
Computing Scientometrics in

Large-Scale Academic Search

Engines with MapReduce

Leonidas Akritidis

Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Greece

13th International Conference on Web Information System Engineering

WISE 2012, November 28-30, Paphos, Cyprus

Scientometrics

 Metrics evaluating the research work of a

scientist by assigning impact scores to his/her

articles.

 Usually expressed as definitions of the form:

A scientist a is of value V if at least V of his

articles receive a score

 A researcher must author numerous qualitative

articles.

.S V

h-index

 The first and most popular of these metrics is

h-index (Hirsch, 2005).

 A researcher a has h-index h, if h of his/her Pa

articles have received at least h citations.

 This metric indicates the impact of an author.

 An author must not only produce numerous

papers;

 His/her papers must also be cited frequently.

Time-Aware h-index Variants

 The contemporary and trend h-index

(Sidiropoulos, 2006) introduced temporal

aspects in the evaluation of a scientist's work.

 They assign to each article of an author time-

decaying scores:

Contemporary Score:

 Trend Score:

 

i

i

p

cp

c

i

P
S

Y





 1

1
pi

c

i

P

p

t

n n

S
Y











Contemporary and Trend

h-indices

 (ΔY)i: The time (in years) elapsed since the

publication of the article i.

 number of papers citing pi

 Contemporary score: The value of an article

decays over time.

 Trend Score: An article is important if it

continues to be cited in the present.

 A scientist a has contemporary h-index hc if at

least hc of his articles receive a score c cS h

4, 1, :ip

cP  

Scientometrics Computation

 Easy for small datasets

 For h-index we just need to identify the

articles of each researcher and enumerate all

their incoming citations.

 However, for large datasets the computation

becomes more complex:

 The data (authors, citations, and metadata)

do not fit in main memory.

 Tens of millions of articles and authors

Academic Search Engines

MapReduce (1)

 MapReduce: A fault tolerant framework for

distributing problems to large clusters.

 The input data is split in chunks; each chunk is

processed by a single Worker process (Map).

 Mapper outputs are written in intermediate files.

 In the sequel, the Reducers process and merge

the Mappers’ outputs.

 The data is formatted in key-value pairs.

MapReduce (2)

 The MapReduce algorithms are expressed by

writing only two functions:

Map:

Reduce:

 The MapReduce Jobs are deployed on top of

a distributed file system which serves files,

replicates data, and transparently addresses

hardware failures.

   1 1 2 2, ,map k v list k v

    2 2 3 3, ,reduce k list v list k v

Combiners

 An optional component standing between the
Mappers and the Reducers.

 It serves as a mini-Reducer; it merges the
values of the same keys for each Map Job.

 It reduces the data exchanged among system
nodes, thus saving bandwidth.

 Implementations

 Explicit: Declare a Combine function

 In-Mapper: merge the values of the same key
within map.

• Guaranteed execution!

Parallelizing the Problem

 Goal: Compute Scientometrics in parallel

 Input:

 Output:

 To reach our goal, we have to construct for

each author, a list of his/her articles sorted by

decreasing score:

 Then, we just iterate through the list and we

compute the desired metric value.

      1 2

1 2, , , , ,..., , Npp p

x x N xa SortedList p S p S p S 
 

   , ,ip

ip C paperID paperContent

   , ,a

xa M author metric

Methods 1,2 – Map Phase

(author, <paper,score>)

(<author,paper>, score)

 Notice: We emit the references’ authors, not
the paper’s authors

Method 1, Reduce Phase

 Reducer Input: (author, pair <paper,score>)

 Create an associative

array which stores for

each author, a list of
<paper,score> pairs.

 Sum partial paper scores

 Sort the array by

descending score.

 Compute metric.

Method 2, Reduce Phase

 Keys sorted by author

and paper (secondary

sort).

 We create an associative

array which stores for each
author, a list of

<paper,score> pairs

 Compute metric

 Reducer Input: (pair <author,paper>, score)

Method 1-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits author as key, and a list
of <paper,score> pairs as value.

 The Reducer merges the lists
associated with the same key.

 The list is sorted by score

M
e
rg

e
 u

n
iq

u
e
 a

u
th

o
rs

Method 2-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits <author,paper> pairs
as key, and <score> as value.

 The Reducer merges the lists
associated with the same key.

 The list is sorted by score

Experiments

 We applied our algorithms at the CiteSeerX

dataset, an open repository comprised of 1,8

million research articles.

 We used the XML version of the dataset.

 Total input size: ~28 GB.

 Small, but the largest publicly available.

MapReduce I/O Sizes

 The methods which employ Combiners

perform reasonably better

 Method 1-C: The Mappers produce 21.7 million

key-value records (gain ~41%). Total output

size = 600MB (gain ~13% less bandwidth).

 Method 2-C: 34.2 million records and 643 MB

(~7%).

Running Times

 We also measured the running times of the

four methods on two clusters:

 A local, small cluster comprised of 8 CoreI7

processing cores.

 A commercial Web cloud infrastructure with up

to 40 processing cores.

 On the first cluster, we replicated the input

data across all nodes. On the second case, we

are not aware of the data physical location.

Running Times

 All four methods have the same computational

complexity.

 We expect timings proportional to the size of

the data exchanged among the Mappers and

the Reducers.

 This favors the Methods 1-C and 2-C which

limit data transfers via the Combiners.

Running Times – Local Cluster

 All methods scale well to

the size of the cluster

 Method 1C is the fastest

 It outperforms method

2-C by ~18%

 It outperforms method 1

by 30-35%

Running Times – Web Cluster

 We repeated the

experiment on a Web

cloud infrastructure.

 Running times between

the two clusters are not

comparable.

 Different hardware

and architecture

 Method 1-C is still the fastest

Conclusions

 We studied the problem of computing author

evaluation metrics (scientometrics) in large

academic search engines with MapReduce.

 We introduced four approaches.

 We showed that the most efficient strategy is to
create one list of <paper,score> pairs for

each unique author during the map phase.

 In this way we achieve at least 20% reduced

running times and we gain ~13% bandwidth.

Thank you!

Any Questions?

