
Effective Unsupervised Matching of
Product Titles with k-Combinations

and Permutations

Leonidas Akritidis, Panayiotis Bozanis

Department of Electrical and Computer Engineering

University of Thessaly, Greece

L. Akritidis, P. Bozanis 1IEEE INISTA 2018

The problem (1)

• We are given a set of F={f1,f2,…fN} product feeds
(usually in XML format).

• Each feed fi originates from an electronic store ei

and contains product records.

• Each product record p may contain multiple fields
(title, description, price, brand, category, etc).

• A product cannot appear more than once in the
same feed.

• But it may appear in multiple feeds.

The problem (2)

• A product may be described differently in these
feeds (i.e. it appears under different titles).

• E.g. “Apple iPhone 7” and “iPhone 7” are different
titles which refer to the same product.

• The problem: Match the product titles and
identify if they describe the same product.

• Useful for:
– Price comparison applications & platforms.

– Reviews merging & aggregation.

– Users who desire to compare characteristics & prices.

Similarity/Distance Metrics

• “Apple iPhone 7” and “iPhone 7” are different
titles which refer to the same product.

– Even though a whole word is missing from the second
title (small similarity/distance).

• “Apple iPhone 7” and “Apple iPhone 6” are titles
which DO NOT refer to the same product.

– Even though they only differ by a single character
(higher similarity/distance).

• Similarity/Distance metrics (cosine, Jaccard, edit
distance, etc.) do not work well in this problem.

Supervised Clustering

• For the same reason, the supervised machine
learning clustering approaches (kNN, naïve Bayes,
linear/logistic regression) also do not work well.

– Smaller distances/higher probabilities should not
necessarily be clustered to the same entity.

– Higher distances/smaller probabilities should not
necessarily be clustered in different entities.

State-of-the-art (1)

• V. Gopalakrishnan, SP. Iyengar, A. Madaan, R.
Rastogi, S. Sengamedu. Matching product titles
using web-based enrichment. In Proceedings of
the 21st ACM international conference on
Information and knowledge management, pp.
605-614, 2012.

• N. Londhe, V. Gopalakrishnan, A. Zhang, HQ Ngo,
R. Srihari. Matching titles with cross title web-
search enrichment and community detection. In
Proceedings of the VLDB Endowment, pp. 1167-
1178, 2014.

https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990

State-of-the-art (2)

• These approaches are similar:

– They enrich each product title by injecting several
missing words.

– They treat each word in the products’ titles differently,
i.e. each word is assigned an importance score.

– After these two preprocessing phases, they apply the
cosine similarity measure (with an over simplistic
blocking method).

– They create clusters which consist of the same
products.

State-of-the-art - Disadvantages

• One query submitted to a SE per product:

– this approach is infeasible for large-scale datasets.

• In their experiments they use only 2 feeds.

– Most platforms include thousands of electronic stores
(i.e. product feeds).

• They employ the cosine similarity metric.

– which does not perform well in this problem.

Our approach is…

• Standalone: It does not rely on external data
sources (i.e. Web search engines, Web sites, ect).

• Unsupervised: No requirement to manually train
a classifier, or split the dataset in training and
testing data subsets.

• Efficient: Faster than the adversary approach; it
makes use of in-memory data structures.

• Flexible: It facilitates product classification into
multiple clusters.

Overview (1)

• Our proposed method operates in 2 phases:

• Phase 1: construction of two primary data
structures:
– A lexicon which consists of all the k-

combinations of the titles’ words, along with a
frequency value and some statistics.
• Each k-combination is a candidate product cluster.

– A forward index: An array which stores for each
product, a list of pointers to the respective title
k-combinations (we use pointers to avoid saving
the same data twice).

Overview (2)

• Phase 2: We employ these
two data structures to
assign scores to each k-
combination of each
product.

• The k-combinations are
then sorted by decreasing
score value and the highest
scoring combination
represents the cluster.

k-combinations

• k-combinations are combinations of the
words of the product title.

• Length (number of words) = k.

• Without repetition.

• Without care for word ordering.

• We compute the K-combinations of each
product title,

• Number of combinations for a
title which consists of n words:  



 

nkK

k knk

n,

2 !!

!

 6,2K

Phase 1 (1)

Data Structures - Lexicon

• We employ a lexicon structure L to store the
combinations. We also store two statistics:

• A frequency value which represents the number
of documents which contain this combination.
– Frequent combinations are more likely to be declared

cluster labels.

• A distance value which stores the average
distance of the combination from the beginning
of the titles.
– The most important terms in a product description

appear early in the titles.

Data Structures – Forward Index

• We also employ a forward index I which for each
product p, stores a pointer to each combination.

• We assign a score value to each combination in I.

Distance

• Some frequent terms in the titles have no
informational value (i.e. they do not describe the
product, but they contain offers, specs, etc).
– E.g. many products have in their titles the terms “EU”, “OEM”,

“Retail”, etc.

– Therefore, in some cases we get wrong cluster labels, e.g.
“Apple iPhone EU”.

– Similar problems can also be caused by other words: colors
(black, white, red, etc), sizes (large, small, etc) and others.

• Key observation: These terms usually appear
late in the title (i.e. in high position).

Phase 1 (2)

Permutations (3)

• In case a combination is not found in the lexicon,
we compute all its permutations.

• We search for each permutation in the lexicon.

• In case it is found, we increase the frequency of
the corresponding combination and we stop
searching.

• In case it is not found, we do not insert it

• We shall insert the corresponding combination
instead, after all the permutations have been
examined.

Phase 1 (3)

Phase 2

• In phase 2 we compute the scores of each k-
combination of each product.

• To achieve this goal we use the forward index.

• We sort the forward list in decreasing score order.

• The first element of the sorted list is the cluster.

An indicative score function

• Score function

where l(c) is the length of the combination/label, N(c)

is the frequency, and d(c,t) is the average distance of
the combination from the beginning of the string.

 
 
 

 cN
tcda

cl
cS log

,


Results

• We deployed a focused crawler on skroutz.gr and we
collected 16208 products (mobile phones) classified
in 922 clusters.

• Vendors: 320

• Average number of words in a title: 9

• We consider the classification of skroutz.gr as the
ground truth and we compare the effectiveness of
our algorithm (UMaP) against this.

Effectiveness – F1 measure

Efficiency

