
Positional Data Organization

and Compression in Web

Inverted Indexes

Leonidas Akritidis

Panayiotis Bozanis

Department of Computer & Communication
Engineering, University of Thessaly, Greece

23rd International Conference on Database and Expert Systems Applications

DEXA 2012, September 3-7, Vienna, Austria

University of Thessaly, Greece DEXA 2012

Introduction

 We present a method for the organization

and compression of the positional data in

Web Inverted Indexes.

 Important problem since the positions enable:

 Evaluation of ranked proximity queries.

 Evaluation of exact phrase queries.

University of Thessaly, Greece DEXA 2012

Block-based index setup

University of Thessaly, Greece DEXA 2012

Block-based index setup

 It allows partial decompression of the docID
blocks, without touching the rest of the index
data (frequencies, positions, etc).

 Useful during DAAT/TAAT query processing
where we are interested in locating docIDs
smaller than or equal to a given value.

 It requires:

 A skip table to jump forward in the inverted list.

 A positions look-up structure (more later).

University of Thessaly, Greece DEXA 2012

Inverted index compression

 Many algorithms, divided in two categories:

 Individual integer compression methods

 Applicable to single integer values.

 Variable Byte, Elias Gamma/Delta, Golomb/Rice.

 Group integer compression methods

 Applicable to entire bundles of integers.

 VSEncoding, PForDelta (P4D), Optimized P4D.

 Fast, but require decoding the entire block.

University of Thessaly, Greece DEXA 2012

Positional data

 The group encoding methods are ideal for

docIDs

 But what about the positional data?

 The positional data dominate the index: Each

posting includes on average 2.5-3.5

positional values.

 Hence, decoding all the positions for all of the

candidate postings is very expensive.

University of Thessaly, Greece DEXA 2012

Positional data access during

query processing

 Query processing optimization.

 Divide the processing in two stages:

 On the first step, quickly identify the most suitable
results by using docIDs and frequencies only.

 On the second step, perform a more refined
processing by accessing the positional data for
the K best results of the previous phase only.

 Apparently, we are only interested in
accessing the positions of specific postings.

 Decoding entire blocks is redundant.

University of Thessaly, Greece DEXA 2012

Positional Data Organization

 Consequently, the group encoding methods

are rendered inappropriate.

 Moreover, we do not know exactly where the

positional values of a posting are stored.

 For this reason, two strategies have been

proposed:

 Create a tree-based positions look-up structure.

 Construct indexed lists.

University of Thessaly, Greece DEXA 2012

Positional data Look-ups

 The look-up structure requires one look-up

per posting, thus decelerating processing.

 The indexed list requires one pointer per

posting pointing to the respective positional

data, thus it is prohibitively expensive.

University of Thessaly, Greece DEXA 2012

PFBC: Positions Fixed-Bit

Compression

 PFBC is designed to overcome all these
problems.

 For each inverted list block, it employs a fixed
number of bits to binary-encode each
positional value.

 Then, by using the frequency values, we are
able to calculate the exact location of the
positions for each posting, without look-ups.

 We decode only the data actually required.

University of Thessaly, Greece DEXA 2012

PFBC: Index organization

 PFBC is compatible to all state-of-the-art inverted

list partitioning approaches.

 Compressed Embedded Skip Lists, Skips every 128

postings, Skips every postings (Ft: number of

documents containing t), etc.

 We store all the positional values contiguously.

 For each inverted list block Bi we store:

 A pointer RBi pointing to the beginning of the positional

data of the postings of the block Bi.

 A CBi value representing the number of bits used to

encode the positions of the block Bi.

tF

University of Thessaly, Greece DEXA 2012

PFBC: Index organization

University of Thessaly, Greece DEXA 2012

PFBC: Compression Phase

 Encode a bundle of K
positional values.

 Steps 3-8: Identify the
largest positional value pmax.

 Step 9: Calculate C, i.e. the
number of bits required to
represent all K values.

 Step 13: The function
write() stores an integer
into a compressed
sequence P by using C bits.

University of Thessaly, Greece DEXA 2012

PFBC: Decompression Phase

 Decode the positional data

of posting j, of the block Bi.

 Steps 2-5: Sum up all the

frequency values of the

previous postings of Bi.

 Step 6: Locate the bit where

the positions of j start from.

 Step 9: The read() function

reads each encoded position

from the P vector.

University of Thessaly, Greece DEXA 2012

PFBC Gains

 It facilitates direct access to the positional data

without requiring expensive look-ups. Therefore,

query processing is accelerated.

 It saves the space cost of maintaining a separate

look-up structure; the required data is stored within

the skip table.

 It needs much fewer pointers than the indexed lists.

 It enables decoding of the information actually

needed, without decompressing entire blocks of

integers.

University of Thessaly, Greece DEXA 2012

Experiments

 Compression experiments: PFBC against

OptP4D and VSEncoding.

 Organization experiments: PFBC against the

tree look-up structure of [Yan et.al] and the

indexed list of [Transier and Sanders].

 Document collection: ClueWeb-09B dataset

(~50 million documents, ~1.5 TB).

University of Thessaly, Greece DEXA 2012

Experiments: Index size

 PFBC introduces a slight loss in the overall

index size (increase of 1%-2%).

 This loss is amortized by the reduced size of

the accompanying data structures (skip table,

pointers to positions).

University of Thessaly, Greece DEXA 2012

Experiments: Query

throughput

 Recall: The query processing is performed in two
phases; the positions are retrieved for the K best results
of the first phase only.

 PFBC touches much fewer data.

 PFBC is look-up free.

 PFBC offers ~5 times faster decompression.

University of Thessaly, Greece DEXA 2012

Conclusions

 We presented PFBC, a method for effective
organization and compression of the positional
data in Web inverted indexes.

 PFBC uses a fixed number of bits to encode
the positions of an inverted list block.

 The slight increase in the overall index size is
amortized by the slight decrease in the
assistant data structures sizes.

 Much faster decompression.

 No look-ups for the positions are required.

 Allows us to decode the data actually needed.

University of Thessaly, Greece DEXA 2012

The end

Thank you for watching!

Any questions?

