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ABSTRACT
The issue of the automatic classification of research articles
into one or more fields of science is of primary importance
for scientific databases and digital libraries. A sophisti-
cated classification strategy renders searching more effective
and assists the users in locating similar relevant items. Al-
though the most publishing services require from the authors
to categorize their articles themselves, there are still cases
where older documents remain unclassified, or the taxonomy
changes over time. In this work we attempt to address this
interesting problem by introducing a machine learning al-
gorithm which combines several parameters and meta-data
of a research article. In particular, our model exploits the
training set to correlate keywords, authors, co-authorship,
and publishing journals to a number of labels of the taxon-
omy. In the sequel, it applies this information to classify
the rest of the documents. The experiments we have con-
ducted with a large dataset comprised of about 1,5 million
articles, demonstrate that in this specific application, our
model outperforms the AdaBoost.MH and SVM methods.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
classification, supervised, machine learning

1. INTRODUCTION
The digital libraries and academic search engines have al-

ways been a precious tool for the researchers. Their main
functionality is focused on providing search capabilities and
further information regarding scientific articles, citations,
journals and authors. Multiple such services are in oper-
ation on the Web; examples include the ACM Digital Li-
brary1, Google Scholar2, Microsoft Academic3, and others.

1http://dl.acm.org/
2http://scholar.google.com/
3http://academic.research.microsoft.com/
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The problem of the automatic classification of research ar-
ticles is of remarkable importance for these services, since it
enables increased functionality and improved performance.
For instance, a robust classification strategy allows the user
to perform searches by focusing on only a specific portion
of the indexed documents, thus increasing both effectiveness
and efficiency. Additional potential benefits include similar
documents recommendations, collaborative filtering, query
expansion facilities, expert identification, and so on.

Several methods have been proposed to address the issue
of identifying the research field a scientific article belongs to.
These methods include keyword extraction algorithms which
attempt to identify repeated textual patterns and extract
the most representative keywords from the article. In the se-
quel, they employ traditional classification approaches such
as k-nearest neighborhood (k-NN) to identify the research
field that best describes the content of the article. Another
family of methods adopt citation analysis algorithms which
study several citation properties, such as the phenomenon of
two or more papers being cited together by multiple articles.
These methods have two significant drawbacks: initially, it
is not always possible to construct a complete graph of in-
terlinking papers because some nodes and edges are simply
not available. At second, a reference to an article does not
necessarily reveal thematic affinity.

In this paper we attempt to address these issues by propos-
ing a new algorithm for classifying research papers. More
specifically, we introduce a model which has its origins in the
traditional k-NN approach however, it also takes into con-
sideration several aspects regarding the particular problem
which we examine. These aspects include the authors his-
tory, co-authorship information, selection of keywords, and
the previous publications of a journal. Our classifier is ex-
perimentally compared against two state-of-the-art generic
text classification methods, namely support vector machines
and AdaBoost.MH. We show that the inclusion of the afore-
mentioned parameters leads to improved classification per-
formance by roughly 6%.

The rest of the paper is organized as follows: In section 2
we refer to some of the most popular works studying the
problem of classifying research articles. In section 3 we pro-
vide some preliminary information by describing the basic
problem components and we describe in details the proposed
algorithm. Section 4 contains the experimental evaluation
of the algorithm, whereas section 5 concludes this article.

2. RELATED WORK
Document classification is a well-established data mining



problem and the issue of scientific papers classification is a
specialization of this problem posing its own challenges.

The methodologies encountered in the literature can be
divided into two wide categories: link-based and text-based
categorization. The first category includes works which are
mainly based on the document linking and the information
extracted out them. For instance, in [4] the authors intro-
duce a statistical framework for modeling link distributions
and based on that knowledge, they classify a document ac-
cording to the category its links belong to. Link-based classi-
fication is particularly essential for categorizing graph nodes
(i.e. labeling the nodes of a graph, [10], or networked data
classification[12]). Furthermore, similar approaches can be
also applied on the Web, where the document interlinking
can be used for a variety of purposes. An important survey
of such methods is provided in [9].

On the other hand, machine learning (ML) text cate-
gorization has a gained substantial attention by the data
miners; A complete survey on the most effective ML text
categorization approaches is provided in [5]. Moreover, [8]
and [6] provide detailed evaluations of the primary statisti-
cal and machine learning approaches to text categorization.
Furthermore, Joachims employed support vector machines
(SVM) for the same task [7], whereas [15] introduced Ad-
aBoost.MH, a multi-class expansion of the traditional two-
class AdaBoost algorithm.

Nevertheless, none of the aforementioned approaches take
into consideration problem-specific information such as the
authors of an article, co-authorship and the publishing jour-
nal. In this paper we introduce a new method which is based
not only on the paper’s keywords, but also in the previous
activity of both the contributing authors and the publishing
journal.

3. RESEARCH PAPER CLASSIFICATION
In this section we present our algorithm for classifying re-

search articles. Initially we provide some background knowl-
edge regarding the problem itself, and in the sequel we de-
scribe our solution along with some implementation details.

3.1 Preliminaries
Our analysis begins by introducing a number of funda-

mental sets that will assist us in establishing a baseline for
our algorithm. Initially we define P as the set containing all
publications, and J as another set including the journals4

where the items of P have been published. Note that since
each paper is published in exactly one journal, each entry
p ∈ P is mapped to a single element j ∈ J . Moreover, we
define A as the set including all the involved authors, and
C which consists of the research fields (also mentioned as
categories, or labels) where the papers of P belong to. In
other words, C represents the given taxonomy structure.

A large number of publications contain keywords which
are used by the authors to explicitly represent the content
of their work. The algorithm we present here exploits these
keywords and for this reason, we define a set K which con-
tains all the keywords encountered in all papers of P . In the
same set K we also include the keywords extracted from the
titles of the articles, since these words represent the docu-
ments contents as well.

4In this work we use the word journal to collectively refer
to journals, magazines, books, and conference proceedings.

Symbol Meaning
P The set containing all papers
A The set containing all authors
C The set containing all research areas (taxonomy)
J The set containing all journals
K The set containing all keywords
Ap The authors who created p
Cp The research areas that p belongs to
Kp The keywords included in p
P c The papers belonging to c
Pa The papers authored by a
Pa,c The papers authored by a and belong to c
P j The papers published in j
P j,c The papers published in j and belong to c

Pk The papers containing k
Pk,c The papers containing k and belong to c
T The training set

Table 1: Summary

In addition, we introduce the subset Kp ⊂ K containing
all the keywords of a single article p, the subset P k ⊂ P
which stores all the publications including the keyword k,
and the subset P k,c ⊂ P k which contains the publications
which both include k, and are mapped to the field c. In
Table 1 we summarize all the above notifications.

3.2 Papers Classification Algorithm
All supervised machine learning algorithms are based on

a predefined set of labels C, and a training set T comprised
of articles which have been assigned one or more labels from
C. Here we present an algorithm used to train our model
by using C and T , and in the sequel, we show how to apply
this model to classify the unlabeled articles.

3.2.1 Model Training
In this phase we process the training set T and we con-

struct a classification model with respect to the taxonomy
C. This procedure includes three stages where we corre-
late keywords, authors and journals to one or more labels
from C. We also record several frequency values which will
be used later by the classification algorithm to effectively
determine the labels of the unclassified papers.

The majority of the research articles includes a set of
keywords placed between the abstract and the first section.
Moreover, the words occurring in the title are also consid-
ered representatives of the document’s content and can also
be used in our model. Now consider a paper p ∈ P drawn
from the training set T which includes the keywords Kp and
is categorized into one or more research fields Cp ⊂ C. Our
objective is to create correlations between each keyword of p
and each of the research fields of Cp. Since a keyword k may
appear in multiple papers belonging to different research ar-
eas, we adopt a strategy similar to the k-NN; that is, we
examine how frequently this keyword has been mapped to
each field c. This is achieved by the construction of (k, c)
pairs which we store in a relevance description vector K [13].
We also compute two frequency values |P k| and |P k,c|: The
former represents the number of papers including the key-
word k, whereas the latter signifies the number of papers
which both include k and are mapped to the field c.

Algorithm 1 shows the steps required to train K. For
each paper p of the training set we initially identify all the
research fields Cp and the keywords Kp. For each research
field c ∈ Cp we create a (k, c) pair and we search for it within



K. If the search is not successful, we insert the pair and we
set |P k,c| = 1; otherwise we merely increase |P k,c| by one.
This procedure leads to the vector K, which contains all the
keywords of the papers accompanied by a global frequency
value |P k| and a list of the corresponding research fields.

The previous activity of the authors who contribute to a
research paper can also provide an indication of the research
field the paper discusses. Learning the areas of expertise of
a scholar is important since it can be exploited to classify
his/her unlabeled articles. However, a scientist usually con-
ducts research in multiple areas of science. For instance,
consider an author X who has published articles in the ar-
eas of databases and data mining and for the production of
these articles has co-operated with Y and Z respectively.
Intuitively, an article authored by both X and Z should be
labeled as a data mining paper.

To capture these intuitions we create a vector A which for
each author a accommodates a list of all the encountered co-
authors a′ (AA list). Each co-author entry is accompanied
by an array with the research fields of the articles authored
by both a and a′. Hence, in case a and a′ are encountered
again in an unlabeled article, we retrieve the research fields
of their common articles from the aforementioned list. Fur-
thermore, for each author a we also create one more list (AP
list) which stores all the research fields of all the papers of
a. This record will be used to classify articles authored by
multiple authors, but no previous co-authorship information
between a and the co-authors is available.

Similarly to the previous stage, each research field is ac-
companied by two frequency values |P a| and |P a,c|. The for-
mer represents the number of publications of a, whereas the
latter denotes the total number of publications of a which
are mapped to the research area c. The steps 14–30 of Al-
gorithm 1 describe the construction process of A. For each
author a, the correlations (a, c) are all inserted in the AP
list (steps 18–23). In the sequel, we iterate through each
co-author an we create (a, a′, c) tuples which correlate the
author, his/her co-authors, and each field (steps 24–30).

Finally, the publishing journal can provide an indication
about the research area that a paper belongs to. This is
due to the fact that journals are also categorized and do not
publish articles which deal subjects that are foreign to their
interest area. For instance, a journal which is focused on
Data Engineering would not publish a paper which discusses
a problem related to Systems Security.

The aforementioned notifications lead to the enhancement
of our trainer with its third part (Algorithm 1, steps 31–39).
Here we identify the research areas that the majority of the
papers published in a journal j belong to. Compared to
the other two stages this one is slightly simplified because a
paper is only published in one journal and hence, we do not
have to iterate through multiple journals. The outcome of
this process is the J vector, which contains for each journal,
a list of research fields accompanied by their corresponding
frequency values |P j,c|. These values indicate how many
times a journal j has published papers belonging to c.

3.2.2 Articles Classification
We can now employ the trained model to classify an unla-

beled article p ∈ P . Similarly to the training phase, classifi-
cation is also conducted in three phases. During each phase,
the involved research fields are assigned scores according to
their correlation with the keywords, authors, and journal of

Algorithm 1 Model training

1. initialize K, A, J
2. for each paper p ∈ T
3. Cp ← ExtractResearchAreas(p)

Phase 1: Processing of the keywords
4. Kp ← ExtractKeywords(p)
5. for each keyword k ∈ Kp

6. |Pk| ← |Pk|+ 1
7. for each research area c ∈ Cp

8. Create pair (k, c)
9. if K.search(k, c) =false
10. K.insert(k, c)
11. |Pk,c| ← 1
12. else
13. |Pk,c| ← |Pk,c|+ 1

Phase 2: Processing of the authors
14. Ap ← ExtractAuthors(p)
15. for each author a ∈ Ap

16. |Pa| ← |Pa|+ 1
17. for each research area c ∈ Cp

18. Create pair (a, c)
19. if A.AP .search(a, c) =false
20. A.AP .insert(a, c)
21. |Pa,c

AP | ← 1
22. else
23. |Pa,c

AP | ← |P
a,c
AP |+ 1

24. for each author a′ ∈ Ap

25. Create tuple (a, a′, c)
26. if A.AA.search(a, a′, c) =false
27. A.AA.insert(a, a′, c)
28. |Pa,c

AA| ← 1
29. else
30. |Pa,c

AA| ← |P
a,c|+ 1

Phase 3: Processing of the journals
31. j ← ExtractJournal(p)
32. |P j | ← |P j |+ 1
33. for each research area c ∈ Cp

34. Create pair (j, c)
35. if J .search(j, c) =false
36. J .insert(j, c)
37. |P j,c| ← 1
38. else
39. |P j,c| ← |P j,c|+ 1

p. In Algorithm 2 we describe these procedures.
In the first phase (steps 2–6), we initially extract the pa-

per’s keywords Kp and for each retrieved keyword k we per-
form a search in the relevance description vector K. In case
this search is successful, we retrieve the list of the associated
research areas along with the respective |P k,c| values. Then,
for each research field c we compute a score Sc

k according to
a scoring function Sc

k = Fk(P k, P k,c). This function can
implement simple schemes such as the traditional idf (i.e.
|P k,c|/|P k|), or more complex ones. The steps 2–6 of Algo-
rithm 2 illustrate the exact process.

Classification is further enhanced by taking into account
the information regarding the authors of p. However, in this
case the process is more complex, since we must consider
the co-authorship data and retrieve the correct record from
the vector A. Initially, we identify the set of authors Ap

of p. In the sequel, we search among the AA co-authorship
records and in case a correlation between two authors is
found, each corresponding research field is assigned a score
Sc
a = Fa(P a

AA, P
a,c
AA) (steps 10–14). If such a correlation is

not present in A, we search in the AP list and we use the
associated AP scores (steps 15–18).

Moreover, our classifier takes into consideration the re-



Algorithm 2 Paper Classification

Classify(pi, F,K,A,J )
1. for each unlabeled article p

Phase 1: Keyword-based classification
2. Kp ← ExtractKeywords(p)
3. for each keyword k ∈ Kp

4. if k ∈ K
5. for each (k, c) ∈ K
6. Sck ← Fk(Pk, Pk,c)

Phase 2: Author-based classification
7. Ap ← ExtractAuthors(p)
8. for each author a ∈ Ap

9. coauthor ← false
10. for each author a′ ∈ Ap

11. if (a, a′) ∈ A.AA
12. coauthor ← true
13. for each (a, a′, c) ∈ A.AA
14. Sca ← Fa(Pa

AA, Pa,c
AA)

15. if coauthor = false
16. if a ∈ A.AP
17. for each (a, c) ∈ A.AP
18. Sca ← Fa(Pa

AP , Pa,c
AP )

Phase 3: Journal-based classification
19. j ← ExtractJournal(p)
20. if j ∈ J
21. for each (j, c) ∈ J
22. Scj ← Fj(P j , P j,c)

search fields of specialization of a journal. Hence, in case
the publishing journal j of an unlabeled paper p has been
encountered during the training phase, we can exploit the
correlated research fields (stored within the vector J ) to
classify p. The third part of Algorithm 2 describes our ap-
proach. After the identification of the journal j of p, we
perform a look-up in J . In case searching is successful, we
retrieve the research fields that the published articles of j
belong to, along with their respective frequency values. For
each of these fields we calculate a score given by a third
function Sc

j = Fj(P
j , P j,c).

The total score assigned to a research field c is a linear
combination of the three aforementioned scores:

Sc = wkSc
k + waSc

a + wjSc
j (1)

where wk, wa, and wj are constant parameters used to
regulate the contribution of the keywords, the authors, and
the publishing journal of an article. These three constants
are tuned with the aim of satisfying the following limitation:

wk + wa + wj = 1 (2)

To identify the research field a paper belongs to, we merely
have to sort the Sc scores in descending order and select
the first entry (the one received the highest score, max(S)).
In this way, each article is mapped to only one research
field. We can raise this limitation and classify an article
into multiple research areas, by introducing a coefficient ε ∈
(0, 1]. Then, each paper is assigned additional research areas
if the scores of these areas satisfy the following condition:

Sc ≥ ε max(S) (3)

The value of ε determines how strict this condition can
become. For ε = 1 we tolerate no fields with scores lower
than the maximum and an article is mapped to the research
area (or areas) which received the highest score.

4. EXPERIMENTAL EVALUATION
In this section we measure the effectiveness of our pro-

posed algorithm. Initially we describe the employed dataset
and the taxonomy structure, and in the sequel we present
the results of our performance measurements.

4.1 Dataset and Taxonomy Characteristics
To experimentally attest the effectiveness of our classifi-

cation approach it is required that we firstly determine the
set of labels which will be used by the classifier (i.e. the tax-
onomy), and a dataset comprised of an adequate number of
articles. In addition, a subset of these articles must support
the selected taxonomy, that is, the items of this subset must
be mapped to at least one of the labels of the taxonomy.

The strict data protection policies applied by the digital
libraries renders the collection of bibliometric data a rather
challenging task. Since the crawling of such repositories is
forbidden, we are limited in using only open access docu-
ment collections. The largest among these collections is the
CiteSeerX [1] dataset, an open repository comprised of ap-
proximately 1.8 million scientific articles. These articles are
related to the wider fields of computer and communications
engineering, and a significant portion of them are mapped
to the local taxonomies employed by their publishers. Of
course, each publisher applies its own taxonomy structure;
consequently, the first issue we need to address is to deter-
mine a unique taxonomy which will be used to classify the
rest of the articles.

Since our primary goal is to build a training set comprised
of largest possible number of articles, we simply scanned
our dataset to identify the organization which published the
most documents. Our analysis proved that the 63% of the
articles of the CiteSeerX dataset has been published by ei-
ther ACM or IEEE. These publishers employ a common cat-
egorization policy; they classify their published articles into
a taxonomy5 of research fields which mainly includes ar-
eas and sub-areas from the Computer Science, Engineering,
Communications, and Mathematics. The structure consists
of three levels of categorization, i.e. 11 first-level research
fields divided into 81 second-level and 276 third-level classes.
To achieve extensive and unbiased measurements of the ef-
fectiveness of our algorithm, we employed each level as a
different taxonomy and we gave the names C11, C81 and
C276.

After the selection of the taxonomy, the training set is im-
mediately identified. All 1,159,634 articles which are mapped
to one ore more labels of the ACM/IEEE taxonomy, are au-
tomatically becoming members of the training set. Our goal
now is to assign labels to the rest 684,638 articles.

4.2 Model Training
The model training process includes two separate phases:

initially, we construct the relevance description vectors K,
A, and J and in the sequel, we attempt to evaluate the
wk, wa, and wj parameters of equation 1 which maximize
the performance of our classifier.

For this reason, we applied a cross validation strategy ac-
cording to which the training set was split in three equally-
sized parts. The first two thirds were used for building K, A,
and J . In the sequel, we used the last third of the training
set to measure the classification performance for all the pos-

5http://www.acm.org/about/class/ccs98-html



|T | C {wk, wa, wj} Acc. SVM Ada
C11 {0.3, 0.1, 0.6} 94.0% 88.2% 88.8%

10,000 C81 {0.2, 0.1, 0.7} 87.5% 82.9% 83.4%
C276 {0.2, 0.1, 0.7} 80.7% 78.4% 80.1%
C11 {0.3, 0.2, 0.5} 95.1% 89.6% -

100,000 C81 {0.3, 0.1, 0.6} 88.2% 84.3% -
C276 {0.2, 0.2, 0.6} 80.9% 79.0% -
C11 {0.3, 0.2, 0.5} 95.9% 94.1% -

1,159,634 C81 {0.3, 0.2, 0.5} 89.0% 87.9% -
C276 {0.3, 0.1, 0.6} 81.3% 80.8% -

Table 2: Optimal tuning of the wk, wa, and wj param-
eters for the three employed taxonomy structures
and for training sets of different sizes.

sible combinations of wk, wa, and wj . In particular, we con-
tinuously modified the values of all three parameters in the
range [0.0, 1.0] (with respect to equation 2) and we recorded
the number of papers for which our classifier assigned cor-
rect labels. To verify the correctness of our results and to
eliminate any random effects, we experimented with differ-
ent training set sizes. More specifically, we repeated our
measurements by using training sets comprised of 10,000,
100,000, and all the 1.16 million articles.

In Table 2 we report the results of this experiment. The
first column denotes the training set sizes, whereas in the
second column we show which taxonomy structure is em-
ployed. In the third column we record the values of the
wk, wa, and wj for which our classifier achieved maximum
performance, whereas in the last three columns we report
the accuracy of our algorithm against two methods based on
support vector machines (SVM) and AdaBoost.MH (Ada).

Notice that our proposed classifier exhibited equally high
effectiveness for multiple combinations of wk, wa, and wj .
From Table 2 we conclude that among the three exploited
types of data (i.e. keywords, authors, and journal), the
publishing journal is the most important indication of the
research field an article belongs to. On the other hand,
the previous works (i.e. the history) of the authors is the
weakest one. A second conclusion is that our algorithm
is relatively insensitive to the training set size; its perfor-
mance degrades by only a small percentage (i.e. 1-2%)
when the training set size is decreased by a factor of 10.
In all cases, a satisfactory setting for the three constants is
wk ∈ [0.2, 0.3], wa ∈ [0.1, 0.2] and wj ∈ [0.5, 0.6].

In addition, we observe that performance decreases as the
number of the available labels increases. This is expected
since as the size of the taxonomy increases, the possibil-
ity of an erroneous prediction also increases (the classifier
has more available choices). However, the possibility is not
proportional to the taxonomy size; Although C81 includes
about 8 times more labels than C11, the effectiveness de-
grades by only a percentage of 9-10%. Finally, we point out
the remarkable 94% of successful labeling in the case of our
small C11 taxonomy.

Now let us compare our approach against the state-of-the-
art method based on SVMs. Since the available label sets
consist of multiple entries, it is required that we use multi-
class SVMs. In particular, we use the one-against-all strat-
egy which given a set of y labels, it requires the construction
of one binary classifier per label. To decide which labels to
assign to each article, we take the classes that present the
largest margins. The features we selected for SVM train-
ing were identical to the ones of our proposed algorithm,

Vector Records Most Frequent Articles
K 475,308 system 144,295
A 497,604 Philip S. Yu 654
J 3,915 Theor. Computer Science 13,295

Table 3: Trained Model Statistics

i.e. keywords, authors and journals. The one-against-all
strategy is far preferable than the other existing approach,
one-against-one, which performs pairwise classifications and
requires the construction of y2 classifiers.

To construct each binary SVM classifier, we created an
equal number of training sets. For instance, for the exper-
iments with the C11 label set we created 11 training sets.
Each training set comprised of all the papers mapped to
this specific research field (positive examples), followed by
the rest of the articles which were declared as negative ex-
amples. We then created one binary classifier for each label,
by using the SVMLight Program [14]. Finally, we scanned
the outputs of these classifiers and each article was assigned
the label which presented the largest margin. The precision
results are recorded in the last column of Table 2.

Our approach outperformed the SVM-based approach in
all of the examined cases. The results of Table 2 reveal that
the performance gap between the two methods increases as
the training set size becomes smaller. More specifically, in
case the training set consists of 10 thousand articles, the
precision of our proposed method is higher than the precision
of the SVMs by a margin ranging between 2% and 6%. On
the other hand, the smallest performance gap was observed
in the scenario where the employed label set is C276 and the
training set consisted of all the 1.16 million articles.

We also compared our algorithm against another high-
performing classification algorithm, AdaBoost.MH. For our
small training set comprised of 10,000 articles, our approach
achieved better performance by a percentage ranging be-
tween 1% and 6%. In the other two larger training sets,
AdaBoost.MH consumed all the available memory (12GB)
of our machine and the experiments failed to complete. On
the contrary, the in-memory data structures of our approach
occupied roughly 1.1 GB for the largest training set.

In Table 3 we present some interesting statistics of our
model. The keywords relevance description vector is com-
prised of about 475 thousand keywords, and the most fre-
quent keyword is system. Furthermore, the most frequent
author and journal were Philip S. Yu and Theoretical Com-
puter Science, which authored and published 654 and 13,295
articles respectively.

4.3 Classification Results
Now we employ the trained model of the previous phase

to classify the 684,638 unlabeled articles of our dataset. As
previously, we conducted the same experiment three times
and each time we employed one of the taxonomy structures
C11, C81, and C276. In Tables 4 and 5 we illustrate the
five most popular research fields for each of our employed
taxonomy structures for ε = 1 and ε = 0.85 respectively.

In the case of ε = 1 the unlabeled articles are assigned only
one research field (the one which received the highest score
according to equation 1). Regarding the C11 taxonomy, the
most popular research field was Computing Methodologies;
the 40.6% of the articles were classified to this category.
Furthermore, Artificial Intelligence and General were the



Label Articles
1 Comp. Methodologies 278,179
2 Inform. Systems 99,958
3 Systems Organization 71,635
4 Math. of Computing 69,140
5 Software 66,391

Label Articles
1 Artificial Intelligence 174,272
2 Comp.-Comm. Networks 83,410
3 Numerical Analysis 62,211
4 Software Engineering 47,962
5 Interfaces & Presentation 29,617

Label Articles
1 General 185,718
2 Net. Archit.-Design 49,423
3 Nonnum. Algorithms 43,153
4 Applications 20,161
5 Types-Design Styles 19,218

Table 4: Classification results for the three experimental taxonomy structures, for ε = 1: (i) Left: C11, (ii)
Center: C81, and (iii) Right: C276

Label Articles
1 Comp. Methodologies 347,739
2 Inform. Systems 144,668
3 Math. of Computing 97,514
4 Systems Organization 92,136
5 Software 91,331

Label Articles
1 Artificial Intelligence 224,183
2 Comp.-Comm. Networks 101,391
3 Numerical Analysis 85,764
4 Software Engineering 65,010
5 Interfaces & Presentation 41,545

Label Articles
1 General 237,761
2 Nonnum. Algorithms 64,204
3 Net. Archit.-Design 60,994
4 Applications 31,826
5 Design Methodology 29,369

Table 5: Classification results for the three experimental taxonomy structures for ε = 0.85: (i) Left: C11, (ii)
Center: C81, and (iii) Right: C276

most popular research areas of the C81 and C276 taxonomy
structures respectively. In particular, the former label was
assigned to the 25.4% of the unlabeled articles, whereas the
latter gathered the 27.1% of the articles.

On the other hand, in the case of ε = 0.85 the scien-
tific documents can be assigned more than one labels, if the
scores of the additional labels obey to the limitation of equa-
tion 2. Therefore, it is anticipated that each research field
is assigned to more articles than in the previous case. For
this reason, the orderings of Table 5 are slightly modified
compared to the ones of Table 4.

5. CONCLUSIONS
In this paper we introduced a supervised machine learn-

ing algorithm for classifying research articles. The problem
we examine is particularly useful for academic search en-
gines and digital libraries, since a robust solution can pro-
vide improved functionality and performance benefits. Our
algorithm operates by using a predefined list of labels (i.e.
taxonomy structure) and a training set comprised of labeled
articles. The training process we proposed is based on the
creation of three vectors which correlate each article key-
word, author, and journal with a number of labels of our
given taxonomy. During the classification process of the un-
labeled articles, we use the data stored within these vectors
to compute scores for each label. Our experimental evalu-
ation on a large set of 1.5 million research articles demon-
strated that our approach achieved successful classification
by a percentage above 90%.
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