
Effective Unsupervised Matching of Product Titles
with k-Combinations and Permutations

Leonidas Akritidis
Data Structuring & Engineering Lab

Dept. of Electrical and Computer Engineering
University of Thessaly

Volos, Greece
leoakr@e-ce.uth.gr

Panayiotis Bozanis
Data Structuring & Engineering Lab

Dept. of Electrical and Computer Engineering
University of Thessaly

Volos, Greece
pbozanis@e-ce.uth.gr

Abstract—The problem of matching product titles is of particu-
lar interest for both users and marketers. The former, frequently
search the Web with the aim of comparing prices and characteris-
tics, or obtaining and aggregating information provided by other
users. The latter, often require wide knowledge of competitive
policies, prices and features to organize a promotional campaign
about a group of products. To address this interesting problem,
recent studies have attempted to enrich the product titles by
exploiting Web search engines. More specifically, these methods
suggest that for each product title a query should be submitted.
After the results have been collected, the most important words
which appear in the results are identified and appended in the
titles. In the sequel, each word is assigned an importance score
and finally, a similarity measure is applied to identify if two or
more titles refer to the same product. Nonetheless, these methods
have multiple problems including scalability, slow retrieval of
the required additional search results, and lack of flexibility. In
this paper, we present a different approach which addresses all
these issues and is based on the morphological analysis of the
titles of the products. In particular, our method operates in two
phases. In the first phase, we compute the combinations of the
words of the titles and we record several statistics such as word
proximity and frequency values. In the second phase, we use this
information to assign a score to each combination. The highest
scoring combination is then declared as label of the cluster
which contains each product. The experimental evaluation of the
algorithm, in a real world dataset, demonstrated that compared
to three popular string similarity metrics, our approach achieves
up to 36% better matching performance and at least 13 times
faster execution.

Index Terms—products matching, entity matching, unsuper-
vised learning, data mining, algorithms

I. INTRODUCTION

In the past few years, the online product comparison plat-
forms have gained the attention of the consumers. These
platforms receive data—usually in the form of feeds—from
multiple sources, including electronic stores, reviews sites and
aggregation applications. In the sequel, they process this di-
verse data and they unify the relevant information which refers
to the same products. Finally, they present this information
to their users, allowing them to compare a wide variety of
parameters such as prices, availabilities, delivery methods,
delays, costs, guarantees, overcharges, and numerous others.

978-1-5386-5150-6/18/$31.00 ©2018 IEEE

They also facilitate the aggregation of user opinions, reviews,
and purchase decisions.

Since the data is provided by multiple sources, it presents a
high degree of diversity. In most cases, the same products
appear under different titles and descriptions. Furthermore,
some vendors offer richer data than others by including more
information in their product records such as brands, categories,
technical specifications and others. Consequently, to provide
a unified view of the product, there must be a procedure
which matches these different product records. Apparently, the
problem of matching product records from different data feeds
is vital for these platforms, their users, and online shopping
in general.

Due to the importance of the problem, there is currently a
vast amount of research in the relevant literature. This research
can be divided into two categories: In the first category, we
mainly encounter works which attempt to solve the problem
by examining the titles of the products only. On the other
hand, the second category includes methods which take into
consideration additional overlapping attributes, such as brands,
manufacturers, categories, etc. The algorithm we introduce
in this article belongs to the first category. Since a product
comparison platform may receive data from thousands of non
controlled sources, many of the attributes that are present in
one feed may be absent in another. In such occasions, it is
inevitable that the methods of the latter category will not
achieve a satisfactory performance.

Earlier works have focused on the utilization of the tra-
ditional string similarity metrics such as the edit distance
metric, the Jaccard similarity, the cosine similarity, and others.
However, as [1] demonstrates, none of these metrics performs
well for this particular problem. Indeed, consider the titles
Apple iPhone 7 and Apple iPhone 7 plus. Although the
similarity of these two titles is high, they refer to the different
products. On the other hand, the similarity of the titles Apple
iPhone 7 black 32gb and iPhone 7 is lower; however, they
both describe the same device.

To overcome the poor performance of the string similarity
metrics, the authors of [1] employed Web search engines with
the aim of enriching the involved product titles. For each
product title t, their method submits a query t to a search

engine and collects the results. In the sequel, it identifies the
most important words appearing in the results, and it utilizes
them to obtain an enriched form of the title. Finally, it assigns
an importance score to each word based on their ability to
retrieve other tokens in search results (the algorithm submits
another set of queries). However, the submission of a query
in a Web search engine and the subsequent processing of the
returned results, is an expensive procedure. Furthermore, the
APIs provided by the search engines for this task do not allow
unlimited usage of their resources, and there is an upper bound
to the number of the queries which can be submitted on a daily
basis. Even though the authors propose an optimization which
reduces the number of queries to be submitted, in case of
large-scale datasets with millions of products, the method is
rendered infeasible. In [2], the authors extended this algorithm
by modeling the titles as graphs. In the sequel, a clustering
algorithm examines whether these two graphs form a cohesive
community, or separately clustered communities. Nevertheless,
this method also suffers from the aforementioned problem
caused by the usage of Web search engines.

In this article we introduce a two-phase unsupervised al-
gorithm which achieves much better performance than the
traditional similarity metrics, and it is also independent of
any external sources like Web search engines. During the
first phase, a tokenizer parses the titles of the products and
computes all the possible combinations of the words of the
titles. These combinations, which vary in length, are stored
within a lexicon, accompanied by their frequency in the
corpus, and a proximity value which records the distance of
the combination from the beginning of the title.

Since the words of a combination may appear in a different
order within a product title, we also compute the permutations
of these combinations to capture their similarity. In this phase,
we additionally build a second data structure, the forward
index, which maintains for each product, a list of pointers to
all the corresponding word combinations appearing in its title.
In the second phase, the algorithm traverses all the lists in the
forward index and computes a score for each combination and
for each product. This score is calculated by a function which
embodies the frequency of the combination, its length, and its
average distance from the beginning of the titles which contain
it. At the end of this process, the highest scoring combination
is declared as the representative cluster of the product.

Notice that, in contrast to the competitive methods, our pro-
posed algorithm does not perform direct pairwise comparisons
of the product titles. Instead, it incrementally constructs two
data structures and during this phase, it updates several local
and global statistics, such as the frequency, and the distance of
a word combination from the beginning of the title. This strat-
egy, combined with the avoidance of the Web search engines
(or any other external data source), reduces the complexity and
boosts the efficiency of our approach. Moreover, in contrast
to the traditional similarity metrics, our algorithm does not
require the introduction of an accompanying blocking method
to reduce the number of the comparisons.

The rest of the paper is organized as follows: In Section II

we refer to some of the most significant related work in the
current literature. In Section III we provide a brief overview of
the basic parameters of the problem, whereas in Section IV we
describe in details the proposed algorithm for matching prod-
uct titles. The experimental demonstration of the usefulness of
the algorithm is presented in Section V. Finally, in Section VI
we conclude the paper, and in Section VII we briefly describe
the future work which shall further improve the method and
its applications.

II. RELATED WORK

Due to its importance, the wide problem of string matching
has attracted many researchers and it has been extensively
studied. A considerable number of works employ the tradi-
tional string similarity metrics such as the edit distance metric,
cosine similarity, Jaccard similarity, n-grams, atomic strings,
etc [3]–[8]. However, in the context of matching product titles,
they have been proved rather ineffective, as indicated by [1].
Moreover, the studies conducted in [4], [9] and [10] present
systematic and complete surveys of the relevant state-of-the-
art research in the area.

Another approach for solving this problem is to introduce
methods which take into consideration the additional attributes
of an entity. In the case of products, these additional attributes
include brands, categories, prices, etc. The examined prob-
lem usually appears under multiple different names in the
literature, like entity matching [11]–[13], entity disambigua-
tion [14]–[16], duplicate detection [17], [18], or near duplicate
detection [19], [20].

Furthermore, a multitudinous family of methods is based
on machine learning learning algorithms. In [21] the authors
introduced an unsupervised method which extended the Latent
Dirichlet Allocation model and proposed a probabilistic model
for collective entity resolution. Regarding the supervised learn-
ing approaches, FEBRL provides an implementation based
on SVMs with the aim of learning suitable matcher combi-
nations [22]. On the other hand, MARLIN offers a set of
several learning methods such as SVMs and decision trees,
combined with two string similarity measures (edit distance
and cosine similarity) [17]. A comparative study of these
methods is presented in [3], where the authors conclude that
the traditional supervised learning approaches result in low
matching quality for products. Another interesting outcome of
this study indicates that the methods which take into consid-
eration multiple attributes generally outperform those which
are based solely on the processing of the titles. Nevertheless,
as mentioned earlier, the product attributes are not always
provided by the data vendors, or even if they are present,
they may be inaccurate. Consequently, these methods do not
perform well in such cases.

Finally, the aforementioned methods described in [1] and [2]
employ the Web search engines with the aim of enriching the
product titles with important missing words. Then, the former
assigns importance scores to each word in the title, whereas
the latter models the titles as graphs and applies a clustering
algorithm to examine their correlation. The main weakness

of these methods is that they both suffer from scalability
issues, since they are obliged to tolerate the expensive and
slow retrieval of the required search results.

III. OVERVIEW

Let us consider a set of input source feeds

S = {s1, s2, . . .},

where each source feed s consists of a set of product records

Ps = {ps,1, ps,2, . . .}.

Each product record contains an arbitrary number of attributes
including its title, price, brand, category, and others. Notice
that a feed is formatted independently of the others; conse-
quently, a feed si may include information about the brand,
or the category of a product, whereas sj may not. However, all
input feeds must provide a descriptive title t for each included
product.

In each feed, the vendor may use a different title to describe
the same product. For instance, one may use Apple iPhone 7,
whereas another may merely use iPhone 7, both describing
the same mobile device. The problem that we examine in this
article is to devise a method which will decide correctly if
these two (or more) different titles describe the same product.
We also require to group these products under the same cluster
with a descriptive label, with the aim of enabling robust
comparison and aggregation.

IV. UNSUPERVISED TITLES MATCHING

In this Section we analyze the most important parts of our
proposed algorithm. Initially, we present some preliminary
elements and, in the sequel, we describe the two phases
involved in the method.

Given a string t, we consider a set T which consists of
all the words of t. Now a k-combination is any subset of
T of length k, without repetition and without care for word
ordering.

For instance, if
T = {t1, t2, t3}

then there are three possible 2-combinations, namely

{t1, t2}, {t1, t3}, {t2, t3}

and only one 3-combination

{t1, t2, t3}.

It is clear that if t consists of lt words (i.e., its length is lt),
then the number of all possible k-combinations is:(

lt
k

)
=

lt!

k!(lt − k)!
(1)

Notice that k-combinations are different than the standard
n-grams which are commonly used in the literature: the n-
grams are computed by sliding a ‘window‘ of length n over the
examined string, therefore, they contain only successive words.

On the other hand, k-combinations contain both adjacent and
non-adjacent words.

Although k-combinations are more numerous than n-grams,
we choose to construct them instead of dealing with n-grams,
since, frequently, the important words appear scattered across
the titles and also, in non adjacent positions.

For example, there is no common 2-gram or 3-gram for the
titles

Intel CoreI7 7700K 3.6GHz

and

CoreI7 3.6GHz 7700K,

whereas there are two common 2-combinations, namely

CoreI7 7700K and CoreI7 3.6GHz.

Consequently, we consider that k-combinations are preferable
over n-grams for this particular problem.

In the analysis which follows, we also employ the notion of
permutations. Given a k-combination, the set of permutations
M consists of all the k! possible orderings of the words of
that combination.

In the previous example, the computation of permuta-
tions will additionally capture the similarity between the 2-
combinations

7700K 3.6GHz and 3.6GHz 7700K

and the 3-combinations

CoreI7 7700K 3.6GHz and CoreI7 3.6GHz 7700K.

Notice that we desire to keep the number of combinations
to a minimum, because each new combination increases the
complexity of the solution. Since most products are sufficiently
described by using only a few K words (provided that we
remove the unnecessary terms such as offer descriptions,
and/or technical specifications), we limit the computations to
the first 2, 3, ...,K-combinations of the words of the involved
titles.

Therefore, for a title which consists of lt words the total
number of combinations to be computed is:

|C| =
k=K,k≤lt∑

k=2

(
lt
k

)
=

k=K,k≤lt∑
k=2

lt!

k!(lt − k)!
(2)

Regarding the permutations, the total number which can be
computed is:

|M | =
k=K,k≤lt∑

k=2

lt!

(lt − k)!
(3)

Apparently, this number is considerably larger than the
number of the combinations given by eq. 2. However, as we
explain in subsection IV-A, the permutations are only required
under special circumstances. Consequently, we rarely have to
compute them all.

...ptr ptr ptrptr ptrtitle 2

.

.

.

...ptr ptr ptrptr ptrtitle N

combination freq avgd

.

.

.

combination freq avgd

combination freq avgd

combinations

Lexicon

distance
average

Products Pointers

...ptr ptr ptrptr ptrtitle 1

Forward Index

Fig. 1. The interconnection of the forward index with the lexicon.

A. Phase 1: Titles processing and data structures construction

The first phase of our proposed algorithm includes the
processing of the titles of the involved products and the
construction of two data structures which shall assist us in
the identification of the appropriate product clusters.

The procedure starts with the initialization of these two data
structures:

• A lexicon L or combinations dictionary, which is used to
store all the k-combinations extracted from the titles of
the products. In addition, for each k-combination c, the
lexicon also maintains:

i) a frequency value which is used to store the number
of products which contain this combination; and

ii) a distance accumulator which accommodates the sum
of the distances of c from the beginning of the titles.

• A forward index F , which, for each product p, stores a
list of |C| records (recall that |C| is computed by using
eq. 2). Each of these records contains one pointer which
points to the respective k-combination contained within
p, and a score value which will indicate the strength of
the correlation of the k-combination with the product.
This score is initially set equal to zero, and it shall be
computed during the second phase.

In Figure 1 we depict the interconnection of the forward
index with the lexicon structure. Notice that the existence of
pointers in the forward index saves us the cost of storing the
same data twice.

Algorithm 1 describes the procedure which constructs these
two data structures. Initially, each product title passes through
a linguistic processing function (step 5) which performs case
folding—i.e., conversion of capital characters to lowercase—
and removal of the punctuation symbols including dots, com-
mas, parentheses, etc. Since hyphens and slashes are usually

Algorithm 1: Product titles’ processing and data struc-
tures construction

1 initialize the lexicon L;
2 initialize the forward index F ;
3 for each product p do
4 extract the title t;
5 perform linguistic processing of t;
6 for each k ∈ [2,K] do
7 compute all k-combinations C(k) of t;
8 for each k-combination c ∈ C(k) do
9 Set d(c, t)← distance(c,t);

10 F .insert(p,c);
11 Set found← L.search(c);
12 if found = true then
13 Set c.freq ← c.freq + 1;
14 Set c.dist ← c.dist + d(c, t);
15 else
16 compute all permutations M of c;
17 for each permutation m ∈M do
18 Set found← L.search(m);
19 if found = true then
20 Set c.freq ← c.freq + 1;
21 Set c.dist ← c.dist + d(c, t);
22 break;
23 end
24 end
25 end
26 if found = false then
27 L.insert(c);
28 Set c.freq ← 1;
29 Set c.dist ← d(c, t);
30 end
31 end
32 end
33 end

encountered in model descriptions, they are left intact by the
punctuation removal filter.

In the sequel, we create all 2, 3, ...,K-combinations of t
and, for each combination c, we compute a distance between
the strings c and t (step 9). This distance value will be used
later by the scoring function with the aim of assigning higher
scores to the combinations which appear early in the title.
The reason that justifies the computation of this distance value
originates from the intuition that the most important words in
a product title appear early, that is, in small positions, and
should be treated differently than the words which appear in
higher positions. In Subsection IV-B we present the function
which we employed to compute this distance, and we provide
a detailed discussion about it.

After d(c, t) has been computed, we insert a pointer to c in
the appropriate list of p in the forward index F (step 10), and
we search for c in the lexicon L (step 11). In case the search is
successful (i.e., c already exists in L, steps 12–14), we increase

Algorithm 2: Scores computation and cluster selection

1 for each product p in F do
2 retrieve the forward list fp;
3 for each c ∈ fp do
4 Set c.adist ← c.dist / c.freq;
5 Set c.score ← ComputeScore(c);
6 end
7 sort fp in decreasing score order;
8 Set cluster ← fp[0];
9 end

its frequency by one, we update the distance accumulator and
we proceed to the next combination. Otherwise, c does not
exist in L, so we compute all its permutations M and, for
each m ∈M , we perform a search in the lexicon for m (steps
15–25). If this search is successful (steps 19–23), we similarly
increase the frequency of c ∈ L, we update the distance accu-
mulator, and we proceed to the next combination. Notice that
the permutations are only computed when a combination is not
present in L, that is, only at its first occurrence. Consequently,
the total number of the computed permutations is considerably
smaller than the number indicated by equation 3. Furthermore,
no permutation is inserted into the lexicon; what is inserted is
the originating k-combination. This strategy limits the size of
the lexicon and prevents it from becoming unacceptably large.

In case neither the k-combination c nor any of its permu-
tations exist in the lexicon L, we insert it in L and we set its
frequency equal to 1 (steps 24–27). Then, we proceed to the
next combination. At the end of this process, all product titles
have been examined, we have the L and F data structures
fully constructed, and we are ready to apply the algorithm of
the next phase.

B. Phase 2: Scores Computation and Cluster Selection

The ultimate goal of this phase is to compute the scores
for each combination record c in the forward index F , with
respect to the product title t which contains it.

This part of the algorithm is quite straightforward; we iterate
through the product records of F and we access their forward
lists. Recall that the forward list of a product p stores one
pointer for each k-combination c included in p, and a score
value S(c) which shall be calculated during this phase. In
step 4 we compute the average distance value d(c), merely
by dividing the aforementioned distance accumulator by the
frequency of c. After all score values have been computed,
we sort the forward list of each product by decreasing score
order and we select the first (that is, the highest scoring)
entry to represent the desired product cluster. The steps of
this procedure are presented in Algorithm 2.

We shall now discuss in more details the selection of
the scoring function of step 5. At first, we study the basic
properties that a k-combination should possess to be declared
as the representative product cluster, and then we proceed to

Dataset 1 Dataset 2
Apple iPhone 7 black Apple iPhone 7 black (retail)
Apple iPhone 7 gold Apple iPhone 7 gold (retail)
Apple iPhone 7 silver Apple iPhone 7 32gb silver
Apple iPhone 6 black Apple iPhone 6 black (retail)
Apple iPhone 6 gold Apple iPhone 6 gold (retail)
Apple iPhone 6 silver Apple iPhone 6 32gb silver
Apple iPhone 6s black Apple iPhone 6s black (retail)
Apple iPhone 6s gold Apple iPhone 6s gold (retail)
Apple iPhone 6s silver Apple iPhone 6s 32gb silver

TABLE I
HYPOTHETIC DATASETS

the quantification of these properties. To make the following
notions clearer, we shall use the hypothetic datasets of Table I.
• Frequency: Our goal is to identify a cluster with an

appropriate label to classify all the same products under
it. This means that a k-combination must appear in as
many product titles as possible. Otherwise, in case we
select a rare k-combination, we shall not be able to cluster
any other product under it. This requirement justifies the
assignment of frequency values to each k-combination
within the lexicon L.

• Length: The frequency criterion definitely favors the short
k-combinations, since it is more possible to encounter a
combination of two words, than a combination of three
words. However, the short k-combinations are not as
descriptive as the longer ones and, furthermore, there is a
risk of creating very generic and inhomogeneous clusters
which may erroneously contain different products. Con-
sequently, whenever it is possible, we desire to boost the
score of the longer k-combinations.
This is better perceived if we consider the hypothetic
Dataset 1 of the left column of Table I: Here, the most fre-
quent combination is obviously Apple iPhone. However,
it would be wrong to be declared as the representative
cluster of all 9 products. The correct solution is to identify
3 different clusters with labels Apple iPhone 7, Apple
iPhone 6, and Apple iPhone 6s. Although their frequency
is lower than that of Apple iPhone (3 instead of 9), they
are more descriptive and they correctly identify the three
different products of the dataset.

• Position: A broadly accepted idea in information retrieval
dictates that the most important words in a document
usually appear early, that is, in a small distance from its
beginning. The proposed method also adopts this idea for
the k-combinations.
Given a title t, a k-combination c of t, and a word w ∈
c, we consider that o(c)w is the position (or offset) of w
in c and o

(t)
w is the position of w in t. Based on these

notations, we compute the distance d(c, t) between c and
t by employing the well-established Euclidean distance
for strings:

d2(c, t) =
∑
w∈c

(
o(c)w − o(t)w

)2
(4)

The motivation which led us to the introduction of this
distance-based scoring approach, is the frequent occur-
rences of words with no informational value.
This is made clear in the hypothetic Dataset 2 of the right
column of Table I: In this example, the most common 3-
combination is Apple iPhone retail which apparently is
an inappropriate cluster label. The problem is caused by
the word retail, a frequent word with no informational
value. We have examined a large number of product titles
and we identified multiple words with such properties,
including OEM, EU, offer, or even product colors (black,
silver, etc.). The key element with all these words is
that they usually occur in high positions, that is, in large
distances from the beginning of the title.

Based on the three aforementioned properties, we now
present the function which is used to compute the score of
a k-combination c:

S(c) =
lc

α+ d(c)
logNc (5)

where lc > 1 is the length (in words) of c, Nc is the number of
the products which contain c, and d(c) represents the average
distance of c from the beginning of the titles which contain it,
that is:

d(c) =
1

Nc

∑
∀t⊂c

d(c, t) (6)

Moreover, α > 0 is a constant quantity with a dual role:
i) it prevents the score S(c) from approaching infinity when
d(c) = 0 (i.e, when c appears always in the beginning of all
titles); and ii) it regulates the contribution of proximity in the
overall score of a k-combination.

Consequently, the scores of eq. 5 indicate that a product
should be clustered under a label which is frequent, reasonably
long, and, also, its words usually occur near the beginning of
the titles of the products.

V. EXPERIMENTS

Here we demonstrate the robustness of the proposed method
in terms of both effectiveness and efficiency. All experiments
were performed on a workstation equipped with a single Intel
CoreI7 7700@3.6GHz CPU (single-core mode) and 32GB of
RAM, running Ubuntu Linux 16.04 LTS.

The dataset we used was acquired by deploying a focused
crawler on a subset of a popular product price comparison
platform in Greece, skroutz.gr. More specifically, we crawled
the section which contains the mobile devices of the platform
and we constructed a database of 16208 products provided by
320 electronic stores.

To facilitate prices and features comparison, the platform
itself groups (i.e., matches) the same products in clusters. Re-
garding the mobile devices subset, the total number of clusters
is 922; this means that, on average, each cluster contains 17.6
products, or, equivalently, each product appears on average
under 17.6 different titles. The average title length is roughly

8.97 words, whereas the longest title includes 23 words. This
dataset establishes a particularly challenging scenario due to
its size (it is several times larger than other similar datasets),
and due to the high diversity of the titles which originates
from the large number of the included product vendors.

In the following analysis of the experimental results, we
will refer to the proposed algorithm by using the abbrevia-
tion UMaP (Unsupervised Matching of Products). UMaP is
compared against three traditional IDF-based string similarity
metrics, in a spirit similar to other works such as [1].

The first metric we used for our comparisons is the well-
established cosine similarity. According to it, given two strings
t1 and t2, with respective lengths (in words) |t1| and |t2|, their
similarity is determined by the following equation:

cos(t1, t2) =
|t1 ∩ t2|√
|t1|
√
|t2|

(7)

The second metric which we included in our evaluation is
Jaccard similarity (JSim) [23], which quantifies the similarity
between two strings as follows:

J(t1, t2) =
|t1 ∩ t2|
|t1 ∪ t2|

(8)

Finally, we also employed the Jaro-Winkler distance (JRD)
[24], [25], an edit distance metric which essentially repre-
sents the minimum number of single-character transpositions
required to change one word into the other. If x is the number
of the matching characters between t1 and t2, and y is half
the number of transpositions, then the Jaro-Winkler distance
is calculated according to the following branch equation:

JR(t1, t2) =

{
0 if x = 0
1
3

(
x
|t1| +

x
|t2| +

x−y
x

)
otherwise (9)

The selection of the Jaro-Winkler metric is justified by the
fact that it computes the distance between two strings by
comparing characters and symbols, as long as their corre-
sponding positions. We consider this property as an interesting
alternative to the token-based (or word-based) comparisons of
the cosine and the Jaccard similarity metrics.

A. Effectiveness Evaluation

UMaP achieves product matching by generating clusters of
same products. Therefore, to compare the output of UMaP
with the true predicted matches, we applied the following
methodology:

Initially, we iterate through each UMaP cluster and, for each
product in the cluster, we create one pairwise match record
with each of the rest of the products in the same cluster. In
other words, we create a database with all the distinct product
pairs (p1, p2) within a cluster. In the sequel, we perform the
same procedure for the clusters of the dataset and we construct
a second similar database. Finally, we compare the records of
these two databases and attest the effectiveness of UMaP.

The matching quality was measured by employing the
popular F1 score, given by the following formula:

K α F1 Precision Recall
K = 3 α = 1 0.32433 0.20470 0.78032

α = 2 0.35216 0.22748 0.77929
α = 3 0.33412 0.21313 0.77296
α = 4 0.34597 0.22321 0.76880
α = 5 0.33753 0.21637 0.76704

K = 4 α = 1 0.66370 0.64175 0.68721
α = 2 0.62118 0.60239 0.64118
α = 3 0.61290 0.57920 0.65076
α = 4 0.60302 0.56046 0.65258
α = 5 0.58569 0.53552 0.64624

K = 5 α = 1 0.48130 0.61997 0.39333
α = 2 0.45771 0.59741 0.37096
α = 3 0.43544 0.61239 0.33783
α = 4 0.42029 0.57447 0.33136
α = 5 0.40041 0.53044 0.32158

K = 6 α = 1 0.35216 0.71483 0.23363
α = 2 0.31339 0.69577 0.20225
α = 3 0.29679 0.66443 0.19107
α = 4 0.29022 0.62577 0.18892
α = 5 0.27862 0.62301 0.17944

TABLE II
UMAP PERFORMANCE FOR VARIOUS VALUES OF K AND α.

F1 =
2PR

P +R
(10)

where P and R represent the Precision and the Recall values,
respectively.

In the theoretical analysis of the algorithm, we introduced
two tunable parameters:

i) K, which represents the maximum allowed length of a
combination in words; and

ii) the constant α > 0, which regulates the contribution of
the average distance of a combination from the beginning
of the titles.

On the other hand, the performance of the cosine similarity
metric depends on a similarity threshold, which determines
whether two entities match or not.

Initially, we examined the performance of UMaP for various
values of K and α, with the aim of studying the behavior of the
various parameters of the algorithm. In the three last columns
of Table II, we record the measured values of F1, precision,
and recall for the experiments that we conducted. Our method
achieved the highest F1 score, approximately F1 = 0.66, by
setting K = 4 and α = 1. We will shortly show that this value
was far superior to the F1 scores achieved by the adversary
similarity metrics.

Moreover, the highest precision value was roughly 0.71 and
was measured for K = 6 and α = 1. Unfortunately, this
setting was also accompanied by a low recall value (0.23) and
consequently, this resulted in a low F1 score. On the contrary,
the setting K = 3, α = 1 produced the best recall value, about
0.78; however, the measured precision was also low in this
case (approximately 0.20).

Regarding the variation of the K and α parameters, the
examination of the results of Table II confirms two additional
significant conclusions:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity Threshold

F1
m

ea
su

re

UMaP (K = 3) UMaP (K = 4)

UMaP (K = 5) UMaP (K = 6)

cosine similarity Jaccard similarity
Jaro-Winkler distance

Fig. 2. Comparison of F1 scores for UMaP, cosine similarity, Jaccard
similarity, and Jaro-Winkler distance

• Although the increase of the value of K leads to an
improvement in the precision of the algorithm, it also
reduces its recall. In other words, the usage of longer
k-combinations does not enhance the performance of
the algorithm in terms of F1 scores. The highest F1
scores were measured for K = 4, a setting which is also
much more efficient, as we demonstrate in the following
Subsection V-B.

• The distance of a k-combination from the beginning of
the title indeed plays an important role in the solution
of the examined problem. Equation 5 indicates that, by
increasing the value of the constant α, we essentially
weaken the impact of the distance. However, the ex-
periments prove that such a weakening degrades the
performance of the algorithm. Notice that the highest
values of all evaluation metrics (F1, precision, and recall)
were achieved for α = 1.

Now let us compare the matching performance of our
algorithm against the three aforementioned string similarity
metrics. More specifically, we experiment with four UMaP
settings (K = 3, 4, 5, and 6, with α = 1) and 9 scenarios for
each of the three examined string similarity measures, with
similarity thresholds ranging from 0.1 to 0.9. The similarity
threshold τ determines whether two entities e1 and e2 match
or not. That is, e1 matches e2 if and only if their similarity
value exceeds τ .

Figure 2 illustrates the variation of the F1 scores of COSim
for different values of τ . Notice that UMaP is independent of
this threshold; consequently, the plot of F1 against τ is a
straight horizontal line in these cases. The highest F1 value
achieved by COSim was about 0.42 and it was measured for
a similarity threshold τ = 0.6. At this point, the precision was
equal to 0.35653, whereas the recall was 0.51457.

UMaP outperformed the highest F1 value of COSim in the

cases of K = 4 (F1 = 0.66), and K = 5 (F1 = 0.48).
The difference margins are remarkable: 36.3% for K = 4
and 12.5% for K = 5. On the other hand, COSim achieved
better results than UMaP-K = 3 and UMaP-K = 6, within
the range τ ∈ [0.6, 0.7]. Consequently, UMaP performed very
well for medium-sized k-combinations, that is, when these
combinations contained at most 4 or 5 words. Beyond this
length, the performance of our algorithm degrades.

Regarding the other two metrics of our evaluation, the
settings K = 4 and K = 5 of UMaP achieved higher F1
values in all cases. More specifically, the Jaccard similarity
metric performed equally well to cosine similarity. Its highest
F1 measurement was also roughly 0.4242 and it was observed
for a similarity threshold τ = 0.5. At that point, the precision
and the recall values were about 0.44080 and 0.40888, re-
spectively. This value of F1 is about 36% lower than the 0.66
of UMaP K = 4. On the other hand, the F1 of the Jaro-
Winkler distance metric was considerably lower compared to
all other methods. Its greatest value was approximately 0.29
for τ = 0.8, that is, more than 56% lower than the F1 of
UMaP for K = 4. The measured precision and the recall
were 0.24942 and 0.35226, respectively. Remarkably, the Jaro-
Winkler metric was outperformed by all settings of UMaP
(even by K = 3 and K = 6), and for all values of the
similarity threshold τ .

Finally, notice that other works such as [1] and [2] report
that cosine similarity achieved its best performance for other
values of τ (more specifically, for τ = 0.3 and τ = 0.4).
Moreover, for Jaccard similarity and Jaro-Winkler distance
the maximum F1 was measured at τ = 0.5 and τ = 0.8,
respectively. Therefore, it becomes clear that a complete and
systematic experimental evaluation with these metrics, requires
that the experiments should be repeated multiple times for all
values of τ ∈ [0, 1].

B. Efficiency Evaluation

Undoubtedly, the extraction of combinations and permuta-
tions from a string is a computationally expensive task. In
this Subsection we report some efficiency measurements which
prove that UMaP is both viable and effective, even with large-
scale datasets.

Apparently, the complexity of the algorithm primarily de-
pends on the value of K. This parameter essentially determines
the overall number of the k-combinations and permutations
which will be produced during the execution. On the other
hand, α is just a constant value in the denominator of equa-
tion 5 and does not affect the efficiency. Therefore, in the
following discussion we focus on K only.

Table III records three execution statistics for various num-
bers of K in the range [2,6]. The first one, is recorded
in the second column and represents the total running time
of the algorithm. It includes all the steps described in the
Algorithms 1 and 2 of Subsections IV-A and IV-B. Notice
here, that, in our implementation, we employed standard data
structures for the lexicon and the forward index and we did
not applied any sophisticated optimization of the various parts

Durations (sec) Combinations Permutations
K = 3 1.55 2,896,310 3,292,384
K = 4 13.20 8,742,866 46,738,214
K = 5 292.32 21,733,514 1,177,518,713
K = 6 7177.36 46,482,486 ' 1.3 · 1012
COSim 171.47 – –
JSim 244.89 – –
JRD 282.30 – –

TABLE III
EFFICIENCY EVALUATION OF UMAP AGAINST COSINE SIMILARITY,

JACCARD SIMILARITY, AND JARO-WINKLER DISTANCE FOR VARIOUS
VALUES OF K .

of the algorithm. The other two statistics, recorded in the third
and fourth columns of Table III, concern the total number of
the computed k-combinations and permutations for each case.

As anticipated, the results demonstrate that the running
times grow exponentially with the increase in the value of K.
For K = 3, the entire execution completes in almost 1 second
and a half, but, for K = 6, the process consumes roughly
2 hours. The number of combinations and permutations also
grow very fast with K; from a few millions for K = 3 to
billions for K = 6. It seems that, for this particular dataset, a
setting K > 6 is non-viable.

Nonetheless, in the previous discussion we showed that the
increase of K actually leads to a decrease in the matching
quality of UMaP. By comparing this outcome with the slow
running times when K ≥ 6, we can safely state that there is
absolutely no reason in employing combinations which contain
more than 6 words.

In addition, we demonstrated that the algorithm achieves the
maximum F1 score by setting K = 4, followed by K = 5.
The third row of Table III reveals that UMaP is pretty fast
for K = 4; it processes the 16208 products of the dataset and
clusters them in approximately 13.2 seconds. For K = 5, the
execution is slower, but it is definitely within the acceptable
limits; the algorithm consumes roughly 5 minutes in this case.
Regarding the cases K = 3 and K = 6, the former is much
faster than the latter. Since these two cases achieve similar F1
scores, K = 3 is more preferable than K = 6.

To provide a complete picture of the running times against
the competitive string similarity metrics, in the three last rows
of Table III we also record the time consumed by COSim, JSim
and JRD to construct the matches among the 16208 products of
the dataset. Of course, the adversary string similarity metrics
do not operate by generating combinations and permutations,
therefore, the values of the third and fourth column in these
three last rows have been left blank intentionally. This part
was also not optimized; we merely measure the duration of
the pairwise comparisons and the computation of the required
similarity values.

The results indicate that COSim required approximately
171.4 seconds to complete the matching task; in comparison
to our proposed method, it was 13 times slower than UMaP-
K = 4 and 1.7 times faster than UMaP-K = 5. Jaccard
similarity was slower than COSim; apparently, the additional

step of computing the unions in the denominator of eq. 8
resulted in this small delay. UMaP-K = 4 was approximately
18.5 times faster, whereas UMaP-K = 5 1.2 times slower.
The third of our examined metrics, JRD, was even slower;
21.4 times compared to UMaP-K = 4. The extra complexity
of the calculation of the involved transpositions played a rather
negative role.

The final outcome of the experimental evaluation of the
proposed method against three of the most popular string
similarity metrics, is that by setting K = 4 and α = 1, we
achieve: i) improved matching effectiveness by a significant
margin of about 36%; and ii) much faster execution by a factor
of at least x13.

VI. CONCLUSION

In this paper we introduced a new algorithm for matching
product titles from different data feeds. This problem is partic-
ularly important in online shopping, since it allows the users to
compare products (and especially their prices) from different
electronic stores. The traditional string similarity metrics do
not perform well in this area, since it is common that highly
similar strings refer to different products, whereas other not
similar strings describe the same product. The authors of [1]
and [2] suggested the usage of Web search engines with the
aim of enriching the product titles with several important
missing words. Nevertheless, in case of large datasets, their
approach is rather inefficient or even impossible, since the
deployment of thousands of queries to a commercial search
system is i) prohibitively expensive, and ii) forbidden by the
terms of use of these systems.

On the contrary, our approach is based on the morphological
analysis of the titles, and consists of two phases. During the
first phase we process the titles and we construct combinations
of K words. These combinations are stored within a lexicon
data structure which additionally stores several statistics, such
as the distance of the combination from the beginning of
the title, and a frequency value which reflects the number
of products than contain it. In case a new combination does
not exist in the lexicon, we first compute all its permutations
and we search the lexicon for each permutation. This strategy
allows us to identify the same set of words, but in a different
ordering. Moreover, we construct a typical forward index
which for each product maintains a list of pointers to each
combination. In the second phase, we use both the forward
index and the statistics in the lexicon to assign a score to
each combination. Finally, the combination which received the
highest score is declared as the representative cluster label of
a product.

The proposed algorithm was experimentally evaluated in
terms of both effectiveness and efficiency against three tra-
ditional string similarity metrics, cosine similarity, Jaccard
similarity, and Jaro-Winkler distance. The evaluation was
performed by employing a dataset which we acquired by a
crawling a popular product price comparison platform. The
results lead to the conclusion that compared to the traditional
similarity metrics, our approach achieves improved matching

effectiveness by a significant margin of about 36%, whereas
it is at least 13 times faster.

VII. FUTURE WORK

During the conduction of the experiments, we observed sev-
eral remarkable issues regarding the behavior of our algorithm.
These issues leave much room for future research and we
firmly believe that by addressing them, we can further improve
the effectiveness of our approach.

The first issue is about the phenomenon of a cluster ‘split’.
That is, a set of N identical products, sometimes gets incor-
rectly divided into two or more smaller subsets. By the time
these lines are written, we are experimenting with a third
processing phase for the algorithm. During this phase, we
attempt to re-assign a cluster to the products which belong
to such incorrectly divided subsets.

Another issue is to enhance the equation which assigns
scores to the clusters, since equation 5 takes into consideration
only global statistics for a combination. An interesting research
line is to examine the possibility of utilizing additional local
statistics, such as the word frequency or the word proximity
within the titles of the products.

Finally, we will investigate the potential of improving the
efficiency of the algorithm. There are several points to be
examined, including: i) the data structures which accommodate
the lexicon and the forward index; and ii) a robust blocking
method which will allow us to terminate early the construction
of the combinations and permutations.

REFERENCES

[1] V. Gopalakrishnan, S. P. Iyengar, A. Madaan, R. Rastogi, and S. Sen-
gamedu, “Matching Product Titles using Web-based Enrichment,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, 2012, pp. 605–614.

[2] N. Londhe, V. Gopalakrishnan, A. Zhang, H. Q. Ngo, and R. Srihari,
“Matching Titles with Cross Title Web-search Enrichment and Commu-
nity Detection,” Proceedings of the VLDB Endowment, vol. 7, no. 12,
pp. 1167–1178, 2014.

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
Efficient Fuzzy Match for Online Data Cleaning,” in Proceedings of
the 2003 ACM SIGMOD International Conference on Management of
Data, 2003, pp. 313–324.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
Record Detection: a Survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cabridge University Press, 2008.

[6] D. Bär, C. Biemann, I. Gurevych, and T. Zesch, “UKP: Computing
Semantic Textual Similarity by Combining Multiple Content Similarity
Measures,” in Proceedings of the First Joint Conference on Lexical and
Computational Semantics-Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the Sixth Interna-
tional Workshop on Semantic Evaluation, 2012, pp. 435–440.

[7] A. Islam and D. Inkpen, “Semantic Text Similarity using Corpus-
Based Word Similarity and String Similarity,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 2, no. 2, p. 10, 2008.

[8] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang, “String Similarity Measures
and Joins with Synonyms,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, 2013, pp. 373–384.

[9] W. H. Gomaa and A. A. Fahmy, “A Survey of Text Similarity Ap-
proaches,” International Journal of Computer Applications, vol. 68,
no. 13, 2013.

[10] C. F. Dorneles, R. Gonçalves, and R. dos Santos Mello, “Approximate
Data Instance Matching: a Survey,” Knowledge and Information Systems,
vol. 27, no. 1, pp. 1–21, 2011.

[11] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of Entity Resolution
Approaches on Real-world Match Problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[12] H. Köpcke and E. Rahm, “Frameworks for Entity Matching: a Com-
parison,” Data & Knowledge Engineering, vol. 69, no. 2, pp. 197–210,
2010.

[13] W. Shen, P. DeRose, L. Vu, A. Doan, and R. Ramakrishnan, “Source-
Aware Entity Matching: a Compositional Approach,” in Proceedings of
the 23rd IEEE International Conference on Data Engineering, 2007, pp.
196–205.

[14] S. Cucerzan, “Large-scale Named Entity Disambiguation based on
Wikipedia Data,” in Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, 2007.

[15] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin, “Entity
Disambiguation for Knowledge Base Population,” in Proceedings of the
23rd International Conference on Computational Linguistics, 2010, pp.
277–285.

[16] J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald, and G. Weikum,
“KORE: Keyphrase Overlap Relatedness for Entity Disambiguation,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, 2012, pp. 545–554.

[17] M. Bilenko and R. J. Mooney, “Adaptive Duplicate Detection using
Learnable String Similarity Measures,” in Proceedings of the ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2003, pp. 39–48.

[18] N. Jalbert and W. Weimer, “Automated Duplicate Detection for Bug
Tracking Systems,” in Proccedings of the IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC, 2008, pp.
52–61.

[19] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient Similarity
Joins for Near-duplicate Detection,” ACM Transactions on Database
Systems, vol. 36, no. 3, p. 15, 2011.

[20] H. Hajishirzi, W.-t. Yih, and A. Kolcz, “Adaptive Near-Duplicate Detec-
tion via Similarity Learning,” in Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2010, pp. 419–426.

[21] I. Bhattacharya and L. Getoor, “A Latent Dirichlet Model for Unsuper-
vised Entity Resolution,” in Proceedings of the 2006 SIAM International
Conference on Data Mining, 2006, pp. 47–58.

[22] P. Christen, “FEBRL: a Freely Available Record Linkage System with
a Graphical User Interface,” in Proceedings of the 2nd Australasian
Workshop on Health Data and Knowledge Management, 2008, pp. 17–
25.

[23] P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New
phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[24] M. A. Jaro, “Advances in Record-Linkage Methodology as Applied to
Matching the 1985 Census of Tampa, Florida,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.

[25] W. E. Winkler, “String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage,” in Proceedings

of the Section on Survey Research Methods, 1990, pp. 354–359.

