
Computing Scientometrics in Large-Scale

Academic Search Engines with MapReduce

Leonidas Akritidis and Panayiotis Bozanis

Dpt. of Computer & Communication Engineering, Univ. of Thessaly, Volos, Greece

Abstract. Apart from the well-established facility of searching for
research articles, the modern academic search engines also provide in-
formation regarding the scientists themselves. Until recently, this infor-
mation was limited to include the articles each scientist has authored,
accompanied by their corresponding citations. Presently, the most pop-
ular scientific databases have enriched this information by including sci-
entometrics, that is, metrics which evaluate the research activity of a
scientist. Although the computation of scientometrics is relatively easy
when dealing with small data sets, in larger scales the problem becomes
more challenging since the involved data is huge and cannot be han-
dled efficiently by a single workstation. In this paper we attempt to ad-
dress this interesting problem by employing MapReduce, a distributed,
fault-tolerant framework used to solve problems in large scales without
considering complex network programming details. We demonstrate that
by setting the problem in a manner that is compatible to MapReduce,
we can achieve an effective and scalable solution. We propose four al-
gorithms which exploit the features of the framework and we compare
their efficiency by conducting experiments on a large dataset comprised
of roughly 1.8 million scientific documents.

1 Introduction

Following the evolution of the Web search engines, the scientific databases and
academic search engines have significantly enriched the content of their result
pages. Therefore, the results of a query for a research paper are now accompanied
by information regarding the articles’ authors. Some of the most popular scien-
tific search engines such as Google Scholar1, Microsoft Academic2, and Scopus3

extended this information by constructing author profiles where they compute
and present their associated scientometrics.

The scientometrics are single, scalar values introduced with the aim of eval-
uating the research work of a scientist. The first and most widespread among
them is h-index, devised by J.E. Hirsch [9]. This metric assigns a value to each
scientist by taking into account not only the number of publications he/she has
authored, but also, by considering the number of citations each article received.

1 http://scholar.google.com
2 http://academic.research.microsoft.com
3 http://scopus.com

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 609–623, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

610 L. Akritidis and P. Bozanis

After the introduction of h-index, an entirely new line of research was drawn
and multiple variants were proposed.

The computation of scientometrics is relatively easy when it is performed on
small, well-controlled collections of research papers. For instance, in the case of
h-index, the evaluation mechanism just needs to determine the articles each re-
searcher has authored and then enumerate all their incoming citations. However,
when the size of the collection increases the evaluation becomes more complex
since a single workstation cannot accommodate all the involved data (i.e. docu-
ments, authors and citations). Therefore, we either have to use a secondary (and
slower) type of storage, or solve the problem in parallel by distributing the data
to a number of interconnected machines.

MapReduce is a distribution framework designed for solving problems in large
scales. It is mainly oriented towards fault-tolerance, distributed storage, and
simple implementation without requiring network programming details. This
model has been used extensively by the Web search engines to develop a wide
range of parallel algorithms. Examples include data mining tasks, information
extraction from graphs, data structures construction, text processing, and others.

In this paper we propose four methods based on MapReduce to compute
in parallel the scientometrics in large scientific databases. To the best of our
knowledge, this is the first work in the current literature attempting to address
this problem in large scales. All previous bibliography does not study in depth
the issue in question, since until recently the data collections were small and the
problem was not very important. However, the introduction of the large scientific
databases and their constantly expanding repositories in combination with the
users’ increased interest, has rendered the issue much more challenging.

The rest of the paper is organized as follows: In section 2 we describe the
most important related work about MapReduce and we refer to some popular
scientometrics. Section 3 contains the key elements deriving from the related
theory. In section 4 we set the problem in a basis that renders it manageable
by MapReduce and we design the execution plan of our proposed algorithms.
The experimental evaluation of our methods is given in section 5 and finally, in
section 6 we conclude our work.

2 Related Work

In this section we present some fundamental articles about MapReduce and its
architecture and we discuss some remarkable works which introduce strategies
for solving common problems in parallel. Finally, we refer to a number of scien-
tometrics that have been proposed in the related bibliography.

MapReduce was initially introduced by two Google engineers in [7]. In [8]
the authors described GFS, the distributed file system on which the framework
operates. A more extended presentation of the components of MapReduce is
provided in [4]. The most popular open source implementations of MapReduce
and GFS are Hadoop and the HDFS respectively. A technical overview of their
architectural logic and design is provided in [3].

Computing Scientometrics in Large-Scale Academic Search Engines 611

Numerous works have proposed expansions and modifications which allowed
the framework to be used in a wider variety of applications. For instance, [2]
introduced HadoopDB, an architectural hybrid between Hadoop and database
management systems. In [16] the authors appended a “Merge” phase to the
execution plan of the system with the aim of joining the relational outputs of
two separate MapReduce tasks.

Several other research articles have described important problems which were
efficiently solved by using MapReduce. For instance, Web search engines have
used the framework extensively in data intensive tasks such as inverted index
construction [13], and PageRank computation [12]. Text intensive applications
include duplicate and near-duplicate document detection [6], language processing
algorithms [11] and numerous others. Finally, [17] introduced Pregel, a compu-
tational model for processing large graphs. Pregel programs are expressed as a
sequence of iterations, in each of which a vertex can receive messages sent in
the previous iteration. However, unlike PageRank computation, the evaluation
of scientometrics can be performed in a single MapReduce job without requiring
multiple iterations.

Now let us refer to some papers which are related to scientometrics. The pio-
neering article in the area is [9], where J.E. Hirsch introduced h-index, a metric
which evaluates each scientist by rewarding both productivity and influence. Mo-
tivated by the success of h-index, several other metrics were proposed. Examples
include the SCEAS system [15], g-index [5] and f-index [10]. Additionally, in [14]
the authors describe two time-aware variations of h-index, namely the contem-
porary h-index and the trend h-index. The former takes into consideration the
elapsed time since an article was published, whereas the latter considers the date
an article received each of its citations.

3 Preliminaries

Now we briefly present the principles which characterize the framework and we
describe its basic components. Furthermore, we revise some of the most popular
scientometrics and we examine their attributes.

3.1 MapReduce Basics

MapReduce builds on the key idea of simplicity; that is, its users should not deal
with complex network programming issues [7,4]. Instead, the system provides an
abstraction that requires from the algorithm developers to express their solutions
by using only two functions: map and reduce.

The co-ordination of the parallel execution is performed by a single machine,
the Master. The Master splits the input data into multiple fragments and assigns
the processing of each fragment to a number of m Workers. The Workers (called
Mappers in this phase) apply the map function to every key/value pair of their
input and generate an arbitrary number of intermediate key/value pairs. When
the input is exhausted, the system employs a number of r Workers (now called

612 L. Akritidis and P. Bozanis

Reducers) that apply the reduce function to all values associated with the same
intermediate key. Their final output is the solution of the assigned task, also
formatted in key/value pairs and partitioned in r shards.

There are two more optional components which can be involved in a MapRe-
duce task: The Partitioner and the Combiner. The former is used to determine
how the intermediate files produced by the Mappers should be transferred to the
local file systems of the Reducers. The latter, is used to improve the efficiency of
the execution by limiting the size of the data to be transferred from the Mappers
to the Reducers by merging the values associated with the same key into asso-
ciative arrays. The Combiner is deployed by either explicitly declaring a combine
function, or by properly implementing it within the Mapper itself (in-Mapper
Combiner). According to [12], the second option is usually preferable.

The MapReduce jobs are executed on top of a distributed file system [7] which
transparently addresses all the problems that may occur (e.g., fault tolerance).
For instance, in case a worker dies due to a hardware malfunction, Master assigns
the job it was processing to another worker without any data loss.

3.2 Scientometrics

Here we provide brief descriptions of some important metrics that have been
proposed for evaluating the research work of a scientist. The first and most
popular metric among them is h-index, defined as follows:

A researcher a has h-index Ma
h , if M

a
h of his/her |P a| articles have received

at least Ma
h citations each and the rest |P a|−Ma

h articles have received no more
than Ma

h citations.
This metric calculates how broad the research work of a scientist is, since it

accounts for both productivity and impact. Two interesting generalizations of
h-index are the contemporary and the trend h-indices, both introduced in [14].

The contemporary h-index is an attempt to introduce temporal aspects in
the evaluation of a scientist’s work by taking into account the age of an article.
According to its definition, each paper pi of an author a is assigned a score Spi

c

determined by the following formula:

Spi
c = γ

|P pi
c |

(ΔYi)δ
(1)

where γ and δ are two constant coefficients; typical values for them are 4 and -1
respectively. ΔYi symbolizes the number of the years elapsed since the publica-
tion of pi, whereas |P pi

c | is the number of the articles citing pi. This way an old
article gradually loses its value, even if it still gets citations. Based on the score
Spi
c the contemporary h-index is defined as follows:
A researcher a has contemporary h-index Ma

c , if M
a
c of his/her |P a| articles

get a score Spi
c ≥ Ma

c and the rest |P a| −Ma
c articles get a score Spi

c < Ma
c .

Computing Scientometrics in Large-Scale Academic Search Engines 613

Another mechanism for ranking scientists is the trend h-index. Here the idea
is to assign scores to each paper by considering the year an article acquired a
particular citation. This idea is expressed by the following equation:

Spi

t = γ

|Ppi
c |∑

n=1

1

(ΔYn)δ
(2)

where γ and δ are defined as previously. The scores Spi

t are now used to define
the trend h-index:

A researcher a has trend h-index Ma
t , if Ma

t of his/her |P a| articles get a
score of Spi

t ≥ Ma
t and the rest |P a| −Ma

t articles get a score of Spi

t < Ma
t .

In this paper we examine how the three aforementioned metrics can be eval-
uated in large scales by employing the MapReduce framework. Nevertheless,
the algorithms we present here can also be applied to compute other types of
scientometrics (i.e. g-index, f-index) without any additional effort.

4 Computing Scientometrics with MapReduce

In this section we identify the key components of the problem and we design
the Map and Reduce functions. In the sequel, we optimize our approaches by
introducing in-Mapper Combiners.

4.1 Problem Formulation

Let us begin by introducing P which is the set containing all papers, and A which
includes all authors. Each paper pi ∈ P contains a reference section encountered
towards the end of the manuscript. From this section we extract P pi ⊂ P which

Table 1. List of the most frequent symbols

Symbol Meaning

P The set containing all papers

A The set containing all authors

pi An arbitrary paper pi ∈ P

Cpi The textual content of pi
aj An arbitrary author aj ∈ A

Api The authors who created pi
P aj The papers authored by aj

P pi The papers referenced by pi
Spi
x The score of a paper pi with respect to the metric x

M
aj
x A metric evaluating the work of aj

M
aj

h : h-index of aj

M
aj
c : contemporary h-index of aj

M
aj
t : trend h-index of aj

614 L. Akritidis and P. Bozanis

contains all papers referenced by pi; for each reference ppi

j ∈ P pi we retrieve all

the contributing authors Ap
pi
j . In Table 1 we summarize all the above notations.

The input of the problem can be considered as a set of (pi, C
pi) pairs, where

pi represents the integer identifier of an article and Cpi symbolizes its content.
Our objective is to construct a list of (a,Ma

x) pairs, where x identifies the metric
M employed to evaluate each scientist (see last row of Table 1). According to
the definitions of all three metrics, it is required that we decompose the required
(a,Ma

x) pairs and construct for each author, one pair of the following form:

(
a, SortedList

[(
p1, S

p1
x

)
, ...,

(
pN , SpN

x

)])
(3)

where Spi
x is the score of pi with respect to the metric x. In case we are inter-

ested in computing h-index, this score merely represents the total number of the
incoming citations that pi received. A detailed analysis on how these scores are
computed is provided in subsection 4.2.

According to 3, to calculate the metric values for an author, we first need to
identify all the publications he/she has authored, and then compute their cor-
responding scores. Notice that the elements of this (paper, score) list must be
sorted in descending score order to enable fast metric evaluation with a single it-
eration. In the following section we present four methods to solve this interesting
problem by using MapReduce.

4.2 Basic Algorithm Design

We start by feeding the system with the given set of the publications P . Ac-
cording to our previous discussion, we express the input of the Map function in
a (key, value) manner by defining (pi, C

pi) pairs. Within the Mapper, we parse
the textual content of each paper pi ∈ P and we retrieve all its outgoing refer-
ences P pi . For each reference ppi

k ∈ P pi we compute a score Spk
x , according to

the metric x we need to evaluate.
For the plain h-index metric, we set the score equal to 1 for all references,

thus denoting that the paper ppi

k has one incoming citation (which of course, is
pi). For the other two metrics, we need to consult equations 1 and 2. Our goal
is to properly set the partial scores in the map phase in order to compute the
final scores in the reduce phase. For this reason, during the map phase, we set
the partial scores recorded in Table 2.

In the sequel, each reference is again parsed and its authors Ap
pi
k are identified.

For each extracted author, we create one tuple that will be sent to the Reducer and
there are two options to format this tuple. The first one (calledmethod 1) dictates

Table 2. Setting the partial paper scores in the map phase for various scientometrics

Metric Partial Score

h-index Sp
h = 1

contemporary h-index Sp
c = γ/(ΔYp)

δ

trend h-index Sp
t = γ/(ΔYp,c)

δ

Computing Scientometrics in Large-Scale Academic Search Engines 615

Algorithm 1. Mapper class(es): In case method 1 is used, the framework exe-
cutes the step 8a. If we use method 2, we need to execute the step 8b.

1: class Mapper
2: method map (integer pi; string Cpi)
3: P ← ExtractReferences(Cpi)
4: for all references p ∈ P
5: Sp ← ComputeScore(p)
6: Ap ← ExtractAuthors(p)
7: for all authors a ∈ Ap

8a: emit (a, pair[p, Sp])
8b: emit (pair[a, p], Sp)

that we set the author as the key, and create a pair (paper, score) for the value
field. Our second option (called method 2) is to generate a composite key of the
form (author, paper), and place the paper score within the value field. Algorithm 1
illustrates a pseudocode for the map function implementing these two methods.

Although the map phase is almost identical for methods 1 and 2, the reduce
phases must implement a different strategy. Notice that the MapReduce frame-
work guarantees that the data sent from the Mappers arrives at the Reducers
in a sorted key order. This gives method 2 an advantage; method 2 implements
a secondary sort, that is, the data not only is brought to the Reducers in an
ascending author order (as holds for method 1), but also, in ascending paper
order. This allows a more robust approach of the reduce phase, since we save the
cost of searching for the incoming papers. To make our state clearer, we provide
Algorithms 2 and 3 for the reduce phase of methods 1 and 2 respectively.

Let us discuss Algorithm 2 first. Since the (paper, score) pairs are brought to
the Reducers in arbitrary order, we need to store these pairs into a data structure
H which will allow us to accumulate the partial paper scores. More specifically,
for each value field of the Reducer input, we search in H for the input paper.
In case this search fails, we insert the paper along with its corresponding score.
In the opposite case, we just accumulate the incoming score to the one which is
already stored in H . After all the tuples have been processed, we sort H in a
descending score order and we compute the desired metric by iterating through
its entries (steps 11–16). The sorting of H can be performed within the main
memory of the Reducer since it stores at most a few hundreds entries; the vast
majority of the authors has published fewer than 1000 articles.

On the contrary, in Algorithm 3 there is no need for searching; instead, it
is only required to allocate an array H to store the paper scores. Since the
tuples arrive in sorted order, we just need to compare the paper we are currently
processing to the previous one (step 9). In case their identifiers are equal we
accumulate their partial scores and update the last record of H . In the opposite
case, we store the new paper score in a new position at the end ofH . When all the
papers of an author have been processed, we repeat the steps 9–17 of Algorithm
2 to compute the desired metric and we proceed with the next author. The final
(a, ha) tuple must be written out in the close method.

616 L. Akritidis and P. Bozanis

Algorithm 2. Method 1, Reducer class

1: class Reducer
2: method reduce (string a; pairs[integer p, float Sp])
3: H ← new AssociativeArray
4: for all pair v ∈ pairs[integer p, float Sp]
5: if v.p ∈ H
6: Hp.S ← Hp.S + v.Sp

7: else
8: H .add(v)
9: sort H in descending S order
10: integer papers ← 0, metric ← 0
11: for all pairs ∈ H
12: papers ← papers + 1
13: if Hp.S ≥ papers
14: metric ← metric + 1
15: else
16: stop iteration
17: emit (a, metric)

Finally, notice that the pair values of Algorithm 2 and the pair keys of Algo-
rithm 3 are not included in the basic data types of MapReduce. Consequently,
it is required that we implement additional classes which explicitly define how
these data types must be read and written by the framework. Nevertheless, the
complexity for Algorithm 3 is increased since the custom data type is used in
the key; hence, it is required to determine how the system will compare the keys
to each other to achieve sorted Mapper output (compareTo method). However,
the increased complexity of Algorithm 3 is rewarded with improved execution
performance.

4.3 Optimizing the Performance

Despite their difference in tuples formatting, the Mappers of both methods 1
and 2 still emit data to the Reducers each time an author of a paper reference
is extracted. Since we do not check whether the key we are currently processing
has been previously sent, it is inevitable that we transmit the same key multiple
times. This leads to a performance bottleneck due to the increased network
traffic caused among the nodes of the system. Here we attempt to address this
problem with the support of the Combiners.

The Algorithm 4 shows how we can extend method 1 with the aim of sup-
porting an in-Mapper Combiner. We call this new approach as method 1-C,
where the letter “C” signifies the presence of a Combiner. The cornerstone of
method 1-C is to avoid multiple emissions of identical author names and thus,
save valuable network bandwidth. To achieve this, we first initialize a container
data structure H which shall allow us to emit (author, list[paper, score]) tuples
instead of the simple (author, (paper, score)) tuples of method 1. During the
references parsing process, each time an author is encountered we perform a

Computing Scientometrics in Large-Scale Academic Search Engines 617

Algorithm 3. Method 2, Reducer class

1: class Reducer
2: method initialize
3: string aprev ← ””
4: integer pprev ← 0
5: integer n← 0
6: H ← new Array
7: method reduce (pair[string a, integer p]; float Sp)
8: if a = aprev

9: if p = pprev
10: H(n)← H(n) + Sp

11: else
12: H .add(Sp)
13: n← n+ 1
14: else
15: Perform steps 9–17 of Algorithm 2
16: H .reset()
17: aprev ← a
18: pprev ← p
19: n← 0
20: method close
21: emit (a, metric)

look-up in the container (step 10); in case the author is not present in H we
insert the record along with the corresponding (paper, score) pair (steps 11–13).
In the opposite case, we need to check whether the current reference belongs to
the (paper, score) list of the found author. If the search is unsuccessful we store
the paper and its score in the list (step 16); otherwise, we update the corre-
sponding list record by summing up the new paper score to the stored one (step
18). After all the input data has been processed, the Mapper emits the tuples
stored within H to the Reducer via the Close method.

It is immediately obvious that the method 1 generates an immense number
of key-value pairs compared to method 1-C. Method 1-C is much more compact
since with method 1, the author is repeated for each reference we send to the
Reducer. Nevertheless, we need to mention here that there are two side effects
deriving from the usage of a Combiner. The first one is the increased memory
footprint of the map function due to the allocation of the container data struc-
ture. The second is a possible delay in the execution of the map phase due to the
double search we perform (one for the author and one for paper). However, in
this specific application that we examine, our experiments reveal that this delay
is infinitesimal due to the small length of the (paper, score) lists, and that the
usage of a Combiner definitely leads to significant acceleration of the entire task.

Finally, we introduce method 2-C where we inject the in-Mapper Combiner
approach in method 2. The Algorithm 5 illustrates the basic steps which are
similar to those of Algorithm 4. In this case however, the container data struc-
ture does not store a list of (paper, score) pairs for each author, but a single

618 L. Akritidis and P. Bozanis

Algorithm 4. Method 1-C: Improved version of method 1 with Combiners

1: class Mapper
2: method initialize
3: H ← new AssociativeArray
4: method map (integer pi; string Cpi)
5: P ← ExtractReferences(Cpi)
6: for all references p ∈ P
7: Sp ← ComputeScore(p)
8: Ap ← ExtractAuthors(p)
9: for all authors a ∈ Ap

10: if a /∈ H
11: La ← new Array
12: La.add(p, Sp)
13: H .add(a,La)
14: else
15: if p /∈ H.La

16: H.La.add(p, Sp)
17: else
18: H.La.update(p,+Sp)
19: method close
20: for all authors a ∈ H
21: emit (a, list(p, Sp))
22: class Reducer
23: method reduce (string a; list[integer p, float Sp])
24: H ← new AssociativeArray
25: for all pair v ∈ list[integer p, float Sp]
26: if v.p ∈ H
27: Hp.S ← Hp.S + v.Sp

28: else
29: H .add(v)
30: Perform steps 9–17 of Algorithm 2

cumulative score value per each distinct (author, paper) pair. This minimizes
the benefits of using a Combiner because the (author, paper) keys are more nu-
merous than the simple author keys of method 1-C. In addition, notice that the
reduce phase in this case is identical to that of method 2.

5 Experiments

For the experimental evaluation of our theoretic analysis we employed Hadoop
0.20.2, an open-source implementation of the Google’s MapReduce framework.
We begin this section with a brief description of our test dataset and we proceed
with data size measurements and efficiency assessments.

Computing Scientometrics in Large-Scale Academic Search Engines 619

Algorithm 5. Method 2-C: Improved version of method 2 with the introduction
of in-Mapper Combiners. The Reducer is identical to the one of Algorithm 3.

1: class Mapper
2: method initialize
3: H ← new AssociativeArray
4: method map (integer pi; string Cpi)
5: P ← ExtractReferences(Cpi)
6: for all references p ∈ P
7: Sp ← ComputeScore(p)
8: Ap ← ExtractAuthors(p)
9: for all authors a ∈ Ap

10: if pair(a, p) /∈ H
11: H .add(pair(a, p), Sp)
12: else
13: H .update(pair(a, p), +Sp)
14: method close
15: for all pairs (a, p) ∈ H
16: emit (pair(a, p), Sp)

5.1 Dataset Characteristics

Collecting bibliometric data is a challenging task, due to the strict data protec-
tion policies applied by the digital libraries. Since crawling is forbidden, we are
limited in using only open access document collections. The largest among these
collections is the CiteSeerX [1] dataset, an open repository comprised of approx-
imately 1.8 million scientific articles. The dataset is available in three forms: The
first one contains the raw text of the publications scattered in 1.8 million plain
text files. The other two contain certain meta-data of the documents expressed
in SQL and XML formats respectively. The raw text format of the articles re-
quires much and intensive effort towards two directions: a) disambiguation of
the authors names and b) references extraction. Although these problems are
both interesting and challenging, they are out of the scope of this paper. For
this reason, we choose to work with the XML formatted dataset.

For each article of the dataset there are one or more small-sized XML files,
each of which represents a different version of the same article. The dataset in-
cludes in total 3.9 million XML files, however, in our experiments we use only the
latest version; consequently, 1.8 million XML files are used. This large number
of small-sized files renders the dataset inappropriate for MapReduce, because

Table 3. Problem input-output statistics

Statistic Value

Input Records 1,844,272

Input Size 27.6 GB

Output Records 2,865,282

Output Size 39.9 MB

620 L. Akritidis and P. Bozanis

the underlying distributed file system is designed for optimal performance when
dealing with considerably larger files. For this reason, we performed a conversion
of the dataset by packing thousands of these XML files into larger binary files.
After this process, our “new” dataset was comprised of 432 files of 64 MB each.

5.2 Data Sizes

In this subsection we perform measurements of the data sizes exchanged between
the Mappers and the Reducers of our proposed methods. Initially we provide
method independent numbers indicating the data sizes involved in the examined
problem. The first two rows of Table 3 concern the Mapper input, whereas the
last two are connected to the Reducer output. As mentioned, the input consists
of approximately 1.8 million articles which occupy in total roughly 27.6 GB.
After the processing of the dataset with MapReduce, the system outputs a set
of about 2.8 million (author,metric) pairs the size of which touches 40MB.

Table 4 illustrates various statistics; in the first double column we measure the
size of the Mapper output of all four examined methods, expressed in number
of records and data size in MB. The latter measurement is essential since it
reflects the overall size of the data exchanged among the Mapper and Reducer
nodes of the cluster. In the next column we record the counts of the Reducers
input groups which represent the number of the unique keys which arrive at
the Reducers. To acquire these measurements, we executed all four methods by
employing only one Worker node; Table 4 derives from the report generated by
the framework at the end of the task.

Initially we examine the performance of our methods in terms of sizes of
the Mapper outputs. The map phase of methods 1 and 2 transmitted in total
36.7 million records occupying roughly 688 MB. On the contrary, the usage of a
Combiner in method 1-C decreased these values by 42% (21.7 million records)
and 13% (601 MB) respectively. As we anticipated, method 2-C was not equally
efficient despite the usage of a Combiner. Compared to methods 1 and 2 we only
achieve a reduction in the size of the outputted data by a margin of 6.5%. This
is due to the fact that the Combiner of method 1-C lists (paper, score) pairs per
each unique author, whereas method 2-C stores one partial score value for each
distinct (author, paper) key; the latter key type is much rarer than the former.

The counts of the Reducer input groups reveal that the number of the unique
keys which arrive at the Reducers of methods 1 and 1-C is equal to the number
of records that depart from it (see third row of Table 3). This is due to the fact

Table 4. Record counts and data sizes for the four examined methods

Method
Mapper Output Reducer

Records Size (MB) Input Groups

method 1 36,687,999 688.4 2,865,282

method 2 36,687,999 688.4 12,260,311

method 1-C 21,736,395 600.8 2,865,282

method 2-C 34,251,437 643.2 12,260,311

Computing Scientometrics in Large-Scale Academic Search Engines 621

Fig. 1. Running times of the four methods in a small local cluster (Left), and a Web
cluster infrastructure (Right)

that the output of the entire task (i.e. (a, ha) pairs) has the same key as the
Mapper output of these two methods. On the other hand, the tuples produced
by the Mappers of methods 2 and 2-C are keyed by using (author, paper) pairs,
consequently, the unique keys which arrive at the Reducers increase by a factor
of approximately 4.2.

5.3 Efficiency Measurements

In this subsection we evaluate the performance of the four methods. To ex-
haustively attest the scalability of our algorithms, we measured their running
times by using two platforms. The first one includes a small-sized lab network,
whereas the second one is a larger Web cluster infrastructure. Each experiment
was repeatedly performed by employing different numbers of processing cores
each time. The results are depicted in Figure 1.

Our first observation is that in both platforms, all of our methods scale well
for fewer than 20 cores; the doubling of the cluster size almost leads to halved
running times. For more cores the gains are slightly limited, due to the increased
network latencies. Notice that the running times between the two clusters are
not comparable, since these clusters are equipped with different hardware and
they adopt different architectures. In all occasions, method 1-C outperformed
the other approaches by a margin ranging between 32% and 35%. Apparently,
the existence of the Combiner results in decreased exchange of data among the
nodes of the clusters. Although method 2-C also employs a Combiner, it did not
perform equally well; compared to method 1-C it was outperformed by about
18%. We have previously explained that the (author, paper) keys of method 2-C
are more numerous than the simple author keys of method 1-C, consequently,
the benefits of using a Combiner are limited.

Regarding the plain methods 1 and 2, we notice that the latter completed the
assigned task slightly faster. Although the amount of data exchanged among the
nodes of the system is equal in both methods, method 2 achieves better perfor-
mance due to the more robust implementation of its Reducer. More specifically,
the (author, paper) keys emitted by the Mapper of method 2 are brought to the
Reducer in sorted author and paper order (secondary sort), thus saving us the
cost of searching for the input papers.

622 L. Akritidis and P. Bozanis

6 Conclusions

In this paper we studied the issue of computing several scientometrics in large-
scale academic search engines with MapReduce. The scientometrics are scalar
values used to evaluate the research work of a scientist. The large volumes of
data employed by the modern academic search engines in combination with their
popularity, has rendered the examined problem both interesting and challenging.
We introduced four methods to compute three of these metrics, h-index, and
two variations, the contemporary and trend h-indexes. However, these methods
can be applied to compute a wider variety scientometrics with no additional
effort. We proposed optimizations with the aim of decreasing the size of the
data exchanged among the nodes of the system, and we conducted experiments
with the CiteSeerX dataset, a large repository comprised of about 1.8 million
research articles. Our experiments demonstrated the usefulness of method 1-C,
a strategy which achieves both effective and efficient execution.

References

1. CiteSeerX Data, http://csxstatic.ist.psu.edu/about/data

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. Proceedings of the VLDB Endowment 2(1), 922–933 (2009)

3. Borthakur, D.: The Hadoop distributed file system: Architecture and design (2007)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM 51(1), 107–113 (2008)

5. Egghe, L.: Theory and Practise of the g-index. Scientometrics 69(1), 131–152 (2006)

6. Elsayed, T., Lin, J., Oard, D.: Pairwise document similarity in large collections
with MapReduce. In: Proceedings of 46th Annual Meeting of the Association for
Computational Linguistics on Human Language Technologies, pp. 265–268 (2008)

7. Ghemawat, S., Dean, J.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Symposium on Operating SystemDesign and Implementation (OSDI 2004),
San Francisco, California, USA, pp. 137–150 (2004)

8. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. ACM SIGOPS
Operating Systems Review 37, 29–43 (2003)

9. Hirsch, J.: An Index to Quantify an Individual’s Scientific Research Output. Pro-
ceedings of the National Academy of Sciences 102(46), 16569 (2005)

10. Katsaros, D., Akritidis, L., Bozanis, P.: The f index: Quantifying the Impact of
Coterminal Citations on Scientists’ Ranking. Journal of the American Society for
Information Science and Technology 60(5), 1051–1056 (2009)

11. Lin, J.: Scalable language processing algorithms for the masses: A case study in
computing word co-occurrence matrices with MapReduce. In: Proceedings of the
Conference on Empirical Methods in Language Processing, pp. 419–428 (2008)

12. Lin, J., Dyer, C.: Data-intensive Text Processing with MapReduce. Synthesis Lec-
tures on Human Language Technologies 3(1), 1–177 (2010)

13. McCreadie, R., Macdonald, C., Ounis, I.: On single-pass indexing with MapReduce.
In: Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 742–743 (2009)

http://csxstatic.ist.psu.edu/about/data

Computing Scientometrics in Large-Scale Academic Search Engines 623

14. Sidiropoulos, A., Katsaros, D., Manolopoulos, Y.: Generalized Hirsch h-index for
Disclosing Latent Facts in Citation Networks. Scientometrics 72(2), 253–280

15. Sidiropoulos, A., Manolopoulos, Y.: A Citation-Based System to Assist Prize
Awarding. ACM SIGMOD Record 34(4), 60 (2005)

16. Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified rela-
tional data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, pp. 1029–1040 (2007)

17. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: A System for Large-Scale Graph Processing. In: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of Data,
pp. 135–146 (2010)

	Computing Scientometrics in Large-ScaleAcademic Search Engines with MapReduce
	Introduction
	Related Work
	Preliminaries
	MapReduce Basics
	Scientometrics

	Computing Scientometrics with MapReduce
	Problem Formulation
	Basic Algorithm Design
	Optimizing the Performance

	Experiments
	Dataset Characteristics
	Data Sizes
	Efficiency Measurements

	Conclusions
	References

