
QuadSearch: A novel metasearch engine

Leonidas Akritidis1, George Voutsakelis2, Dimitrios Katsaros1,2, and
Panayiotis Bozanis2

1 Data Engineering lab, Dept. of Informatics, Aristotle Univ., Thessaloniki, Hellas
2 Computer & Communication Engineering Dept., Univ. of Thessaly, Volos, Hellas

lakritid@mywork.gr, gevoutsa@inf.uth.gr

dkatsaro@csd.auth.gr, pbozanis@inf.uth.gr,
http://delab.csd.auth.gr/~dimitris

Abstract. Metasearch engines are increasingly becoming a very useful
tool for Web information retrieval. Their success depends mainly on their
rank aggregation (fusion) method, their interface and their total “sus-
tainability”, meaning that the engine is updated regularly and will still
be around after some time.
In this paper we describe QuadSearch, an experimental metasearch
engine that provides simultaneous access in four major conventional,
crawler-based search engines. The heart of the new metasearch engine
is based on two novel rank-based aggregation algorithms. Users can
choose which rank aggregation algorithm to use and thus to adjust
the results at their own needs. They can also alter the form of the
result list in a more convenient and statistically enhanced way. The
QuadSearch engine aims to combine speed, reliable rank aggregation
method, “spam” free results, and detailed and enriched information. A
publicly accessible interface for the new metasearch engine can be found
at http://delab.csd.auth.gr/∼lakritid/metasearch/.

1 Introduction

The Web is nowadays the main source of information; it is vast and doesn’t have
any specific structure, therefore it is extremely difficult for the user to find the
information s/he desires without any external help. For this purpose, various sys-
tems have been developed to dig for information, but the most popular ones are
the search engines, either general purpose search engines, like Google [18], or spe-
cial purpose engines, like Medical World Search (http://www.mwsearch.com/).
A search engine retrieves Web pages, relevant to a query which has been spec-
ified by the user. Although, search engines are extremely popular among Web
users, they can not achieve large coverage and high scalability. It is a common
belief among many people [21] that a single general purpose search engine for
all Web data is unrealistic, because its processing power, no matter how large it
is, can not scale to the rapidly increasing and unlimited amount of Web data.

The tool which rapidly gains acceptance by the users are the metasearch en-
gines [17]. These systems work like a filter of the various crawler-based search
engines that they combine. Metasearch engines run simultaneously a user query

across multiple component search engines, take the returned results and then
aggregate them. The advantages of the metasearch engines engines are the fol-
lowing [17]: a) they increase the search coverage of the Web, b) they solve the
scalability problem of searching the Web, c) they facilitate the exploitation of
multiple search engines, and finally d) they improve the retrieval effectiveness.

The heart of any metasearch engine is the rank aggregation algorithm, which
defines the final ranked result list from the individual results; this final list may
be affected by the user’s demands. For example, this can be done if the developers
of the rank aggregation method provide parameters and choices so that the users
can adjust some weights to any single conventional search engine depending on
their confidence on these search engines.

Further process can be done in order to filter the results and allow the final
result list of the metasearch engine to be relieved from unwanted, devious and
undeservedly highly ranked Web pages. In a world which is frequently moti-
vated by commercial interests, the user does not have a clear form of protection
against the interests of individual search engines. Therefore, the metasearch en-
gine should be capable to provide results to to the user that are as free as they
can be from paid listings and paid links.

This paper describes QuadSearch, an experimental metasearch engine that
relies on two new rank aggregation algorithms. Although the default algorithm
has some anti-spam properties, the user is granted the choice to select further
antispam filtering. Moreover, users can define which search engines they want to
be exploited by QuadSearch, the number of results which will be retrieved by
each search engine, the number of results retrieved by QuadSearch, the form
and appearance of result retrieval, and some other information enhancements.

1.1 Motivation and contributions

During the last years, the problem of paid listing within the retrieved results of
search or metasearch engines has received a lot of attention. Generally, search
engines present less paid listings than metasearch engines. In addition, paid links
at the major search engines are, in some way, separated from the main result list.
In contrast, the metasearch engines do not have such delineation, making unclear
which links are paid. Related to this is the problem of “spam” by authors of Web
pages who attempt to achieve undeservedly high rank for their Web pages by
exploiting defects of the ranking functions of search engines.

Secondly, to the best of our knowledge, there is no rank aggregation algorithm
that bears a wide variety of parameters like the number of the search engines
where a particular item appeared, the total number of exploited search engines
or the size of the top-k list returned from each search engine. We expect from a
metasearch engine to:

– consider as many parameters of these as possible,
– have anti-spam and anti-paid list properties,
– provide extra information for demanding and experienced users, i.e., to sup-

port personalization properties,

– refrain from using any training data in order to perform the rank aggregation,
because, there is usually no evidence about the underlying data properties
and their distributions, and

– do not count upon the scores of the individual search engine rankings in
order to perform the rank aggregation, because, most of the search engines
do not provide such scores.

Motivated from these requirements, we developed the QuadSearch meta-
search engine (named after the fact that it currently capitalizes on four most
popular search engines), which satisfies the above criteria. Firstly, it has two
fast rank aggregation algorithms; a default algorithm and an improved version
of it, enhanced with more antispam properties. Secondly, it allows the user to
exploit whichever version of the rank algorithm he desires, and adjust a lot of the
interface and the appearance parameters. We have implemented an experimental
version of this metasearch engine, which although not fully-fledged yet, it can
be accessed at http://delab.csd.auth.gr/∼lakritid/metasearch/.

The rest of this article is organized as follows: in Section 2 we briefly review
the relevant work on metasearch engines; in Section 3, which presents the main
article ideas, we describe the new rank aggregation methods and in Section 4
we present the implementation issues behind the developed metasearch engine.
Finally, in Section 5 we highlight the main fetures of the new metasearch engine
and in Section 6 we conclude the paper.

2 Existing metasearch engines

The first metasearch engines were established back in 1996. The fact that they
allowed searches to be sent, at the same time, to various search engines gave
the users the impression that they were getting more comprehensive results and
so they gained popularity. The interested reader can find out the most popular
metasearch engines of that period at [8, p. 388].

However, many problems occurred such as a lot of paid links inside organic
results, the refusal of Google to cooperate with them and some fraud problems
of pay-per-click search engines that led the metasearch engines to decline [5].

Now metasearch engines are coming back [4, 15] and a significant part of work
is conducted for them [11, 12]. Researchers and developers work hard to prove
that the results returned are defined by search algorithms and not by advertis-
ers [5]. They use classification and personalization techniques that conventional
search engines do not have. This does not mean that metasearch engines will
overrun the major search engines, like Google, anytime soon, but it means that
they are gradually gaining the position they deserve in the search market. In the
sequel, we will simply list, among the many metasearch engines [1, 2, 14, 22], a
few remarkable ones. An almost complete list of metasearch engines along with
their main features and shortcomings can be found at [3, 6].

Vivisimo [7] and Jux2 are clustering engines, which automatically organize
the retrieved pages on-the-fly into categories (groups). IxQuick ranks the re-
sults based on the top 10 rankings a site receives from various search engines,

iBoogie creates a list of categories related to search terms and InfoGrid provides
direct links to major search engines and topical Web sites in different categories.
SearchOnline offers a highly customizable interface, while Kartoo presents the
results within a map that shows the most important sites and the linkage rela-
tionship between the results.

3 The heart of the proposed novel result merging

3.1 Preliminaries

The ideal scenario for result merging is when each search engine gives a complete
result list of all the alternative items, related to the keyword terms of a given
query, in the universe of alternatives. This can not be done and it is far too
unrealistic for two main reasons: (i) search engines’ coverage is different, and
(ii) search engines limit access only to a portion of the complete result list. The
worst scenario is when the result lists of component search engines don’t have
overlapping elements between them. In this case there is nothing that a rank
aggregation algorithm can do.

Several rank aggregation methods have been used by metasearch engines [16,
17, 19]. In the 1990s most of the metasearch engines used score-based ranking
methods to produce their results, i.e., they utilized the scores (weights) returned
by the component search engines in order to fuse the component rankings. More-
over, many metasearch techniques applied normalization on these ranking scores
in order to make them comparable. Nowadays, no search engine provides the
ranking scores, however it is possible to convert local ranks into ranking scores.

Although score-based methods appear to be more effective for rank fusion,
the absense of scores (or denial to reveal) from many search engines’ rankings
turned these methods problematic [19]; thus the rank-based fusion became the
mainstream in present metasearch engines [19]. For instance, the Borda Count [9,
19], which is a voting-based fusion method, is very popular among metasearch
engines. Each result is a candidate and each search engine is the voter. Each
candidate receives points from each voter according to its rank in the voter’s
list. For example, the top ranked candidate will receive n points, where n is the
number of candidates. If a candidate is not in the top-k list of some voter then
it will receive a portion of the remaining points of the voter (each voter has a
fixed number of points available for distribution) or a constant number (0 or 1),
depending on the variation of the method. The Borda Count method can be
found in different versions, like the weighted Borda Count method [20], where
each voter also takes a score and therefore his opinion for a candidate is not
treated equally against other voters. Improved methods for ranking comparison
and merging in the case of ties can be found at [10, 11].

3.2 The ke method

In the sequel, we will present the rank fusion method of QuadSearch using only
four component search engines (Google, Yahoo!, Live Search, Ask Jeeves/Teoma)

since, for the present, our QuadSearch engine incoorporates only these engines.
The consideration of more engines is straightforward though.

In QuadSearch, we treat all four component search engines equally. The rea-
son we do this is due to the following observations: (i) all of them are considered
by experts as “major” search engines, (ii) during their lifetimes they have been
proved reliable and (iii) most users and metasearch engines prefer them.

The default rank aggregation method of QuadSearch is rank-based. Each
returned ranked item is assigned a score based on the following formula:

ke =
S

nm ∗ (k
10 + 1)n

(1)

where S is the sum of all rankings that the item has taken, n is the number of
search engine top-k lists the item is listed in, m is the total number of search
engines exploited, k is the total number of ranked items that QuadSearch uses
from each search engine. We named this weight as ke. The less the ke value for
an item, the larger the final rank this item will take is. For example, consider
the following listings of two search engines (see Table 1) for a particular query:

Rank SE1 SE2

1 U1 U11

2 U2 U12

3 U3 U13

4 U4 U14

5 U5 U4

6 U6 U15

7 U7 U16

8 U8 U17

9 U9 U18

10 U10 U10

Table 1. Results of two search engines for a particular query.

Let us elaborate a bit more on this table. Firstly, we presume that we deal
with the top-10 lists (k = 10) from each conventional search engine (SE: search
engine). Also we name the URLs of each result as Ui, in order to demonstrate the
overlapping URLs more easily. As we can see, there are two overlapping URLs
in the above listings, the U4 which was ranked 4-th by SE1 and 5-th by SE2 and
the U10 which was ranked 10-th by both search engines. All the others are found
only in one of the two search engine top-10 lists.

In Table 2 we can see the ranking scores of ke and Borda Count methods for
each URL. In this point we should mention a compact. We assume that when
two URLs have the same score, then the URL that is in both top-10 lists will be
ranked first, otherwise the URL of the first search engine will be ranked first.

Finally, in Table 3 we can see the final top-10 lists of the two methods.
In this point, we must stress some differences between Borda Count and the

ke method.

URL ke ke rank BC18 BC rank

U1 0.5 1 18 3

U2 1 4 17 5

U3 1.5 7 16 7

U4 0.5625 3 29 1

U5 2.5 10 14 10

U6 3 11 13 11

U7 3.5 13 12 13

U8 4 15 11 15

U9 4.5 17 10 17

U10 1.25 6 18 2

U11 0.5 2 18 4

U12 1 5 17 6

U13 1.5 8 16 8

U14 2 9 15 9

U15 3 12 13 12

U16 3.5 14 12 14

U17 4 16 11 16

U18 4.5 18 10 18

Table 2. Ranking scores of ke and Borda Count methods.

Rank SE1 SE2 ke result list (top-10) BC result list (top-10)

1 U1 U11 U1 U4

2 U2 U12 U11 U10

3 U3 U13 U4 U1

4 U4 U14 U2 U11

5 U5 U4 U12 U2

6 U6 U15 U10 U12

7 U7 U16 U3 U3

8 U8 U17 U13 U13

9 U9 U18 U14 U14

10 U10 U10 U5 U5

Table 3. Final top-10 lists of ke and BC methods.

– The Borda Count method takes into consideration the total number of can-
didates, while ke takes into consideration the number of voters.

– Some Borda Count variations assign scores to each and every candidate; a
candidate which is not included in the top-k list of a particular search engine
takes a part of the remaining points. This does not hold for the ke method. In
the ke method, a candidate will be assigned a score only when it is contained
in the top-k list of a particular search engine, otherwise its score is zero.

– The ke method takes into consideration the total number of exploited search
engines, the number of search engines where a candidate has been appeared
and the size of the top-k list.

– The ke method has better “resolution”, in the sense that the possibility of
two scores being the same is less than that of the Borda Count. For example,
in Table 2 we can see that Borda Count assigned three URLs with the same
score (U1, U10, U11 with score 18) while the ke method has given U10 a
different score.

– The lower the ke weight an item has the higher will be ranked in the final
result list. In Borda Count holds the opposite.

3.3 Antispam version of ke method

Informaly, we say that a search engine has been spammed by a page in its result
list when it ranks the page too highly with respect to the other pages, according
to the view of a “typical” (average) user. This is unavoidable for search engines,
because their ranking algorithms have “defects” that can be exploited by Web
page developers in order to achieve an undeservedly high page rank. Thus, if a
page spams all or even most of the search engines, then the metasearch engine
could not defeat this problem as well, because the aggregation fuction would
work with bad data.

In QuadSearch we gave to the users the option to use an antispam version
of ke method. This method takes into consideration the Condorcet Criteria [13].
In the context of metasearching, these criteria tell us, in a few words, that an
item which is enlisted in the top-k lists of some search engines should be ranked
above an item that is ranked in the top-k lists of fewer search engines. The
QuadSearch engine attempts to satisfy the intuition that if a page spams fewer
than half of the search engines, then the majority of search engines will prefer
a relatively good page to a spam page. The following pseudocode describes the
antispam version:

1. Find which items appear in more than half pages (let the number of these
items be c).

2. Apply the ke method for these items.
3. Position them in QuadSearch result list, starting at rank 1.
4. Apply the ke method for the rest of the items.
5. Position them in QuadSearch result list, starting at rank 1 + c.

The result list of QuadSearch is changed into that presented in Table 4. As
we can see U4 and U10 went above U1 for the simple reason that they appeared
in more than the half of the search engines, contrary to U1, which appeared only
in one. Also, in that point we should note the similarity of Antispam ke and
Borda Count top-10 lists.

4 System Implementation

In the following subsections, we describe the technical issues regarding the im-
plementation of the new metasearch engine.

Rank SE1 SE2 ke result list (top-10) Antispam ke result list (top-10)

1 U1 U11 U1 U4

2 U2 U12 U11 U10

3 U3 U13 U4 U1

4 U4 U14 U2 U11

5 U5 U4 U12 U2

6 U6 U15 U10 U12

7 U7 U16 U3 U3

8 U8 U17 U13 U13

9 U9 U18 U14 U14

10 U10 U10 U5 U5

Table 4. Antispam ke ranking.

4.1 Architecture

The most significant modules of QuadSearch are the Quad Bot, the Object
Builder, the Classification Module and the Presentation Module. These modules
are described in the next subsections. A schematic diagram of the architecture
is depicted in the left part of Figure 1.

USER

Search Options

DATABASE
SELECTOR

BUILDER
OBJECT CLASSIFICATION

MODULE
PRESENTATION

MODULEQUAD BOT

Ranking Algorithm
Selection

Results PageUSER INTERFACE
Query Terms

Fig. 1. (Left) Architecture of QuadSearch. (Right) Quad Search’s homepage.

User interface and database selector. The static content of Quad Search’s
user interface is built with plain HTML, while the dynamic procedures are being
processed by PHP. Additionally, we invoked Cascading Style Sheets (CSS) for
page formatting. We decided that the Web pages’ layout should be as simple as
possible, in order to ensure: a) short download times, b) compatibility with all
major browsers, and c) convenient usage.

For these reasons we avoided using large graphics files, or embedded objects
like ActiveX Controls, or Flash presentations. We also rejected Javascript, be-
cause many experienced users tend to deactivate it, due to security reasons. Until
now, Quad Search supports the classic Web search and also searching procedures
for news, images, video and audio sources. The ability to search for scientific ar-
ticles in the most popular scientific databases is also supported, but not very
efficient. The user can switch among these features from either the home page
or the results page. Regarding the database selector, the default search will be
run using all four search engines. The user, however, has the option to choose
which search engines will be exploited, as shown in the right part of Figure 1.

Apart from the classic text box, we included the most significant search
preferences in the home page. The user can select the query resources (the search
engines that will participate in the search process), the number of results to be
retrieved per resource, the number of results that will be displayed per page etc.
The interface provides the ability to store the values of these parameters, by
setting cookies in the client’s computer. Thus, the user is not obliged to define
again these parameters for future queries. The interface includes an extra option
to filter the results, to prevent spam records from entering the ke list. Finally, in
the options page the user can select the ranking algorithm (ke or Borda Count).

Quad bot. The Quad Bot receives its inputs from both the database selector
and the user interface. It is responsible for validating the input data and param-
eters, passing the query to the selected databases and collecting the results. Its
internal structure is depicted in the left part of Figure 2.

DB1 DB4DB3DB2

Result
Collector

Query
Dispatcer

Result
Validator

DB SELECTOR − USER

Parameter Receiver

OBJECT BUILDER

Validator

Container 2
ObjectObject

Container 1

QUAD BOT

Constructor
Properties

validated data

Obj NObj 2Obj 1 ...

CLASSIFICATION MODULE

Array with

Fig. 2. (Left) Quad Bot’s structure. (Right) Object Builder’s architecture.

Parameter Receiver/Validator. It accepts all the data coming from the data-
base selector and the user. The validation process includes transformation of the

inputs in a way that can be sent to the search engines. For example, the procedure
removes all leading and trailing spaces from the query string and replaces all
spaces by the character “+”. The Result Validator also performs security checks
to ensure that a “should-be” numeric parameter is really numeric, or that an
attacking user does not send a malicious script instead of a query string. We
developed this compartment by keeping in mind that all data coming from the
Internet should be treated as suspicious. There are over a dozens of security
checks that are performed for each parameter.

Query Dispatcher. The Query Dispatcher is the Quad Bot’s heart. It gets the
validated data and creates http requests to the selected search engines. This is the
slowest procedure of the whole system; its speed depends on the number of the
invoked search engines, the requested results, the server’s Internet connection,
etc. We have accelerated this procedure by submitting all the requests to the
search engines simultaneously. To achieve that, we had to employ the libcurl
library with cURL (client URL) extensions 7.16.0 for PHP 5.1, that support
multiple connections at a time. By building the Query Dispatcher this way, we
managed to shrink the idle time to no more than 1 or 2 seconds.

Result Collector. The Result Collector embraces the http responses trans-
mitted by the search engines. Each involved search engine must respond to the
Query Dispatcher’s request, by sending the source code of its result page. The
source code is being filtered by using pattern matching techniques. The module
retrieves the Rank, the URL, the Title and the Abstract for each candidate.
When it receives all the information, it stores it in temporary arrays and sends
them to the next module for validation.

Result Validator. The Result Validator is the most complex compartment
of this module, as it performs multiple conversions to the collected data. The
URL validation part is responsible for the appropriate formatting of the collected
URLs, so that the overlapping candidates could be correctly detected later. At
first, a UTF-8 decoding function converts all UTF-8 encoded characters to their
ISO equivalent. For example, the %27 set of characters is being converted to an
opening single apostrophe character (’). At next, a formatting function trims
the trailing slash from a URL (if exists), a third procedure checks if an engine
has returned two identical URLs etc. As already mentioned above, most of these
conversions will be presented later on.

Object Builder. The Object Builder is a connecting bridge between the Quad
Bot and the Classification module. We concluded that it is a good idea to treat
our data as objects, so that we can use all the object-oriented programming
features (such as inheritance, or support for multiple instances). This coding ap-
proach makes things very easy for the classification and presentation modules. In
this section we describe how the collected results are being converted to objects.
The Object Builder’s architecture is depicted in the right part of Figure 2.

Array with validated data. The Object Builder’s input is the array that the
Quad Bot produces. It contains all the collected results that passed the Result
Validator’s checks.

Property Constructor. This module implements a class that describes the
properties of our objects. The properties that are being assigned to the objects
are the URL, the Title, the Abstract and one to four Rankings (depending on
the number of the selected search engines).

Object Containers 1 and 2. The first advantage of using objects in the sys-
tem’s implementation comes almost immediately, as we are provided with the
ability to create multiple copies (not just references) of the objects. In this com-
partment, all the objects (the results) are being transferred to two new, identical
object containers. The results enter the containers in groups. The first group con-
sists of the results that the first search engine returns, the second group consists
of the results that the second engine returns, etc. These containers will be the
main tool in our effort to compare the search engine rankings and generate the
final ranked list.
Classification Module. The Classification Module accepts the two result con-
tainers from the Object Builder and performs the result ranking according to
the selected ranking algorithm. Its architecture is illustrated in the left part of
Figure 3.

Container 2
Object

Overlapping Detector

Ranking Module

Classified List
(QuadSearch Ranking)

OBJECT BUILDER

PRESENTATION MODULE

R
A

N
K

IN
G

 A
L

G
O

R
IT

H
M

USER

Object
Container 1

Parameter Receiver

Result Page Builder

CLASSIFICATION MODULE
USER

Fig. 3. (Left) Classification Module. (Right) Presentation Module.

Overlapping Detector. This section is responsible for detecting the overlap-
ping candidates and for creating the final candidate list. It receives input from
the two object containers and compares each object from the first container,
to all objects from the second container. When the URL properties of two ob-
jects are identical, this object is marked as overlapping. Finally, the procedure
constructs one container that holds all candidates, overlapping or not. The over-
lapping candidates appear only once in this container.

Ranking Module. The Ranking Module accepts the candidate container that
the Overlapping Detector constructs, but it also receives the ranking algorithm
that the user selected. The Ranking Module will apply the ke algorithm by
default, unless the user selects another supported algorithm. Next, it computes
the weight factors and/or the Borda Scores. Finally, it sorts the candidate list on
ascending (for weight factors) or descending (for Borda Scores) order and passes
the classified list to the Presentation Module.

Presentation Module. The task of this module is to construct the result page
that will be presented to the user. In comparison to the other system compart-
ments, this one has the simplest architecture. In the right part of Figure 3, we
illustrate a schematic diagram of its internal structure.

Parameter Receiver. In this section, a set of parameters and user preferences
are being transferred to the module. These preferences may either derive from
user’s direct selections, or from a previously stored cookie. The innovative ele-
ment here is the view selector. QuadSearch is capable of displaying the results
with the classic way that a search engine displays its results, but also can present
the results by using the array view. The array view will present a matrix that
shows only the titles of the candidates and the rankings they received from each
search engine. This feature has been developed because it offers an easier way
to compare the candidates.

Result Page Builder. The Result Page Builder is a HTML code production
factory. It accepts the ranked result list and the user preferences and constructs
the source code of the result page from the scratch. Finally, the page is displayed
to the user through the user interface.

5 Innovative Features.

In this section, a quick walkthrough of Quad Search’s innovative features is
presented.

1. Classic/Array View Switch. This feature has already been mentioned ear-
lier. The user is able to view the results in the classic way, but can also select
the array view that provides an easier way of comparing the collected results.

2. Related Searches. Apart from the desired results, the Quad Bot is capable
of grabbing almost everything from the results’ pages that the exploited search
engines transmit. In order to provide more specific results, the search engines
prompt their users to submit the queries that they propose. The Quad Bot can
fetch these query strings and present it to the result page through the Presen-
tation Module.

3. File Type Filter. Many users tend to search the Web for specific file types
(e.g., Adobe Acrobat or Microsoft Word files) and QuadSearch includes a similar
feature. The user can select one of the most popular file extensions and perform
a Web search. At this time, the QuadSearch engine supports searches for the
following file formats: PDF, DOC, XLS, PS, RTF and PPT.

4. Search for Scientific Articles. QuadSearch supports searches for scientific
articles in the richest scientific databases. Google Scholar is also included in these

Fig. 4. The results’ page with its innovative features.

databases. This type of search can be accessed from the “Science” link and will
return papers, technical reports and books approved by the scientific community
related to the query terms.

5. Query String Explosion Feature. This feature (see Figure 4) splits the query
string to its search terms and gives the user the ability to perform ‘single term’
searches. For example, the query string ‘electronic engineering’ is being split
to the terms ‘electronic’ and ‘engineering’. By clicking on any of these words
QuadSearch will perform a Web search.

6. Ranking Algorithm Selector. This feature (see Figure 5) is only accessible
from the options page and provides the user with the facility to determine how
the collected results will be ranked, by employing one (or more) of the supported
algorithms. At this time, QuadSearch supports our ke Algorithm and the Borda
Count method. It also provides a third option that utilizes both algorithms and
presents the results in array view (comparison mode). It is in our intentions to
include more ranking algorithms in the system (e.g., Markov Chains).

7. Engine Bombing Protection. When various search resources are being ex-
ploited, a possibility that many similar results will enter the result’s list always
exists. This phenomenon is called engine bombing. For example, it is not very
informative and useful for a user to submit a query and receive five or more
results from the same domain in the top, say, twenty listing. Thus, we developed
a feature (which can be enabled or disabled) to prevent multiple results coming
from the same domain to enter into the result list; alternatively the user can
select the maximum number of such results.

Fig. 5. Part of the options’ page is where the Ranking Algorithm Selector and the
Engine Bombing Protection lay.

6 Concluding remarks and future work

In this article, we considered the issue of developing a new metasearch engine
to assist in the process of Web information retrieval. The main motivation to
develop this novel metasearch engine was the common intuition that a rank
aggregation algorithm should a) be related to the comparison of the top-k lists
of each conventional search engine, and b) deal with the problem of the spam
into metasearch result lists. Thus, we came up with a pair of new methods for
rank aggregation, i.e., the ke method and its antispam version. We injected
some new parameters, like the number of the top-k lists that a page appears,
the total number of exploited search engines and the size of the top-k lists.
The best way to experiment and test these two new methods was to develop
a new metasearch engine, named QuadSearch, a name related to the current
number of exploited engines. The new metasearch engine is publicly available at
http://delab.csd.auth.gr/∼lakritid/metasearch/.

For the near future, we are going to implement anonymous personalization
techniques, further result filtering, and thorough search hints. Furthermore, we
are orientated towards making QuadSearch a scientific tool by implementing
most of the rank aggregation methods and giving the user the opportunity to
choose between them as well as to provide more statistics and a user grading
system of result lists.

References

1. The best and most popular meta search engines, 2006. Retrieved on December
31st from www.searchenginewatch.com/showPage?html.page=2160791.

2. The big four meta search engines, 2006. Retrieved on December 31st from
www.searchenginewatch.com/showPage?html.page=2160781#scene 1.

3. A meta search engine roundup, 2006. Retrieved on December 31st from
www.searchenginewatch.com/showPage?html.page=2160801.

4. Meta search engines are back, 2006. Retrieved on December 31st from
www.searchenginewatch.com/showPage?html.page=3109441.

5. Meta search or meta ads?, 2006. Retrieved on December 31st from
www.searchenginewatch.com/showPage?html.page=2163821.

6. Metacrawlers and metasearch engines, 2006. Retrieved on December 31st from
www.searchenginewatch.com/showPage?html.page=2156241.

7. Vivisimo clustering engine, 2006. Retrieved on December 31st from
http://vivisimo.com/.

8. R. Baeza-Yates and B. Ribeiro Neto. Modern Information Retrieval. Addison-
Wesley and ACM Press, 1999.

9. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the Web. In Proceedings of the ACM International Conference on World Wide
Web (WWW), pages 613–622, 2001.

10. R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial
rankings. In Proceedings of the ACM International Symposium on Principles Of
Database Systems (PODS), pages 47–58, 2004.

11. R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial
rankings. SIAM Journal on Discrete Mathematics, 20(3):628–648, 2006.

12. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
Discrete Mathematics, 17(1):134–160, 2003.

13. N. Francis. Voting as a method for rank aggregation and spam reduction on the
Web. Undergraduate senior thesis (CPSC 490). Department of Computer Science,
Yale University, May 9th, 2005.

14. A. Gulli and A. Signorini. Building an open source meta-search engine. In Proceed-
ings of the ACM International Conference on World Wide Web (WWW), pages
1004–1005, 2005.

15. M. Levene. An Introduction to Search Engines and Web Navigation. Addison-
Wesley, 2006.

16. Y. Lu, W. Meng, L. Shu, C. Yu, and K.-L. Liu. Evaluation of result merging strate-
gies for metasearch engines. In Proceedings of the IEEE International Conference
on Web Information Systems Engineering (WISE), pages 53–66, 2005.

17. W. Meng, C. Yu, and K.-L. Liu. Building efficient and effective metasearch engines.
ACM Computing Surveys, 34(1):48–89, 2002.

18. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the Web. Technical Report TR-1999-66, Stanford University,
1999.

19. M. E. Renda and U. Straccia. Web metasearch : Rank vs score based rank ag-
gregation methods. In Proceedings of the 18th ACM International Symposium on
Applied Computing (SAC), pages 841–846, 2003.

20. S. Souldatos, T. Dalamagas, and T. Sellis. Sailing the Web with Captain Nemo: A
personalized metasearch engine. In Proceedings of the ICML workshop: Learning
in Web Search (LWS), Bonn, Germany, 2005.

21. A. Sugiura and O. Etzioni. Query routing for Web search engines: Architecture
and experiments. Computer Networks, 33(1–6):417–429, 2000.

22. Z. Wu, W. Meng, and Z. Yu, C. Li. Towards a highly-scalable and effective
metasearch engine. In Proceedings of the ACM International Conference on World
Wide Web (WWW), pages 386–395, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

