Computing Scientometrics In
Large-Scale Academic Search
Engines with MapReduce

Leonidas Akritidis
Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Greece

13" International Conference on Web Information System Engineering
WISE 2012, November 28-30, Paphos, Cyprus

Sclientometrics

o Metrics evaluating the research work of a
scientist by assigning impact scores to his/her
articles.

o Usually expressed as definitions of the form:

A scientist a Is of value V If at least V of his
articles receive a score S >V.

o A researcher must author numerous qualitative
articles.

h-index

o The first and most popular of these metrics Is
h-index (Hirsch, 2005).

o A researcher a has h-index h, if h of his/her P2
articles have received at least h citations.

o This metric indicates the impact of an author.

o An author must not only produce numerous
papers;
o His/her papers must also be cited frequently.

Time-Aware h-index Variants

o The contemporary and trend h-index
(Sidiropoulos, 2006) introduced temporal
aspects in the evaluation of a scientist's work.

o They assign to each article of an author time-
decaying scores:

Contemporary Score: S =y

C

Pcpi
(AY,)’

&

1
Trend Score: SP =
t 7;(AYH)5

Contemporary and Trend
h-indices

o (4Y);: The time (in years) elapsed since the
publication of the article 1.

o y=4,0=L1|P"|: number of papers citing p;

o Contemporary score: The value of an article
decays over time.

o Trend Score: An article is important if it
continues to be cited in the present.

o A scientist a has contemporary h-index h. If at
least h. of his articles receive a score S, > h,

Scientometrics Computation

o Easy for small datasets

o For h-index we just need to identify the
articles of each researcher and enumerate all
their incoming citations.

o However, for large datasets the computation
becomes more complex:

The data (authors, citations, and metadata)
do not fit In main memory.

Tens of millions of articles and authors

Academic Search Engines

and data structures

Citation indices

All Since 2007

John Smith

Information retrieval - Web search - Web mining - similarity search - algorithms Search Authors |

Citations to my articles

Google scholar

Citations 27? ?7?
h-index 27 ??
i10-index 27 ?? " g2 1097 2002 2007 2012
Wi ft* .
ﬁademﬁ All Domains | = -
Search Expluru blications anduthnrs, 3,355 updated last week. Adwvanced Search
Academic > Authors >John Smith Embed) Subscribe
John Smith — e
Publications: 27| Citations: 27| | G-Index:?? | H-Index:?7? Academlc
Search

Interests: Hardware & Architecture, Software Engineering, Information Retrie
Collaborated with? Zo-authors from ?? to 27 : Cited by?? authors

Homepage |

Bing

MapReduce (1)

o MapReduce: A fault tolerant framework for
distributing problems to large clusters.

o The Input data Is split in chunks; each chunk is
processed by a single Worker process (Map).

o Mapper outputs are written in intermediate files.

o In the sequel, the Reducers process and merge
the Mappers’ outputs.

o The data Is formatted in key-value pairs.

MapReduce (2)

o The MapReduce algorithms are expressed by
writing only two functions:

Map: map(k,,v,)— list(k,,v,)
Reduce: reduce(k,, list(v,)) —>list(ks,v;)
o The MapReduce Jobs are deployed on top of
a distributed file system which serves files,

replicates data, and transparently addresses
hardware failures.

Combiners

o An optional component standing between the
Mappers and the Reducers.

o It serves as a mini-Reducer; it merges the
values of the same keys for each Map Job.

o It reduces the data exchanged among system
nodes, thus saving bandwidth.

o Implementations
Explicit: Declare a Combine function

In-Mapper: merge the values of the same key
within map.
Guaranteed execution!

Parallelizing the Problem

o Goal: Compute Scientometrics in parallel
o Input: (p;,C") — (paperID, paperContent)
o Output: (a, I\/Ij‘) — (author, metric)

o To reach our goal, we have to construct for
each author, a list of his/her articles sorted by
decreasing score.:

(a, SortedList[(Py, Sxpl),(P2 S,”)(P S,)])

o Then, we just iterate through the list and we
compute the desired metric value.

Methods 1,2 — Map Phase

: class Mapper
method map (integer p;; string C*?)
P + ExtractReferences(C??)
for all references p € P
S? + ComputeScore(p)
AFP « Extract Authors(p)

(author, <paper, score>) : for all authors a € A”
\SNemit (a, pair(p. .5'p:]|
Sb: /emit (pair|a, p], S*)

AN S o

(<author, paper>, score)—/

o Notice: We emit the references’ authors, not
the paper’s authors

® Method 1, Reduce Phase

o Reducer Input. (author, pair <paper, score>)

(@) Create an aSSOC|at|Ve 7\ Algorithm 2 Method 1, Reducer class

1: class Reducer

array Wthh Stores for 2: method reduce (string a; pairs[integer p, float S7])

] 3: H +« new AssociativeArray
eaCh author, a ||St Of >\—1\ for all pair }IE pairs[integer p, float S”]
. 5 if v.p €
<paper, score> palrs. s H?.S «+ HP.S +v.SP
T: else
o Sum partial paper scores | & H.add(v)

_/ 9: sort H in descending S order
. integer papers + 0, metric + 0
o Sort the array by }/i)/ for all pairs € H
- 12: papers < papers + 1
descending score. s -

if H?.S > papers

. / metric <— metric + 1
o Compute metric. 15

B else
16: stop iteration
17 emit (a, metric)

Method 2, Reduce Phase

Reducer Input. (pair <author,paper>, score)

Keys sorted by author
and paper (secondary

sort).
We create an associative

array which stores for each
author, a list of

Algorithm 3 Method 2, Reducer class

<paper, score> pairs -

1: class Reducer

11:

DN DO

method initialize

string aprev <— 77
integer ppres +— 0
integer n «+— 0
H + new Array
method reduce (pair[string a, integer p|: float 57)
if a = aprev
if P = Pprev
H(n)+ H(n)+ 57

Compute metric

else
12: H .add(S%)
13: n+— 1+ 1
14: else
15: —>Perform steps 9-17 of Algorithm 2
16: H .reset()
17: Aprev +— 4
18: Pprev +— P
19: o+ 0
20: method close
21: emit (a, metric)

Method 1-C, Map-Reduce

Algorithm 4 Method 1-C: Improved version of method 1 with Combiners

1:
2
3
4:
5
6
7

class Mapper
method initialize
H + new AssociativeArray
method map (integer p;; string C¥*)
P «+ ExtractReferences(C?*1)
for all references p € P
S? + ComputeScore(p)
AP « ExtractAuthors(p)
(for all authors a € AP
if ad H
L% + new Array
L% .add(p, S7)
H .add(a, L")
else
it pg H.L"
H.L® .add(p, S7)
else
_ H.L® update(p, +57)
method close
for all authors a € H
emit (a, list(p, S*))

Merge unique authors
A

22: class Reducer
23: method reduce (string a; list[integer p, float S¥])

24: H + new AssociativeArray

25: for all pair v € list[linteger p, float S7]
26: itvpe H

27: H¥? .S + H?.S +v.57

28: else

29: H .add(v)

30: Perform steps 9-17 of Algorithm 2

In-Mapper Combiner (unique keys).

map emits author as key, and a list
of <paper, score> pairs as value.

The Reducer merges the lists
associated with the same key.

The list is sorted by score

® Method 2-C, Map-Reduce

Algorithm 5 Method 2-C: Improved version of method 2 with the introduction
of in-Mapper Combiners. The Reducer is identical to the one of Algorithm 3.

1: class Mapper 22: class Reducer

2: method initialize 23: method reduce (string a; list[integer p, float S¥])
3 H + new AssociativeArray 24: H + new AssociativeArray

4: method map (integer p;; string C7%) 25: for all pair v € list[integer p, float S”|

5 P + ExtractReferences(C¥?) 26: ifvpe H

6: for all references p € P 27: HY § «— H? § +v.5*7

7 S*¥ « ComputeScore(p) 28: else

8: AP « ExtractAuthors(p) 20: H .add(v)

0: for all authors a € A? 30: Perform steps 9-17 of Algorithm 2

10: if pair(a.p) € H . .

11: H add(pair(a. p). SP) o In-Mapper Combiner (uniqgue keys).
12: else I I
13: H wupdate(pair(a, p), +57) O map emlts <author ¢ paper> palrs
4 method close as key, and <score> as value.
15: for all pairs (a,p) € H o The Reducer merges the lists
16: emit (pair(a,p), S¥)

_ associated with the same key.
o The listis sorted by score

Experiments

o We applied our algorithms at the CiteSeerX
dataset, an open repository comprised of 1,8
million research articles.

o We used the XML version of the dataset.
Total input size: ~28 GB.
Small, but the largest publicly available.

Statistic Value
Input Records |1,844,272
[nput Size 27.6 GB

Output Records|2,865,282
Output Size 30.9 MB
Table 3. Problem input-output statistics

MapReduce I/O Sizes

o The methods which employ Combiners
perform reasonably better

o Method 1-C: The Mappers produce 21.7 million
key-value records (gain ~41%). Total output
size = 600MB (gain ~13% less bandwidth).

o Method 2-C: 34.2 million records and 643 MB
(~7%).

Mapper Output Reducer
Method Recufés Size i[[)[\-"lB] Input Groups
method 1 36,687,999 688.4 2,865,282
method 2 36,687,999| 688.4 12,260,311
method 1-C 21,736,395 600.8 2,865,282
method 2-C 34,251,437 643.2 12,260,311

Table 4. Record counts and data sizes for the four examined methods

Running Times

o We also measured the running times of the
four methods on two clusters:

A local, small cluster comprised of 8 Corel7
processing cores.

A commercial Web cloud infrastructure with up
to 40 processing cores.

o On the first cluster, we replicated the input
data across all nodes. On the second case, we
are not aware of the data physical location.

Running Times

o All four methods have the same computational
complexity.
o We expect timings proportional to the size of

the data exchanged among the Mappers and
the Reducers.

o This favors the Methods 1-C and 2-C which
limit data transfers via the Combiners.

Running Times — Local Cluster

o All methods scale well to .
the size of the cluster 3w o etod

£ 800 —m— Method 2
- — & Method 1-C

o Method 1C is the fastest |£ ™ oMot 2¢
It outperforms method -
2'C by ~18% 300 -

200 ~

It outperforms method 1 | -
by 30-35%

g Cores

ra
e

Running Times — Web Cluster

o We repeated the -
experimenton aWeb | ™ e tenos:
cloud infrastructure. o Method 20

500 ~

o Running times between | .|
the two clusters are not |
comparable.

Different hardware 2 5 0 2 aCoes

and architecture
o Method 1-C is still the fastest

Conclusions

o We studied the problem of computing author
evaluation metrics (scientometrics) in large
academic search engines with MapReduce.

o We introduced four approaches.

o We showed that the most efficient strategy Is to
create one list of <paper, score> pairs for

each unique author during the map phase.

o In this way we achieve at least 20% reduced
running times and we gain ~13% bandwidth.

Thank you!

Any Questions?

