Effective Unsupervised Matching of
Product Titles with k-Combinations
and Permutations

Leonidas Akritidis, Panayiotis Bozanis
Department of Electrical and Computer Engineering
University of Thessaly, Greece

L. Akritidis, P. Bozanis IEEE INISTA 2018

We

The problem (1)

are given a set of F={f,f,, ...f} product feeds

(usually in XML format).

Eac
ano

Eac

h feed f; originates from an electronic store e,
contains product records.

n product record p may contain multiple fields

(title, description, price, brand, category, etc).

A product cannot appear more than once in the
same feed.

But

it may appear in multiple feeds.

The problem (2)

A product may be described differently in these
feeds (i.e. it appears under different titles).

E.g. “Apple iPhone 7” and “iPhone 7” are different
titles which refer to the same product.

The problem: Match the product titles and
identify if they describe the same product.
Useful for:

— Price comparison applications & platforms.

— Reviews merging & aggregation.

— Users who desire to compare characteristics & prices.

Similarity/Distance Metrics

 “Apple iPhone 7” and “iPhone 7” are different
titles which refer to the same product.

— Even though a whole word is missing from the second
title (small similarity/distance).
 “Apple iPhone 7” and “Apple iPhone 6” are titles
which DO NOT refer to the same product.

— Even though they only differ by a single character
(higher similarity/distance).

* Similarity/Distance metrics (cosine, Jaccard, edit
distance, etc.) do not work well in this problem.

Supervised Clustering

* For the same reason, the supervised machine
learning clustering approaches (kNN, naive Bayes,
linear/logistic regression) also do not work well.

— Smaller distances/higher probabilities should not
necessarily be clustered to the same entity.

— Higher distances/smaller probabilities should not
necessarily be clustered in different entities.

State-of-the-art (1)

* V. Gopalakrishnan, SP. lyengar, A. Madaan, R.
Rastogi, S. Sengamedu. Matching product titles
using web-based enrichment. In Proceedings of
the 21st ACM international conference on

Information and knowledge management, pp.
605-614, 2012.

* N. Londhe, V. Gopalakrishnan, A. Zhang, HQ Ngo,
R. Srihari. Matching titles with cross title web-
search enrichment and community detection. In
Proceedings of the VLDB Endowment, pp. 1167-
1178, 2014.

https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2396839
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990
https://dl.acm.org/citation.cfm?id=2732990

State-of-the-art (2)

* These approaches are similar:

— They enrich each product title by injecting several
missing words.

— They treat each word in the products’ titles differently,
i.e. each word is assigned an importance score.

— After these two preprocessing phases, they apply the
cosine similarity measure (with an over simplistic
blocking method).

— They create clusters which consist of the same
products.

State-of-the-art - Disadvantages

* One query submitted to a SE per product:
— this approach is infeasible for large-scale datasets.

* |n their experiments they use only 2 feeds.

— Most platforms include thousands of electronic stores
(i.e. product feeds).

* They employ the cosine similarity metric.

—which does not perform well in this problem.

Our approach is...

Standalone: It does not rely on external data
sources (i.e. Web search engines, Web sites, ect).

Unsupervised: No requirement to manually train
a classifier, or split the dataset in training and
testing data subsets.

Efficient: Faster than the adversary approach; it
makes use of in-memory data structures.

Flexible: It facilitates product classification into
multiple clusters.

Overview (1)

* Our proposed method operates in 2 phases:

* Phase 1: construction of two primary data
structures:

— A lexicon which consists of all the k-
combinations of the titles” words, along with a
frequency value and some statistics.

* Each k-combination is a candidate product cluster.

— A forward index: An array which stores for each
product, a list of pointers to the respective title
k-combinations (we use pointers to avoid saving
the same data twice).

Overview (2)

* Phase 2: We employ these m
two data structures to — e
assign scores to each k- o] i
combination of each ==
product. EES B

e The k-combinations are [+ F{els[+[+] [=]
then sorted by decreasing
score value and the highest
scoring combination

represents the cluster.

k-combinations

k-combinations are com
words of the product tit

Length (number of worc
Without repetition.

ninations of the
e.

s) = k.

Without care for word ordering.
We compute the K-combinations of each

product title, K €[2,6]

Number of combinations for a

K,k<n n!

title which consists of n words: kz_;‘ kKi(n—k)

tn Lo

-1 =

Phase 1 (1)

for each product p do
extract the title ¢;
perform linguistic processing of ¢;
for each I € [2, K| do
compute all k-combinations CT{R‘-J of t;

[V N TN W S

0 =) 31

sp T N TR W Sl e

L ra =

0 =] 0L s Ll e

[V, ¥ ST W e Sl]

CR ¥y I =9

a
a
a
a
a
a
a
a
a

o

Data Structures - Lexicon

* We employ a lexicon structure L to store the
combinations. We also store two statistics:

* A frequency value which represents the number
of documents which contain this combination.

— Frequent combinations are more likely to be declared
cluster labels.

* A distance value which stores the average
distance of the combination from the beginning
of the titles.

— The most important terms in a product description
appear early in the titles.

Data Structures — Forward Index

 We also employ a forward index | which for each
product p, stores a pointer to each combination.

* We assign a score value to each combination in I.

Distance

 Some frequent terms in the titles have no
informational value (i.e. they do not describe the
product, but they contain offers, specs, etc).

— E.g. many products have in their titles the terms “EU”, “OEM”,
“Retail”, etc.

— Therefore, in some cases we get wrong cluster labels, e.g.
“Apple iPhone EU”.

— Similar problems can also be caused by other words: colors
(black, white, red, etc), sizes (large, small, etc) and others.

* Key observation: These terms usually appear
late in the title (i.e. in high position).

Phase 1 (2)

Algorithm 1: Product titles” processing and data struc-

tures construction

1
2
3
4

n

initialize the lexicon L:
initialize the forward index F':
for each product p do

extract the

for each k

Set

Set

else

title ¢:

perform linguistic processing of ;

e [2.K] do

compute all k-combinations €', of :
for each k-combination ¢ € Cy,) do

d(c,t) < distance(c,t);

F.insert(p.c):

found < L.search(c);

if found = true then

Set c.freq < c.freq + 1;
Set c.dist « c.dist + d(c,t);

Permutations (3)

In case a combination is not found in the lexicon,
we compute all its permutations.

We search for each permutation in the lexicon.

In case it is found, we increase the frequency of
the corresponding combination and we stop
searching.

In case it is not found, we do not insert it

We shall insert the corresponding combination
instead, after all the permutations have been
examined.

Algorithm 1: Product titles™ processing and data struc-

tures construction

1
2
3
4

R -" R - S]

—
[

Y A S
oo =1 S T e 2

(=]
=}

[SR
fad b

S R
=

L R e T T T R]
- -

initialize the lexicon L:
initialize the forward index F':
for each product p do

end

extract the title ¢;
perform linguistic processing of #;
for each k € [2, K| do

compute all k-combinations C'y, of £

for

end

each k-combination ¢ € Cyy do
Set d(e,t) «+ distance(c,t);
Flansert(p.c);

Set found < L.search(c);

if found = true then

Set e.freq + c.freq + 1:

Set e.dist + edist + d(e, t):
else

Set found + L.search(m):
if found = true then

break:
end

end

end

if found = false then
L.insert(e):

Set e.freq «+ 1;

Set cdist « d(e,t):

end

compute all permutations M of ¢;
for each permutation m € M do

Set c.freq + c.freq + 1;
Set e.dist «+ edist + d(e,t);

Phase 1 (3)

Phase 2

* In phase 2 we compute the scores of each k-
combination of each product.

* To achieve this goal we use the forward index.
 We sort the forward list in decreasing score order.
* The first element of the sorted list is the cluster.

Algorithm 2: Scores computation and cluster selection

1 for each product p in F' do

2 retrieve the forward list f:
3 for each c € f, do
4 Set c.adist + e.dist / e.freq:
Set c.score < ComputeScore(c):
6 end
7 sort f, in decreasing score order:;
8 | Set cluster < f,[0]:
9 end

An indicative score function

 Score function

S(c)= a+I£IC()c,t) log N(c)

where I(C) is the length of the combination/label, N(c)
is the frequency, and d(c,t) is the average distance of
the combination from the beginning of the string.

Results

We deployed a focused crawler on skroutz.gr and we
collected 16208 products (mobile phones) classified
in 922 clusters.

Vendors: 320
Average number of words in a title: 9

We consider the classification of skroutz.gr as the
ground truth and we compare the effectiveness of
our algorithm (UMaP) against this.

Effectiveness — F1 measure

K 5 F1 Precision Recall

K=3]a=1]| 032433 | 020470 | 0.78032 ' -
a=2| 035216 | 022748 | 0.77929 0.9l UMaP (K =3) —&— UMaP (K =4) i
a=31] 033412 | 021313 | 0.77296 —— UMaP (K =5) —&— UMaP (K =6)
a =4 0.34597 0.22321 0.76880 0.8 || —8— cosine similarity —=a— Jaccard similarity]
a=5 | 033753 | 021637 | 0.76704 Jaro-Winkler distance

K=4] a=1 | 0.66370 0.64175 | 0.68721 0.7 -
a=2 062118 | 0.60239 | 0.64118 SO A
a=3| 06129 | 057920 | 0.65076 o 0.6 :
a=4] 060302 | 056046 | 0.65258 z 05l |
a=5 | 058569 | 053552 | 0.64624 g o°

K=5] a=1| 048130 | 0.61997 | 0.39333 = g4l A B i
a=2 | 045771 0.59741 | 0.37096 . ° //f AN
a=3 1] 043544 | 061239 | 0.33783 0.3 : -
a=4 | 042029 | 057447 | 0.33136
a=5 | 040041 0.53044 | 0.32158 0.2+ -

K=6| a=1| 035216 | 0.71483 | 0.23363
a=2| 031339 | 0.69577 | 0.20225 0.17 s a
a=31] 029679 | 0.66443 | 0.19107 a—8 ! — | | |
a=4 1] 029022 | 0.62577 | 0.18892 01 02 03 04 05 06 07 08 09 1
a=5] 027862 | 0.62301 | 0.17944 Similarity Threshold

TABLE 11
UMAP PERFORMANCE FOR VARIOUS VALUES OF K AND a. Fig. 2. Comparison of F'1 scores for UMaP, cosine similarity, Jaccard

similarity, and Jaro-Winkler distance

Efficiency

Durations (sec) | Combinations Permutations
K =3 1.55 2.896.310 3,292,384
K =41 13.20 8.742.866 46,738,214
K =5 292.32 21,733,514 1.177,518,713
K =6 7177.36 46,482,486 ~ 1.3- 10"
COSim 171.47 — —
JSim 244.89 — —
JRD 282.30 — —

TABLE 111

EFFICIENCY EVALUATION OF UMAP AGAINST COSINE SIMILARITY,
JACCARD SIMILARITY, AND JARO-WINKLER DISTANCE FOR VARIOUS
VALUES OF K.

