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Scientometrics

 Metrics evaluating the research work of a 

scientist by assigning impact scores to his/her 

articles.

 Usually expressed as definitions of the form:

A scientist a is of value V if at least V of his 

articles receive a score

 A researcher must author numerous qualitative 

articles.

.S V



h-index

 The first and most popular of these metrics is 

h-index (Hirsch, 2005).

 A researcher a has h-index h, if h of his/her Pa

articles have received at least h citations.

 This metric indicates the impact of an author.

 An author must not only produce numerous 

papers;

 His/her papers must also be cited frequently.



Time-Aware h-index Variants

 The contemporary and trend h-index 

(Sidiropoulos, 2006) introduced temporal 

aspects in the evaluation of a scientist's work.

 They assign to each article of an author time-

decaying scores:

Contemporary Score:

 Trend Score:
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Contemporary and Trend

h-indices

 (ΔY)i: The time (in years) elapsed since the 

publication of the article i.

 number of papers citing pi

 Contemporary score: The value of an article 

decays over time.

 Trend Score: An article is important if it 

continues to be cited in the present.

 A scientist a has contemporary h-index hc if at 

least hc of his articles receive a score c cS h
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Scientometrics Computation

 Easy for small datasets

 For h-index we just need to identify the 

articles of each researcher and enumerate all 

their incoming citations.

 However, for large datasets the computation 

becomes more complex:

 The data (authors, citations, and metadata) 

do not fit in main memory.

 Tens of millions of articles and authors



Academic Search Engines



MapReduce (1)

 MapReduce: A fault tolerant framework for 

distributing problems to large clusters.

 The input data is split in chunks; each chunk is 

processed by a single Worker process (Map).

 Mapper outputs are written in intermediate files.

 In the sequel, the Reducers process and merge 

the Mappers’ outputs.

 The data is formatted in key-value pairs.



MapReduce (2)

 The MapReduce algorithms are expressed by 

writing only two functions:

Map:

Reduce:

 The MapReduce Jobs are deployed on top of 

a distributed file system which serves files, 

replicates data, and transparently addresses 

hardware failures.

   1 1 2 2, ,map k v list k v

    2 2 3 3, ,reduce k list v list k v



Combiners

 An optional component standing between the 
Mappers and the Reducers.

 It serves as a mini-Reducer; it merges the 
values of the same keys for each Map Job.

 It reduces the data exchanged among system 
nodes, thus saving bandwidth.

 Implementations

 Explicit: Declare a Combine function

 In-Mapper: merge the values of the same key 
within map.

• Guaranteed execution!



Parallelizing the Problem

 Goal: Compute Scientometrics in parallel

 Input:              

 Output:

 To reach our goal, we have to construct for 

each author, a list of his/her articles sorted by 

decreasing score:

 Then, we just iterate through the list and we 

compute the desired metric value.
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Methods 1,2 – Map Phase

(author, <paper,score>)

(<author,paper>, score)

 Notice: We emit the references’ authors, not
the paper’s authors



Method 1, Reduce Phase

 Reducer Input: (author, pair <paper,score>)

 Create an associative 

array which stores for 

each author, a list of 
<paper,score> pairs.

 Sum partial paper scores

 Sort the array by 

descending score.

 Compute metric.



Method 2, Reduce Phase

 Keys sorted by author

and paper (secondary 

sort).

 We create an associative 

array which stores for each 
author, a list of 

<paper,score> pairs

 Compute metric

 Reducer Input: (pair <author,paper>, score)



Method 1-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits author as key, and a list 
of <paper,score> pairs as value.

 The Reducer merges the lists 
associated with the same key.

 The list is sorted by score
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Method 2-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits <author,paper> pairs 
as key, and <score> as value.

 The Reducer merges the lists 
associated with the same key.

 The list is sorted by score



Experiments

 We applied our algorithms at the CiteSeerX 

dataset, an open repository comprised of 1,8 

million research articles.

 We used the XML version of the dataset.

 Total input size: ~28 GB.

 Small, but the largest publicly available.



MapReduce I/O Sizes

 The methods which employ Combiners 

perform reasonably better

 Method 1-C: The Mappers produce 21.7 million 

key-value records (gain ~41%). Total output 

size = 600MB (gain ~13% less bandwidth).

 Method 2-C: 34.2 million records and 643 MB 

(~7%).



Running Times

 We also measured the running times of the 

four methods on two clusters:

 A local, small cluster comprised of 8 CoreI7 

processing cores.

 A commercial Web cloud infrastructure with up 

to 40 processing cores.

 On the first cluster, we replicated the input 

data across all nodes. On the second case, we 

are not aware of the data physical location.



Running Times

 All four methods have the same computational 

complexity.

 We expect timings proportional to the size of 

the data exchanged among the Mappers and 

the Reducers.

 This favors the Methods 1-C and 2-C which 

limit data transfers via the Combiners.



Running Times – Local Cluster

 All methods scale well to 

the size of the cluster

 Method 1C is the fastest

 It outperforms method 

2-C by ~18%

 It outperforms method 1 

by 30-35%



Running Times – Web Cluster

 We repeated the 

experiment on a Web 

cloud infrastructure.

 Running times between 

the two clusters are not 

comparable.

 Different hardware 

and architecture

 Method 1-C is still the fastest



Conclusions

 We studied the problem of computing author 

evaluation metrics (scientometrics) in large 

academic search engines with MapReduce.

 We introduced four approaches.

 We showed that the most efficient strategy is to 
create one list of <paper,score> pairs for 

each unique author during the map phase.

 In this way we achieve at least 20% reduced 

running times and we gain ~13% bandwidth.



Thank you!

Any Questions?


