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Sclientometrics

o Metrics evaluating the research work of a
scientist by assigning impact scores to his/her
articles.

o Usually expressed as definitions of the form:

A scientist a Is of value V If at least V of his
articles receive a score S >V.

o A researcher must author numerous qualitative
articles.



h-index

o The first and most popular of these metrics Is
h-index (Hirsch, 2005).

o A researcher a has h-index h, if h of his/her P2
articles have received at least h citations.

o This metric indicates the impact of an author.

o An author must not only produce numerous
papers;
o His/her papers must also be cited frequently.



Time-Aware h-index Variants

o The contemporary and trend h-index
(Sidiropoulos, 2006) introduced temporal
aspects in the evaluation of a scientist's work.

o They assign to each article of an author time-
decaying scores:
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Contemporary and Trend
h-indices

o (4Y);: The time (in years) elapsed since the
publication of the article 1.

o y=4,0=L1|P"|: number of papers citing p;

o Contemporary score: The value of an article
decays over time.

o Trend Score: An article is important if it
continues to be cited in the present.

o A scientist a has contemporary h-index h. If at
least h. of his articles receive a score S, > h,




Scientometrics Computation

o Easy for small datasets

o For h-index we just need to identify the
articles of each researcher and enumerate all
their incoming citations.

o However, for large datasets the computation
becomes more complex:

The data (authors, citations, and metadata)
do not fit In main memory.

Tens of millions of articles and authors



Academic Search Engines

and data structures
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MapReduce (1)

o MapReduce: A fault tolerant framework for
distributing problems to large clusters.

o The Input data Is split in chunks; each chunk is
processed by a single Worker process (Map).

o Mapper outputs are written in intermediate files.

o In the sequel, the Reducers process and merge
the Mappers’ outputs.

o The data Is formatted in key-value pairs.



MapReduce (2)

o The MapReduce algorithms are expressed by
writing only two functions:

Map: map(k,,v,)— list(k,,v,)
Reduce: reduce(k,, list(v,)) —>list(ks,v;)
o The MapReduce Jobs are deployed on top of
a distributed file system which serves files,

replicates data, and transparently addresses
hardware failures.



Combiners

o An optional component standing between the
Mappers and the Reducers.

o It serves as a mini-Reducer; it merges the
values of the same keys for each Map Job.

o It reduces the data exchanged among system
nodes, thus saving bandwidth.

o Implementations
Explicit: Declare a Combine function

In-Mapper: merge the values of the same key
within map.
Guaranteed execution!



Parallelizing the Problem

o Goal: Compute Scientometrics in parallel
o Input: ( p;,C" ) — ( paperID, paperContent)
o Output: (a, I\/Ij‘) — (author, metric)

o To reach our goal, we have to construct for
each author, a list of his/her articles sorted by
decreasing score.:

(a, SortedList[( Py, Sxpl),( P2 S,” )( P S, )])

o Then, we just iterate through the list and we
compute the desired metric value.



Methods 1,2 — Map Phase

: class Mapper
method map (integer p;; string C*?)
P + ExtractReferences(C??)
for all references p € P
S? + ComputeScore(p)
AFP « Extract Authors(p)

(author, <paper, score>) : for all authors a € A”
\SNemit (a, pair(p. .5'p:]|
Sb: /emit (pair|a, p], S*)

AN S o

(<author, paper>, score)—/

o Notice: We emit the references’ authors, not
the paper’s authors



® Method 1, Reduce Phase

o Reducer Input. (author, pair <paper, score>)

(@) Create an aSSOC|at|Ve 7\ Algorithm 2 Method 1, Reducer class

1: class Reducer

array Wthh Stores for 2:  method reduce (string a; pairs[integer p, float S7])

] 3: H +« new AssociativeArray
eaCh author, a ||St Of >\—1\ for all pair }IE pairs[integer p, float S”]
. 5 if v.p €
<paper, score> palrs. s H?.S «+ HP.S +v.SP
T: else
o Sum partial paper scores | & H.add(v)

_/ 9: sort H in descending S order
. integer papers + 0, metric + 0
o Sort the array by }/i)/ for all pairs € H
- 12: papers < papers + 1
descending score. s -

if H?.S > papers

. / metric <— metric + 1
o Compute metric. 15

B else
16: stop iteration
17 emit (a, metric)




Method 2, Reduce Phase

Reducer Input. (pair <author,paper>, score)

Keys sorted by author
and paper (secondary

sort).
We create an associative

array which stores for each
author, a list of

Algorithm 3 Method 2, Reducer class

<paper, score> pairs -

1: class Reducer

11:

DN DO

method initialize

string aprev <— 77
integer ppres +— 0
integer n «+— 0
H + new Array
method reduce (pair[string a, integer p|: float 57)
if a = aprev
if P = Pprev
H(n)+ H(n)+ 57

Compute metric

else
12: H .add(S%)
13: n+— 1+ 1
14: else
15: —>Perform steps 9-17 of Algorithm 2
16: H .reset()
17: Aprev +— 4
18: Pprev +— P
19: o+ 0
20: method close
21: emit (a, metric)




Method 1-C, Map-Reduce

Algorithm 4 Method 1-C: Improved version of method 1 with Combiners

1:
2
3
4:
5
6
7

class Mapper
method initialize
H + new AssociativeArray
method map (integer p;; string C¥*)
P «+ ExtractReferences(C?*1)
for all references p € P
S? + ComputeScore(p)
AP « ExtractAuthors(p)
(for all authors a € AP
if ad H
L% + new Array
L% .add(p, S7)
H .add(a, L")
else
it pg H.L"
H.L® .add(p, S7)
else
\_ H.L® update(p, +57)
method close
for all authors a € H
emit (a, list(p, S*))

Merge unique authors
A

22: class Reducer
23:  method reduce (string a; list[integer p, float S¥])

24: H + new AssociativeArray

25: for all pair v € list[linteger p, float S7]
26: itvpe H

27: H¥? .S + H?.S +v.57

28: else

29: H .add(v)

30: Perform steps 9-17 of Algorithm 2

In-Mapper Combiner (unique keys).

map emits author as key, and a list
of <paper, score> pairs as value.

The Reducer merges the lists
associated with the same key.

The list is sorted by score




® Method 2-C, Map-Reduce

Algorithm 5 Method 2-C: Improved version of method 2 with the introduction
of in-Mapper Combiners. The Reducer is identical to the one of Algorithm 3.

1: class Mapper 22: class Reducer

2:  method initialize 23:  method reduce (string a; list[integer p, float S¥])
3 H + new AssociativeArray 24: H + new AssociativeArray

4: method map (integer p;; string C7%) 25: for all pair v € list[integer p, float S”|

5 P + ExtractReferences(C¥?) 26: ifvpe H

6: for all references p € P 27: HY § «— H? § +v.5*7

7 S*¥ « ComputeScore(p) 28: else

8: AP « ExtractAuthors(p) 20: H .add(v)

0: for all authors a € A? 30: Perform steps 9-17 of Algorithm 2

10: if pair(a.p) € H . .

11: H add(pair(a. p). SP) o In-Mapper Combiner (uniqgue keys).
12: else I I
13: H wupdate(pair(a, p), +57) O map emlts <author ¢ paper> palrs
4 method close as key, and <score> as value.
15: for all pairs (a,p) € H o The Reducer merges the lists
16: emit (pair(a,p), S¥)

_ associated with the same key.
o The listis sorted by score



Experiments

o We applied our algorithms at the CiteSeerX
dataset, an open repository comprised of 1,8
million research articles.

o We used the XML version of the dataset.
Total input size: ~28 GB.
Small, but the largest publicly available.

Statistic Value
Input Records |1,844,272
[nput Size 27.6 GB

Output Records|2,865,282
Output Size 30.9 MB
Table 3. Problem input-output statistics




MapReduce I/O Sizes

o The methods which employ Combiners
perform reasonably better

o Method 1-C: The Mappers produce 21.7 million
key-value records (gain ~41%). Total output
size = 600MB (gain ~13% less bandwidth).

o Method 2-C: 34.2 million records and 643 MB
(~7%).

Mapper Output Reducer
Method Recufés Size i[[)[\-"lB] Input Groups
method 1 36,687,999 688.4 2,865,282
method 2 36,687,999| 688.4 12,260,311
method 1-C 21,736,395 600.8 2,865,282
method 2-C 34,251,437 643.2 12,260,311

Table 4. Record counts and data sizes for the four examined methods



Running Times

o We also measured the running times of the
four methods on two clusters:

A local, small cluster comprised of 8 Corel7
processing cores.

A commercial Web cloud infrastructure with up
to 40 processing cores.

o On the first cluster, we replicated the input
data across all nodes. On the second case, we
are not aware of the data physical location.



Running Times

o All four methods have the same computational
complexity.
o We expect timings proportional to the size of

the data exchanged among the Mappers and
the Reducers.

o This favors the Methods 1-C and 2-C which
limit data transfers via the Combiners.




Running Times — Local Cluster

o All methods scale well to .
the size of the cluster 3w o etod
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o Method 1C is the fastest |£ ™ oMot 2¢
It outperforms method -
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Running Times — Web Cluster

o We repeated the -
experimenton aWeb | ™ e tenos:
cloud infrastructure. o Method 20

500 ~

o Running times between | .|
the two clusters are not |
comparable.

Different hardware 2 5 0 2 aCoes

and architecture
o Method 1-C is still the fastest



Conclusions

o We studied the problem of computing author
evaluation metrics (scientometrics) in large
academic search engines with MapReduce.

o We introduced four approaches.

o We showed that the most efficient strategy Is to
create one list of <paper, score> pairs for

each unique author during the map phase.

o In this way we achieve at least 20% reduced
running times and we gain ~13% bandwidth.



Thank you!

Any Questions?



