
Computing Scientometrics in

Large-Scale Academic Search

Engines with MapReduce

Leonidas Akritidis

Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Greece

13th International Conference on Web Information System Engineering

WISE 2012, November 28-30, Paphos, Cyprus

Scientometrics

 Metrics evaluating the research work of a

scientist by assigning impact scores to his/her

articles.

 Usually expressed as definitions of the form:

A scientist a is of value V if at least V of his

articles receive a score

 A researcher must author numerous qualitative

articles.

.S V

h-index

 The first and most popular of these metrics is

h-index (Hirsch, 2005).

 A researcher a has h-index h, if h of his/her Pa

articles have received at least h citations.

 This metric indicates the impact of an author.

 An author must not only produce numerous

papers;

 His/her papers must also be cited frequently.

Time-Aware h-index Variants

 The contemporary and trend h-index

(Sidiropoulos, 2006) introduced temporal

aspects in the evaluation of a scientist's work.

 They assign to each article of an author time-

decaying scores:

Contemporary Score:

 Trend Score:

i

i

p

cp

c

i

P
S

Y

 1

1
pi

c

i

P

p

t

n n

S
Y

Contemporary and Trend

h-indices

 (ΔY)i: The time (in years) elapsed since the

publication of the article i.

 number of papers citing pi

 Contemporary score: The value of an article

decays over time.

 Trend Score: An article is important if it

continues to be cited in the present.

 A scientist a has contemporary h-index hc if at

least hc of his articles receive a score c cS h

4, 1, :ip

cP

Scientometrics Computation

 Easy for small datasets

 For h-index we just need to identify the

articles of each researcher and enumerate all

their incoming citations.

 However, for large datasets the computation

becomes more complex:

 The data (authors, citations, and metadata)

do not fit in main memory.

 Tens of millions of articles and authors

Academic Search Engines

MapReduce (1)

 MapReduce: A fault tolerant framework for

distributing problems to large clusters.

 The input data is split in chunks; each chunk is

processed by a single Worker process (Map).

 Mapper outputs are written in intermediate files.

 In the sequel, the Reducers process and merge

the Mappers’ outputs.

 The data is formatted in key-value pairs.

MapReduce (2)

 The MapReduce algorithms are expressed by

writing only two functions:

Map:

Reduce:

 The MapReduce Jobs are deployed on top of

a distributed file system which serves files,

replicates data, and transparently addresses

hardware failures.

 1 1 2 2, ,map k v list k v

 2 2 3 3, ,reduce k list v list k v

Combiners

 An optional component standing between the
Mappers and the Reducers.

 It serves as a mini-Reducer; it merges the
values of the same keys for each Map Job.

 It reduces the data exchanged among system
nodes, thus saving bandwidth.

 Implementations

 Explicit: Declare a Combine function

 In-Mapper: merge the values of the same key
within map.

• Guaranteed execution!

Parallelizing the Problem

 Goal: Compute Scientometrics in parallel

 Input:

 Output:

 To reach our goal, we have to construct for

each author, a list of his/her articles sorted by

decreasing score:

 Then, we just iterate through the list and we

compute the desired metric value.

 1 2

1 2, , , , ,..., , Npp p

x x N xa SortedList p S p S p S

 , ,ip

ip C paperID paperContent

 , ,a

xa M author metric

Methods 1,2 – Map Phase

(author, <paper,score>)

(<author,paper>, score)

 Notice: We emit the references’ authors, not
the paper’s authors

Method 1, Reduce Phase

 Reducer Input: (author, pair <paper,score>)

 Create an associative

array which stores for

each author, a list of
<paper,score> pairs.

 Sum partial paper scores

 Sort the array by

descending score.

 Compute metric.

Method 2, Reduce Phase

 Keys sorted by author

and paper (secondary

sort).

 We create an associative

array which stores for each
author, a list of

<paper,score> pairs

 Compute metric

 Reducer Input: (pair <author,paper>, score)

Method 1-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits author as key, and a list
of <paper,score> pairs as value.

 The Reducer merges the lists
associated with the same key.

 The list is sorted by score

M
e
rg

e
 u

n
iq

u
e
 a

u
th

o
rs

Method 2-C, Map-Reduce

 In-Mapper Combiner (unique keys).

 map emits <author,paper> pairs
as key, and <score> as value.

 The Reducer merges the lists
associated with the same key.

 The list is sorted by score

Experiments

 We applied our algorithms at the CiteSeerX

dataset, an open repository comprised of 1,8

million research articles.

 We used the XML version of the dataset.

 Total input size: ~28 GB.

 Small, but the largest publicly available.

MapReduce I/O Sizes

 The methods which employ Combiners

perform reasonably better

 Method 1-C: The Mappers produce 21.7 million

key-value records (gain ~41%). Total output

size = 600MB (gain ~13% less bandwidth).

 Method 2-C: 34.2 million records and 643 MB

(~7%).

Running Times

 We also measured the running times of the

four methods on two clusters:

 A local, small cluster comprised of 8 CoreI7

processing cores.

 A commercial Web cloud infrastructure with up

to 40 processing cores.

 On the first cluster, we replicated the input

data across all nodes. On the second case, we

are not aware of the data physical location.

Running Times

 All four methods have the same computational

complexity.

 We expect timings proportional to the size of

the data exchanged among the Mappers and

the Reducers.

 This favors the Methods 1-C and 2-C which

limit data transfers via the Combiners.

Running Times – Local Cluster

 All methods scale well to

the size of the cluster

 Method 1C is the fastest

 It outperforms method

2-C by ~18%

 It outperforms method 1

by 30-35%

Running Times – Web Cluster

 We repeated the

experiment on a Web

cloud infrastructure.

 Running times between

the two clusters are not

comparable.

 Different hardware

and architecture

 Method 1-C is still the fastest

Conclusions

 We studied the problem of computing author

evaluation metrics (scientometrics) in large

academic search engines with MapReduce.

 We introduced four approaches.

 We showed that the most efficient strategy is to
create one list of <paper,score> pairs for

each unique author during the map phase.

 In this way we achieve at least 20% reduced

running times and we gain ~13% bandwidth.

Thank you!

Any Questions?

