | RIPPER | CMAR | CPAR |

0.218 30.24 | 0.555
0.036 2.877 | 0.105

Arithmetic average
Geometric average

Table 2: Running time (in sec.): RIPPER, CMAR and
CPAR

6 Conclusions

A new classification approach, called CPAR, is devel-
oped to integrate classification and association rule min-
ing. Based on our performance study, CPAR achieves
high accuracy and efficiency, which can be credited to
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