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Abstract—The problem of classifying a research article into
one or more fields of science is of particular importance for the
academic search engines and digital libraries. A robust classifica-
tion algorithm offers the users a wide variety of useful tools, such
as the refinement of their search results, the browsing of articles
by category, the recommendation of other similar articles, etc. In
the current literature we encounter approaches which attempt to
address this problem without taking into consideration important
parameters such as the previous history of the authors and the
categorization of the scientific journals which publish the articles.
In addition, the existing works overlook the huge volume of the
involved academic data. In this paper, we expand an existing
effective algorithm for research articles classification, and we
parallelize it on Apache Spark —a parallelization framework
which is capable of sharing large amounts of data into the
main memory of the nodes of a cluster— to enable the process-
ing of large academic datasets. Furthermore, we present data
manipulation methodologies which are useful not only for this
particular problem, but also for most parallel machine learning
approaches. In our experimental evaluation, we demonstrate that
our proposed algorithm is considerably more accurate than the
supervised learning approaches implemented within the machine
learning library of Spark, whereas it outperforms them in terms
of execution speed by a significant margin.

I. INTRODUCTION

During the past years, the academic search engines and
digital libraries have played a crucial role in the evolution of
scientific research. The scientists who desire to develop novel
solutions or address new problems, usually consult them with
the aim of obtaining a detailed picture of the current literature
in a specific topic. Hence, they are able to review the state-
of-the-art articles for a particular problem and organize their
research accordingly.

To allow this functionality, the aforementioned services
classify their articles into one or more areas of science. Some
of them employ static, pre-defined hierarchies of categories
and ask from the authors to classify their articles themselves
(e.g., the IEEE and ACM digital libraries). In a well-controlled
environment, where the number of the published articles is
limited, this approach is feasible. However, in the context of
academic search engines (such as Microsoft Academic and
Google Scholar), which index hundreds of millions of articles
from different publishers and with diverse categorization,
this method apparently cannot be applied. Consequently, the
issue of the automatic classification of research articles is of
remarkable importance, since it allows the users to perform

searches by focusing on only a specific portion of the indexed
documents, thus increasing both effectiveness and efficiency.
Additional benefits include similar documents recommenda-
tions, collaborative filtering, query expansion facilities, expert
identification, and so on.

In the current literature there are several methods which
attempt to address the problem of the automatic papers classifi-
cation. The traditional approaches employ keyword extraction
algorithms which identify repeated patterns of words and
discover the most representative keywords of an article. In
the sequel, they employ standard supervised classification
approaches (such as kNN and naive Bayes) to label the article.
The model proposed in [1] introduced rich feature vectors
and included additional information such as authorship, co-
authorship, and journals history to enhance the accuracy of
the classification. Other methods adopt citation analysis pro-
cedures which focus on the recognition of various properties of
the incoming and outgoing citations. However, since a portion
of the citations of a paper is usually unavailable, these methods
cannot construct a complete graph of papers and, consequently,
they miss valuable information. A second drawback of the
link-based approaches is that a reference to an article does
not necessarily reveal thematic affinity.

Nevertheless, none of the aforementioned approaches takes
into consideration the huge volume of the involved data. The
current scientific literature contains at least hundreds of mil-
lions of articles and its size increases constantly at high rates,
as more articles get published. The Open Academic Graph,
an experimental dataset which was recently made publicly
available', contains more than 167 million publications and
occupies approximately 300GB in uncompressed form [2], [3].
It is obvious that such big data with so frequent updates cannot
be handled efficiently by a single workstation.

In this paper we introduce a parallel algorithm to confront
the problem of the automatic paper classification in such
large-scale datasets. Our proposed method is based on the
supervised model of [1], and it has been developed by using
a relatively new parallelization framework, the Apache Spark.
This framework, in contrast to its predecessor, MapReduce,
has been designed to allow the sharing of large amounts of
data into the main memory of the workstations of a cluster.
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Consequently, it avoids redundant disk reads and disk writes,
a problem which was common in MapReduce. Spark can
be many times faster than MapReduce (up to 100 times),
especially for iterative and machine learning algorithms similar
to the one we present here. In addition, we capitalize on
a careful combination of data manipulation techniques, like
feature vectorization and dimensionality reduction.

More specifically, our method initially converts the dataset
by constructing the appropriate feature vectors. Since the
number of features is huge and the vectors are very sparse,
we apply a mixture of dimensionality reduction techniques to
shrink the feature space. After the preparation of the dataset,
the training process builds in parallel a statistical model which
is based on a dictionary data structure for storing the keywords,
the authors, and the journal of an article. Next, the model is
broadcasted to all processing nodes of the cluster and it is
used to classify the articles of the testing set by computing a
score for each category of the given taxonomy. Finally, each
article is classified in the highest-scoring category.

The rest of the paper is organized as follows: In Section II
we refer to some of the most significant works in the literature
related to the problem of paper classification and the parallel
algorithms for Apache Spark. In Section III we establish
the theoretical background and we present the details of
our introduced model. The experimental evaluation of the
proposed method is discussed in Section IV, where we also
describe the dataset filtration and pre-processing steps. Finally,
Section V contains some useful remarks and final conclusions
about the paper and the presented methodology.

II. RELATED WORK

The problem of research articles classification has attracted
numerous scientists in the past and there is a significant
number of works which attempted to address it. These works
introduced methods which can be divided into two categories:
link-based and text-based methods.

In the former category, we mainly encounter approaches
which employ link-analysis strategies to discover useful in-
formation hidden behind the references of the articles and
the linkage between them. For instance, in [4] the authors
introduce a statistical framework for modeling link distribu-
tions. In the sequel, they identify the category of a document
according to the category its links belong to. Furthermore, the
link-based classification strategies have been proved effective
in categorizing graph nodes (for example, labeling the nodes of
a graph [5], or in networked data classification [6]). Similar
approaches have been also applied to Web data, where the
document interlinking can be used for a variety of purposes.
An important survey which studies these methods in depth is
provided in [7].

Regarding the text-based algorithms, there is a surge of
research relevant to the supervised text categorization prob-
lem [8]. A systematic survey of the most effective machine-
learning approaches is presented in [9]. Moreover, [10]
and [11] provide detailed evaluations of the primary statis-
tical and machine learning approaches to text categorization.

Finally, Joachims employed support vector machines (SVM)
to address the problem [12], whereas [13] introduced Ad-
aBoost. MH, a multi-class extension of the traditional Ad-
aBoost binary classifier.

However, none of the aforementioned approaches study
the additional features which are important for the specific
problem that we examine here. Therefore, they miss valuable
information such as the previous work of the authors of an arti-
cle, co-authorship information and the history of the publishing
journal. Additionally, they do not take into consideration the
huge volume of the involved data and are not designed to
operate in parallel across the nodes of a computational cluster.

In this paper we employ Apache Spark [14], a robust
framework for big data processing, to parallelize the algorithm
introduced in [1]. Spark has been designed to address the
weaknesses of its predecessor, the well-known MapReduce
introduced by Google [15]. In [16] the authors provide a
tutorial for Spark and its characteristics, whereas [17], [18]
and [19] discuss its performance in comparison to MapReduce.
Finally, a number of works introduce parallel algorithms for
Spark in order to confront problems such as distributed matrix
computations [20] and graph partitioning [21].

III. ARTICLES CLASSIFICATION ALGORITHM

In this Section we describe the details of the proposed
algorithm for research articles classification with the Apache
Spark framework. Initially, we present some basic preliminary
elements and, in the sequel, we describe the characteristics of
the model, the training and classification methods, and the
development of the algorithm in Spark.

A. Theoretical Background

Before we proceed to the presentation of the algorithm,
let us initially establish the necessary theoretical background
which shall provide the basis for the analysis that follows. We
begin with Y, a set which includes all the research fields (also
mentioned as categories, or labels, or fields of study - FOS) of
the dataset. The items of Y can be organized by employing
a hierarchical tree structure, or a graph, or they may not be
explicitly connected to each other.

In addition, we introduce X, a set which contains all the
publications of the dataset, and another set J, which includes
the journals (or the conference proceedings, magazines, books,
etc.) where the items of X have been published. Since each
paper cannot be published by more than one journal, each
entry x € X is uniquely correlated with a single element
j € J. In addition, we use A to symbolize the set which
includes all the distinct authors who have contributed to the
publication of the articles of P.

A significant portion of the published articles also includes
a limited number of keywords; that is, special representative
words which are selected by the authors to briefly describe
the content of their work. A part of the proposed algorithm is
based on these keywords, therefore, it is also required that we
define K, a set which contains all the keywords encountered
in all papers of X. In the same set K we also include the



keywords extracted from the titles of the articles, since these
words represent the contents of the documents as well.

The keywords, the authors and the publishing journals
represent the feature space F'. We can now introduce the
following groups of subsets:

e I, C F': These subsets contain all the features of an
article . For instance, K, C K and A, C A include all
the keywords and the authors of x, respectively.

e Xy C X: Another group of subsets comprised by the
articles which have the feature f. In particular, X C X
and X, C X include all the publications which contain
the keyword & and have been authored by a, respectively.
Notice that | X ¢| represents the frequency of the feature
f across the entire document collection.

e X7, C Xy: They include the articles which both have
the feature f and belong to the category y. In this case,
| X s,y is a counter which represents how many times f
has been correlated with .

Finally, the supervised machine learning algorithms split
their input dataset D into two parts: the training set 7, and the
testing set R. The former consists of samples, that is, labeled
articles whose properties are used to build the classification
model. The latter provides a number of unlabeled records to
attest the effectiveness of the model.

B. Model Training

In this phase we process the training set 7 and we construct
our model with respect to the set of labels Y. The objective
of this procedure is to correlate the features included in 7 to
one or more labels from Y and also, to quantify the strength
of these correlations.

Initially, let us describe the types of the features which we
use to build our model and justify our decision to include
them in our algorithm. Clearly, we desire to focus on ele-
ments which are strong indicators of the label of a research
article. Consequently, the first feature we utilize is the explicit
keywords, that is, the words which are used by the authors
to quickly describe the content of their article. Moreover, the
words occurring in the titles are also considered representatives
of the document’s content and for this reason we shall treat
them as keywords.

The previous activity of the authors who contribute to a
research paper can also provide an indication of the research
field a paper discusses. Learning the areas of expertise of a
scholar is important, since it can be exploited to classify his/her
unlabeled articles. Therefore, the article authors become our
second feature. Additionally, the publishing journal is also in-
dicative of the research area that a paper belongs to. This is due
to the fact that journals are also categorized and do not publish
articles with subjects unrelated to their area(s) of interest.

The correlation of a feature with a research field is quan-
tified by employing the two last groups of subsets of the
previous subsection. More specifically, the classification model
is based on a data structure M, where we store all the distinct
features of the dataset. For each feature f € M, this structure
also maintains:

Algorithm 1: Model Training

1 initialize dictionary M,

2 for each sample x € T with known label y do
3 extract all features F of x;

4 for each feature f € F, do

5 if M.search(f) == false then

6 M.insert(f);

7 set | X¢| < 1;

8 MinsertRDV(f,y);

9 set | Xy y| < 15

10 else

1 set | X¢| < | X5+ 1;

12 if M.searchRDV(f,y) == false then
13 M.insertRDV(f,y);

14 set | Xy < 15

15 else

16 | set [ Xyl | X5yl +1;

17 end

18 end

19 end

20 end

o A weight wy, which reflects the importance of f. The
features of the same type are assigned identical weight
values. Therefore, all the keywords, authors, and publish-
ing journals are assigned the same weights wy, w,, and
wj, respectively.

o A value |Xy|, which represents the number of articles
having the feature f —in other words, the overall fre-
quency of the feature in the dataset.

o A vector of labels, which have been correlated with f,
called relevance description vector, or RDV. Each entry
in the RDV is accompanied by a frequency value | Xy ,|
which counts how many times f has been correlated with
a label y; that is, the number of papers which both possess
f and are labeled as y.

As we will see shortly in the following subsection, the idea
is to determine the strength of the correlation of f with y
through the calculation of the ratio | Xy ,|/|X|. Algorithm 1
shows the basic steps for training M. For each paper x with
label y in the training set, we initially identify all the features
F,.. For each of these features, we perform a lookup in M. In
case the search is unsuccessful, the feature is stored in M with
frequency equal to 1. We also store y in the RDV of f and
we set | Xy, | =1. In case f already exists in M (successful
search), we increase its global frequency | X ;| and we perform
another search for y in its RDV. If this second search is not
successful, we insert y in the RDV and we set | Xy ,| = 1;
otherwise, we merely increase | X ,| by one.

C. Research Articles Classification

We can now employ the trained model to classify an unla-
beled article z € R. The process begins with the initialization
of an empty list of candidate labels Y. Each entry y € Y is
assigned a score .Sy, whose value is initially set equal to zero
and it will later be updated by using the model M.

In the sequel, we extract all the features F, out of x and,
for each of these features, we perform a search within the



Algorithm 2: Research Articles Classification

Algorithm 3: Driver program

1 initialize list of candidate labels Y';

2 for each unlabeled article x € R do

3 extract all features I, of x;

4 for each feature f € F, do

5 if M.search(f) == true then

6 for each label y in the RDV of f do
7 set Sy <= Sy + wyr| Xy yl/[Xrl:
8 Y insert(y, Sy);

9

end
10 end
11 end
12 Y .sortByScore();
13 set label of < Y[0];
14 end

model M. In case this search is successful, we retrieve the
RDV of f with the associated research areas along with their
respective | X ¢ , | values. Each entry of this vector is inserted in
the candidate labels list, provided that it is not already present
there. At next, the score value in the candidate list for each
label is updated by a quantity ws| Xy, |/|X¢|.

At the end of this process, we obtain a list of candidate
labels (research areas); each label is accompanied by a score
value given by the following formula:

X
5, Y uin W
fEF, !

which reflects how strong is the connection of this area with
all the features of the paper. All we have to do now is to
sort this list in decreasing score order and select the highest
scoring label as the representative research area for this article.
In Algorithm 2 we present the basic steps of this procedure.

D. Algorithm Parallelization & Deployment in Spark

After the establishment of the main parts of the algorithm,
we now proceed to its preparation for parallel execution in
Spark. In Algorithm 3 we present the skeleton of the driver
program, i.e., the program which controls the execution flow
of the assigned job. Initially, in step 2, we determine the details
of the job by tuning a several parameters, such as the number
of the executors, the number of threads which will be created
inside each executor, the memory limits for both the driver
and the executors, the maximum allowed size of the output
data, and numerous others.

Then, in step 3, we read the dataset D from its location and
we store it into a Resilient Distributed Dataset (RDD). The
Spark RDDs are fault-tolerant object collections for handling
data, and may be assigned various persistence levels. The
input dataset has been previously processed and each research
article was converted to a labeled point by a carefully de-
signed combination of feature vectorization and dimensionality
reduction techniques as described in Section IV. A labeled
point is a Spark abstraction which is used to represent a
record of the dataset and consists of two parts: i) the label
of the record, and ii) a sparse vector of feature-value (f,wy)

1 Function main()

2 Configure and Initialize Spark;

3 set RDD<LabeledPoint> D < readLIBSVM(location);
4 set RDD<LabeledPoint> [] W <« D.split(N, 1 — N);
5 set RDD<LabeledPoint> 7 + W[0];

6 set RDD<LabeledPoint> R «+ W[1];

7 Initialize Model M;

8 M.train(7);

9 broadcast M

10 M .classity(R);

11 Shutdown Spark;

12 end

pairs. This collection of labeled points is formatted according
to the LIBSVM format, a schema which is supported by all
machine learning algorithms of Spark. More details about how
the original dataset was converted to the LIBSVM format are
provided in the experimental evaluation, in Subsection IV-B.

In the next three steps, the training set 7 and the testing
set R are created from D. Spark offers a simple and powerful
dataset split method, which initially shuffles D and splits it into
two parts stored in an array Y. The parameter N is expressed
as a percentage of the size of D and controls the sizes of the
training and test sets. In our experiments, we set N = 0.6,
that is, the sizes of 7 and R are equal to the 60% and 40%
of the size of D, respectively. Afterwards, the model M is
initialized and then trained by using the training set 7 (step 8).
After the completion of the training phase, a special broadcast
call transmits M to all the executors of the cluster to allow
them classify, in parallel and independently of each other, the
unlabeled records of the testing set R. The driver program is
finally terminated by shutting down the Spark session and by
releasing all the allocated resources (step 11).

In Algorithm 4 we present a brief pseudo-implementation of
our classification model in Spark. We have already discussed
the properties of M: it is a standard dictionary data structure
which stores all the features, accompanied by with their fre-
quency | X | and their RDV. The model implements two basic
functions, train and classify. The former is comprised of two
phases: In the first phase we perform a flatMap transformation,
which, for each row (i.e., labeled point) of 7T, returns a list
A of (f,y,wy) tuples (steps 4-16). After the input has been
exhausted, all the lists A are sent back to the driver, where they
are collected (step 16) and their contents (i.e., the (f,y,wy)
tuples), are stored together in a large list /. During the second
phase (steps 17-32), we iterate through [ and we populate
the features and their respective RDVs in M, likewise to the
procedure of Subsection III-B. Notice the similarity of the
steps 17-32 with the steps 4-19 of Algorithm 2.

Regarding the classification function, the procedure begins
with the initialization of an empty list of candidate labels.
A map transformation of the testing set R creates one (y',y)
pair per input row, where y and y’ represent the actual and the
predicted labels respectively. The predicted label is computed
by searching M for each feature f of each labeled point of



Algorithm 4: Model implementation in Spark

Model

Features Dictionary M

Function train(RDD<LabeledPoint> T)

List<Tuple(f, y, ws)> I < T flatMap(LabeledPoint)

for each row € T do

initialize list \;

set y < row.label;

set V' <« row.featureVector;

for each entry v € V do
set featurelD f <+ v.f;
set weight wy < v.wy;
Adnsert(f, y, wy);

end

return \;

o X A R W N =

N e
W N = S

end

collect

for each tuple (f,y,wys) €l do

if M.search(f) == false then
M.insert(f);

set | Xs| 1,
M.insertRDV( f,y);

set [ Xy < 1;

(ST I R
N o= S ¢ ® 9 & wm

else

[N
= W

set | Xy| « | X+ 1;
if M.searchRDV(f,y) == false then
M.insertRDV(f,y);
set | Xy y| < 15
else
‘ set [ Xyl « [Xpy| + 15
end

NN NN
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=l

end

w
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end

w
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end
unction classify(RDD< LabeledPoint> R)
List<Tuple(y’, y)> L < R.map(LabeledPoint)
for each row € R do
initialize candidates list C;
set y <— row.label;
set V' < row.featureVector;
for each entry v € V do
set featureID f < v.f;
set weight wy < v.wy;
if M.search(f) == true then
for each label c in the RDV of f do
set S. +— S. + wf|Xf,c|/|Xf
C'insert(c, S¢);
end
end

B B B B A B W W W W W W W
R W N =S e XN R W

i

& &
N

-
®

end
C'.sortByScore();
set ¥ « C[0];
return Tuple(y’, v);

wm oo B
N = S e

end
collect

w
“w

W
-

end

w
wn

end

wn
N

R. In case the search is successful, | X ;| and the RDV of f
are retrieved. For each entry y in the RDV, the score of y is
updated according to equation 1. In the sequel, the list of the
candidate labels is sorted in decreasing score order, and ¢’ is
set equal to the first, highest scoring element of the list.

IV. EXPERIMENTS

In this section, we experimentally demonstrate the effective-
ness and the efficiency of the proposed algorithm which we
named Paper Classifier (PC). The code for all algorithms was
developed in Java 1.8, and it was executed on the latest stable
version 2.3.0 of Spark.

The experiments were conducted on the cloud infrastructure
of our Department. In particular, our cluster included 8 nodes
with 16 CPUs and 64GB of memory each. In this environment,
Spark was deployed on top of a YARN cluster with the Hadoop
Distributed File System installed. YARN and Spark require
a careful configuration of the available resources to achieve
maximum performance. To ensure fair results, all methods
were tested on the same configuration. Spark was allowed
to launch 15 executors, that is, 2 executors per node, except
from one node which hosted one executor plus the driver
process. Each executor was allowed to use 2 processing cores
and 28GB of memory. This setup complies with [22], which
indicates that the performance gains are linear to the number
of cores for a number of 24-32 cores. For greater numbers of
cores, the benefits are decreased by a significant margin.

The machine learning library MLIib of Spark provides
implementations of the most common supervised classification
algorithms. Our approach is compared against these imple-
mentations and, more specifically, the three ones which sup-
port classification with multiple classes: Logistic Regression,
Decision Trees, and Random Forests. The binary classifiers
of MLIib (Gradient Boosted Trees and Multilayer Perceptron)
could also be applied, but they require the application of the
one-vs-all strategy, which in turn requires the repetition of the
experiments multiple times (once per label). Since here we are
dealing with massive data where the processing requires many
expensive resources, we consider the binary classifiers as a non
viable solution and we exclude them from our evaluation.

A. Dataset Characteristics and Initial Filtration

The experiments of this article were conducted by using the
Open Academic Graph (OAG), a large-scale document collec-
tion which consists of roughly 167 million research articles
from 19 major scientific areas’. These areas include Biol-
ogy, Medicine, Geology, Chemistry, Psychology, Philosophy,
Sociology, Art, Engineering, Economics, Computer Science,
Physics, History, Political Science, Materials Science, Mathe-
matics, Geography, Business, and Environmental Science.

The dataset is organized in 167 plain text files and each file
contains the metadata of 1 million articles expressed in JSSON
format. The metadata provides a wealth of information about
each paper including titles, abstracts, author names, keywords,
venues, publishers, fields of study (FOS, or categories, or
labels) and numerous others.

OAG includes more than 40 thousand FOS descriptors,
however, there is no information on how these labels are
connected, or why they sometimes appear together and some

Zhttps://www.microsoft.com/en-us/research/project/academic/articles/
microsoft-academic-increases-power-semantic-search-adding-fields-study/



Algorithm 5: Dataset filtration with SparkSQL (steps 1-
3) and conversion to a collection of LIBSVM-formatted
labeled points (steps 4-26)

RDD<Row> OAG < readJSON(location);
RDD<Row> OAGI1 <« filter(OAG, FOS € Y);
RDD<Row> FilteredOAG < filter(OAG1, lang="en”);
RDD<String> ConvertedOAG <— FilteredOAG.map<Row>
for each row x € FilteredOAG do
initialize a new string container line;
Yz <— extract label of x;
line.append(yz);
K, < extract all keywords and title words from z;
for each keyword k € K, do
| line.append(hash(k):wy);
end
A, < extract all authors from z;
for each author a € A, do
line.append(hash(a):w,);
for each author o' € A, after a do
| line.append(hash(a+a’):wa);
end
end
j < extract publishing journal of x;
line.append(hash(j):w;);
return line;

R T N R W N

D D B ke e e e b e e e e
N = S & ® NN R W N =S

end

N
“w

end
25 ConvertedOAG.repartition(8);
26 ConvertedOAG.save(location);

N4
-

times they do not. For instance, we have encountered the label
optical engineering in combination with multiple different
labels such as Physics and Biology, whereas it occasionally
occurs isolated. Since this situation is repeated in many
articles, we decided to avoid the ambiguity by preserving only
the 19 aforementioned labels and by eliminating all others.

Notice that a significant portion of the articles of OAG
are not labeled at all. Examples of such articles include
those which are written in a non-English language. Of course,
these samples cannot be used neither for training the model,
nor for testing; consequently, they were removed from our
experiments. Another set of articles is labeled, but none of
these labels belong to the 19 used basic fields of study; these
articles were also excluded from our experiments.

Spark includes a powerful filtration mechanism which re-
fines a dataset by using SQL-like statements. The application
of this mechanism, which is known as SparkSQL, is performed
by each executor, after the distribution of the dataset by the
driver program. In Algorithm 5 (steps 1-3) we show the
filtration process of the OAG dataset with Spark. Initially, we
read the original OAG files from the distributed storage. In the
sequel, we apply the first filter with the aim of keeping only
the samples whose FOS list includes at least one of 19 basic
fields of study. Finally, in step 3 we apply the second filter
and we discard all the non-English papers of the dataset.

The application of the first three steps of Algorithm 5 leads
to a new filtered dataset (FilteredOAG) which consists of
approximately 73.5 million research articles.

B. Dataset Preprocessing

After the initial filtration of the dataset, it is required that
we apply two more transformations to it before it becomes
suitable for processing. The first one dictates that we convert
it to an appropriate form so that the adversary algorithms of
MLIib can access it. In Subsection IV-B1 we describe the
conversion of our dataset to a collection of labeled points. In
this form, the dataset contains roughly 83.3 million features.
Although our model is able to handle this huge feature space,
the algorithms of MLIib cannot. Consequently, it is necessary
to apply a second transformation to reduce the size of the
feature space. More details about our dimensionality reduction
methodology are presented in Subsection IV-B2.

1) Dataset Conversion: Most datasets are usually dis-
tributed to the public in structured or unstructured raw text
format and OAG is not an exception; it has its data organized in
a series of JSON-formatted records. However, the algorithms
of MLIib accept their input in LIBSVM, a schema which
dictates that each row represents a labeled point formatted
according to the following form:

Label id1:valuel id2:value?2 ... 2)

where the label is represented by a number with double
precision, followed by a specially formatted feature vector.
The components of this vector are pairs of integer feature
identifiers accompanied by their respective values. The feature
identifiers must be one-based and in ascending order, whereas
the feature values are the aforementioned weights for key-
words, authors and journals. To facilitate the comparison of
our algorithm with the MLIib implementations, we converted
OAG to the LIBSVM format.

The common method for feature vectorization is to incre-
mentally build a dictionary data structure (e.g., a hash table
or a trie) during the record parsing, and use it to map features
to indices. However, here we preferred to employ the hashing
trick of [23], which applies a hash function directly to the
features and uses the generated hash value to assign IDs to
the features. This method is much faster than the dictionary-
based approach, and it also saves the space occupied by the
additional data structure. A side-effect of the hashing trick is
the introduction of collisions, that is, different features obtain
identical hash values. However, as stated in [24], the impact
of these collisions to the statistical performance of a classifier
is infinitesimal.

In our experiments, we employed the 32-bit version of the
MurmurHash3 function?, due to its high speed and its capabil-
ity to uniformly distribute the input keys to the available target
space (provided that the size of the target space is a power of
2). Since our filtered dataset includes more than 83.3 million
features, we utilized a table of 227 buckets, and we hashed the
features into these buckets. MurmurHash3 is also the function
which is used in some feature extraction implementations of
Spark, such as TF-IDF*.

3https://github.com/aappleby/smhasher/wiki/MurmurHash3
“https://spark.apache.org/docs/2.2.0/ml-features.html



Features | Algorithm Accuracy
83.3 - 10° | Paper Classifier 79.1
Logistic Regression -
Decision Trees -
Random Forests -
4181 Paper Classifier 52.1
Logistic Regression 46.9
Decision Trees 18.6
Random Forests 24.9
TABLE I
COMPARISON OF THE PAPERS CLASSIFICATION ACCURACY FOR VARIOUS
ALGORITHMS

The steps 4-26 of Algorithm 5 illustrate the parallel applica-
tion of the hashing trick in our dataset. A map transformation
on the FilteredOAG dataset generates for each research article,
a string formatted according to eq. 2. Initially, we extract
all keywords, title words, authors, co-authors pairs, and the
journal of each research article by parsing the respective JSON
entry. Each of these features is hashed by the MurmurHash3
function and the generated hash value accompanied by the
corresponding feature weight are concatenated with the afore-
mentioned string. Finally, the converted dataset is repartitioned
to the 8 machines of our cluster, and it is written to the
distributed file system.

2) Dimensionality Reduction: Now the dataset has been
converted to a collection of labeled points formatted according
to the LIBSVM schema, and includes more than 83.3 million
features, hashed to a target space of 227 buckets. Despite
the high dimensionality of the feature space, our algorithm
managed to complete the papers classification task normally.
Nonetheless, it was impossible to execute any of the adversary
MLIib implementations; in all cases, the execution failed
by returning errors related to memory shortage problems.
Consequently, it was necessary to apply a dimensionality
reduction technique for comparison purposes.

Spark includes implementations of two such dimensionality
reduction methods: Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA). Unfortunately, both of
them failed to operate on our dataset. The former returned an
error regarding the size of the matrix which stored the involved
feature vectors, whereas the Spark implementation of the latter
cannot operate on datasets which have more than 216 features.

To overcome this problem, we implemented Sparse Random
Projection (SRP), a dimensionality reduction method which
is computationally simpler and faster compared to SVD and
PCA. SRP projects the original feature space into a lower
dimensional subspace through the origin, using a random
matrix whose columns have unit lengths [25]. The application
of SRP to the original dataset led to a lower dimensional
space with only 4181 features. Notice here that the size of
the new dimensional space was not set manually by us; it was
determined by the application of the Johnson-Lindenstrauss
lemma, which states that if the points in a vector space
are projected onto a randomly selected subspace, then the
distances between the points are approximately preserved [26].

Algorithm/Method Duration (min)

Paper Classifier (83.3 - 10° features) 92
Paper Classifier 17
Logistic Regression 182
Decision Trees 239
Random Forests 263

Dataset preprocessing (Algorithm 5) 51
Singular Value Decomposition -
Principal Component Analysis -
Sparse Random Projection 44

TABLE 11
COMPARISON OF THE ALGORITHMS EXECUTION TIMES (IN MINUTES)

C. Classification Accuracy

In this subsection we compare our algorithm to the three
multi-class classifiers of MLIib in terms of classification
accuracy. All methods were given the same training set to
build their models and the same test set for the performance
measurements. As mentioned earlier, these sets were randomly
generated from the original dataset; their sizes were set equal
to the 60% and 40% of the initial dataset, respectively.

Moreover, in all cases, the measurements were conducted by
adopting the best-performing feature weights reported in [1],
that is, wx = 0.3, w, = 0.2, and wi = 0.5. Notice that the
explicit keywords and the title words receive the same weight
wg; similarly, both authors and co-author pairs are assigned
the same weight w, and all journals the same weight wy.

In Table I we report the accuracy measurements for our
proposed Paper Classifier (PC) algorithm against the MLIib
multi-class supervised classifiers. PC was the only method
which achieved to classify the research articles of the dataset
by operating on the original feature space. Its accuracy
reached a remarkable 79.1%, that is, it classified correctly
approximately 8 out of 10 papers. On the other hand, the
MLIib implementations failed with errors regarding inadequate
memory; the dash symbols in rows 3, 4 and 5 indicate the
failure of the corresponding experiments.

Regarding the accuracy of the algorithms on the reduced
feature space, we observe —as expected— a degradation of the
performance of PC. Nevertheless, our method outperformed
the MLIib algorithms by classifying correctly the 52.1% of
the input entries. The best-performing adversary classifica-
tion approach was Logistic Regression, whose accuracy was
measured at 46.9%. On the other hand, the accuracy of the
other two methods, Decision Trees and Random Forests, was
surprisingly low; 18.6% and 24.9%, respectively.

D. Execution Times

Now let us compare the efficiency of our PC algorithm
against the multi-class classification approaches of MLIib. In
Table II we present the running times (in minutes) of the vari-
ous algorithms which we executed (or attempted to execute) in
our cluster. The dashes symbolize the failed experiments. The
rows of Table II are organized in 3 groups. In the first group
(rows 2-6) we present the examined classification methods,
that is, PC and the adversary classification methods of MLlIib.



The presented durations include the model training process
and the classification of the records of the test set.

Regarding PC, we present two execution times. The first one
(row 2) concerns the high dimensional space with the 83.3-10°
features, and it was 92 minutes. The second one represents
the running time of PC on the low dimensional space of the
4181 features, and it was approximately 5.4 times lower, at
17 minutes. In comparison to the fastest MLIib algorithm,
that is, Logistic Regression, our two runs were roughly 2 and
10.7 times faster. The other two algorithms, Decision Trees
and Random Forests were considerably slower; their execution
times were 239 and 263 minutes respectively. Remarkably,
PC was faster than the MLIib implementations even when it
operated on a much larger dataset.

In row 7 we present the execution time of the dataset
filtration and preprocessing (Algorithm 5). According to the
Spark job profiler, the procedure was completed in 51 minutes.
Finally, in the third group (last three rows) of Table II we in-
clude the three dimensionality reduction techniques. The dash
symbol in the execution times of SVD and PCA symbolizes
the failure of these two algorithms in reducing the dimension-
ality of our dataset. Regarding SRP, the algorithm consumed
approximately 44 minutes to project the 83.3 million features
into a lower dimensional space of 4181 features.

V. CONCLUSION

In this paper we presented an algorithm for classifying re-
search articles in large-scale document collections by using the
Apache Spark framework. The problem which was examined
here is significant for both the academic search engines and
the digital libraries, since a robust solution provides improved
functionality and performance benefits. In contrast to the
existing approaches, the method which we introduced here
takes into consideration not only the keywords, but also the
history of the authors, co-authorship information, and the areas
of science published by each journal. The proposed algorithm
was compared against the multi-class classifiers of the Spark
machine learning library (MLIib), that is, Logistic Regres-
sion, Decision Trees and Random Forests, which dictated
a careful application of a dimensionality reduction method.
The experiments indicated that our approach achieved higher
classification accuracy, accompanied by substantially better
execution times. Moreover, it was the only method which han-
dled efficiently the huge dimensionality of the dataset, without
requiring an additional dimensionality reduction technique.
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