
Positional Data Organization 

and Compression in Web 

Inverted Indexes

Leonidas Akritidis

Panayiotis Bozanis

Department of Computer & Communication 
Engineering, University of Thessaly, Greece

23rd International Conference on Database and Expert Systems Applications

DEXA 2012, September 3-7, Vienna, Austria



University of Thessaly, Greece DEXA 2012

Introduction

 We present a method for the organization 

and compression of the positional data in 

Web Inverted Indexes.

 Important problem since the positions enable:

 Evaluation of ranked proximity queries.

 Evaluation of exact phrase queries.



University of Thessaly, Greece DEXA 2012

Block-based index setup



University of Thessaly, Greece DEXA 2012

Block-based index setup

 It allows partial decompression of the docID 
blocks, without touching the rest of the index 
data (frequencies, positions, etc).

 Useful during DAAT/TAAT query processing 
where we are interested in locating docIDs 
smaller than or equal to a given value.

 It requires:

 A skip table to jump forward in the inverted list.

 A positions look-up structure (more later).



University of Thessaly, Greece DEXA 2012

Inverted index compression

 Many algorithms, divided in two categories:

 Individual integer compression methods

 Applicable to single integer values.

 Variable Byte, Elias Gamma/Delta, Golomb/Rice.

 Group integer compression methods

 Applicable to entire bundles of integers.

 VSEncoding, PForDelta (P4D), Optimized P4D.

 Fast, but require decoding the entire block.



University of Thessaly, Greece DEXA 2012

Positional data

 The group encoding methods are ideal for 

docIDs

 But what about the positional data?

 The positional data dominate the index: Each 

posting includes on average 2.5-3.5 

positional values.

 Hence, decoding all the positions for all of the 

candidate postings is very expensive.



University of Thessaly, Greece DEXA 2012

Positional data access during 

query processing

 Query processing optimization.

 Divide the processing in two stages:

 On the first step, quickly identify the most suitable 
results by using docIDs and frequencies only.

 On the second step, perform a more refined 
processing by accessing the positional data for 
the K best results of the previous phase only.

 Apparently, we are only interested in 
accessing the positions of specific postings.

 Decoding entire blocks is redundant.



University of Thessaly, Greece DEXA 2012

Positional Data Organization

 Consequently, the group encoding methods 

are rendered inappropriate.

 Moreover, we do not know exactly where the 

positional values of a posting are stored.

 For this reason, two strategies have been 

proposed:

 Create a tree-based positions look-up structure.

 Construct indexed lists.



University of Thessaly, Greece DEXA 2012

Positional data Look-ups

 The look-up structure requires one look-up 

per posting, thus decelerating processing.

 The indexed list requires one pointer per 

posting pointing to the respective positional 

data, thus it is prohibitively expensive.



University of Thessaly, Greece DEXA 2012

PFBC: Positions Fixed-Bit 

Compression

 PFBC is designed to overcome all these 
problems.

 For each inverted list block, it employs a fixed 
number of bits to binary-encode each 
positional value.

 Then, by using the frequency values, we are 
able to calculate the exact location of the 
positions for each posting, without look-ups.

 We decode only the data actually required.



University of Thessaly, Greece DEXA 2012

PFBC: Index organization

 PFBC is compatible to all state-of-the-art inverted 

list partitioning approaches.

 Compressed Embedded Skip Lists, Skips every 128 

postings, Skips every        postings (Ft: number of 

documents containing t), etc.

 We store all the positional values contiguously.

 For each inverted list block Bi we store:

 A pointer RBi pointing to the beginning of the positional 

data of the postings of the block Bi.

 A CBi value representing the number of bits used to 

encode the positions of the block Bi.

tF



University of Thessaly, Greece DEXA 2012

PFBC: Index organization



University of Thessaly, Greece DEXA 2012

PFBC: Compression Phase

 Encode a bundle of K
positional values.

 Steps 3-8: Identify the 
largest positional value pmax.

 Step 9: Calculate C, i.e. the  
number of bits required to 
represent all K values.

 Step 13: The function 
write() stores an integer 
into a compressed 
sequence P by using C bits.



University of Thessaly, Greece DEXA 2012

PFBC: Decompression Phase

 Decode the positional data 

of posting j, of the block Bi.

 Steps 2-5: Sum up all the

frequency values of the 

previous postings of Bi.

 Step 6: Locate the bit where 

the positions of j start from.

 Step 9: The read() function 

reads each encoded position 

from the P vector.



University of Thessaly, Greece DEXA 2012

PFBC Gains

 It facilitates direct access to the positional data 

without requiring expensive look-ups. Therefore, 

query processing is accelerated.

 It saves the space cost of maintaining a separate 

look-up structure; the required data is stored within 

the skip table.

 It needs much fewer pointers than the indexed lists.

 It enables decoding of the information actually 

needed, without decompressing entire blocks of 

integers.



University of Thessaly, Greece DEXA 2012

Experiments

 Compression experiments: PFBC against 

OptP4D and VSEncoding.

 Organization experiments: PFBC against the 

tree look-up structure of [Yan et.al] and the 

indexed list of [Transier and Sanders].

 Document collection: ClueWeb-09B dataset 

(~50 million documents, ~1.5 TB).



University of Thessaly, Greece DEXA 2012

Experiments: Index size

 PFBC introduces a slight loss in the overall 

index size (increase of 1%-2%).

 This loss is amortized by the reduced size of 

the accompanying data structures (skip table, 

pointers to positions).



University of Thessaly, Greece DEXA 2012

Experiments: Query 

throughput

 Recall: The query processing is performed in two 
phases; the positions are retrieved for the K best results 
of the first phase only.

 PFBC touches much fewer data.

 PFBC is look-up free.

 PFBC offers ~5 times faster decompression.



University of Thessaly, Greece DEXA 2012

Conclusions

 We presented PFBC, a method for effective 
organization and compression of the positional 
data in Web inverted indexes.

 PFBC uses a fixed number of bits to encode 
the positions of an inverted list block.

 The slight increase in the overall index size is 
amortized by the slight decrease in the 
assistant data structures sizes.

 Much faster decompression.

 No look-ups for the positions are required.

 Allows us to decode the data actually needed.



University of Thessaly, Greece DEXA 2012

The end

Thank you for watching!

Any questions?


