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Abstract

During the past few years, the commercial Web search engines have augmented their under-
lying index structures by significantly enriching the information which describes the appearance
of a word within a document Dean (2009). This enriched information is now used in complex
and effective functions which rank documents by taking into consideration hundreds of features,
with respect to a user query. Despite the evolution of the search engines, the past research has
mainly concentrated on improving plain Web indexes storing typical data only. In this work we
study the problem of organizing an inverted index storing additional information. In particular,
we examine how the physical locations of a document, called zones, can be efficiently integrated
with such an index structure. We introduce TZP, an encoder which compresses these zones in
combination to the positions of a word in a document, by employing a fixed number of bits for
each portion of a word’s inverted list. We demonstrate that our method allows direct access to
the compressed zones and positions without expensive look-ups, avoids decoding any unneces-
sary information, while its overall index size is analogous or even better when compared against
state-of-the art schemes. Moreover, we examine how the word positions can be combined to
the zones to improve retrieval effectiveness. We introduce BM25TOPF, a scheme which incor-
porates term proximity and zone weighting into a single ranking formula. Unlike other term
proximity approaches, BM25TOPF also takes into account the ordering of the query terms by
rewarding the documents containing them in the correct order. Our experiments with the Web
Adhoc Task of TREC 2009 and a set of own queries show that BM25TOPF outperforms the
current state-of-the-art approaches by a margin between 6% and 11%.
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1. Introduction

Nowadays, the repositories of the major search engines consist of tens of billions of docu-
ments Dean (2009) and as the Web becomes larger and the crawling technology evolves, these
repositories are expected to grow further. Furthermore, search engines accept and answer thou-
sands of queries per second attempting to quickly retrieve the most suitable documents for each
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submitted query. In such a dynamic environment where the available information, the workload
and the user expectations expand, search engines have to constantly scale up in terms of both
efficiency (query throughput) and effectiveness (quality of query results).

The inverted index is the primary data structure used by search engines for storing document-
related data and metadata. According to Witten et al. (1999); Zobel and Moffat (2006), an ap-
propriately constructed inverted index can improve the performance of query processing dramat-
ically. Due to the importance of the inverted index in the overall efficiency of a search system,
there has been a lot of research conducted towards its optimization. Optimization primarily re-
gards two critical issues: compression and organization. The former is a key issue for reducing
the overall index size and minimizing the transfer costs from either disk or main memory. The
latter enables partial access of the index structure, that is, a query can be answered without having
to traverse all the available information stored in it.

Several engineers (see for instance Dean (2009)) have revealed that the information stored
in the inverted index search engines has tripled during the past few years. However, in the
literature we mainly encounter strategies and algorithms concerning typical inverted indexes,
which almost always store very limited data: document identifiers, word-document frequencies
and word positions in a document. Compared to the hundreds of the parameters employed by
the major search engines for ranking their documents (Yan et al. (2009a); Tran et al. (2009)), this
data is apparently inadequate.

In this work we study the potential of including additional information within the inverted
index. In particular, we adopt the idea of partitioning a Web document into locations of special
interest, namely zones. The document zones were introduced in Manning et al. (2008), but to the
best of our knowledge, issues regarding the compression and organization of such indexes have
never been studied before. In this paper we investigate the meaning of a word’s appearance within
a document; we replace the plain positional data by the occurrences, a piece of information which
contains both the position and the zone of the document where this specific word appears.

In the sequel, we propose a method which allows compact storage of zones along with the
corresponding word positions. Our approach, namely 7ZP, operates in combination with the
block-based inverted list organization, a strategy introduced by Moffat and Zobel (1996) which
splits an inverted list into blocks. Block-based schemes allow us to skip large, unneeded portions
of the index during query processing. TZP is designed to support all the partitioning strategies
that have been proposed so far (refer to Navarro et al. (2000); Boldi and Vigna (2005); Anh and
Moffat (2006); Zhang et al. (2008); Chierichetti et al. (2009)), and operates in two steps: In the
first step, the compressor packs each position-zone pair of a block into a 32-bit space and in the
next phase, these packets are encoded together by employing a fixed number of bits. This scheme
enables the direct access of the occurrence data for each posting, by using a limited number of
pointers (one pointer per block).

Finally, one of our main motives was to examine whether the usage of the additional in-
formation can really lead to search results of higher quality. Discovering a ranking function
which combines many different parameters (i.e. frequencies, term proximity, zone weighting,
document lengths etc) is a challenging task. In this paper we initially examine some state-of-
the-art probabilistic retrieval functions, such as BM25 (firstly introduced Robertson and Jones
(1976)), a variant which takes into consideration the zone of the document where a term appears
(BM2SF, Lu et al. (2006)), and another variant which takes into consideration term proxim-
ity, namely BM25TP (Buttcher et al. (2006)). In the sequel, we propose an enhancement to
the BM25TP, BM25TOP, which takes into consideration both term proximity and correct term
ordering (that is, whether the terms in a document appear in the same order as in the query). Fi-
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nally, we inject the concepts of BM25TOP to BM25F to produce BM25TOPF, a ranking function
which is sensitive to term proximity, correct term ordering and zone weighting.
As a summary, the contributions of this paper are:

e We introduce a two-level encoder for positions and zones, namely TZP. TZP compresses
the data by using a fixed number of bits for each position-zone pair of the same block of an
inverted list.

e We show that the fixed-bit policy adopted by TZP allows very fast decompression, whereas
it also enables us to access directly only the data actually required for processing a query.
In other words, with TZP we are not obliged to look-up for the positional and zone data of a
particular posting since we are allowed to compute their location, and moreover, we do not
have to decode any unnecessary information.

e We investigate the usefulness of combining term proximity and zone weighting for doc-
ument ranking. In particular, we first propose BM25TOP, an enhancement to the origi-
nal BM25TP function which is sensitive to the correct term ordering. We also introduce
BM25TOPEF, a ranking method that allows term proximity, correct document ordering and
zone weighting to be combined into a single scoring formula.

o All our contributions are experimentally evaluated by using the Clueweb09-T09B document
collection consisting of roughly 50 million English documents.

The rest of the paper is organized as follows: In Section 2 we examine the state-of-the-art
methodologies for organizing inverted indexes and we cite the relevant work. Section 3 contains
the description of zones and consists of three Subsections: Subsection 3.1 discusses the new
form of postings after the inclusion of zones, Subsection 3.2 introduces the TZP compression
algorithm for zones and positions, and Subsection 3.3 demonstrates how the data encoded by
TZP can be efficiently accessed and decompressed. In Section 4 we provide descriptions of
some popular ranking functions and we propose our own scoring approaches. Finally, Section 5
contains the experimental evaluation of our methods and propositions, whereas in Section 6 we
finalize this work by stating our conclusions.

2. Preliminaries and Related Work

The inverted index is the primary data structure constructed and maintained by the search
engines to serve user queries. There is a significant amount of research regarding the efficient
organization of these indexes and in this Section we briefly describe some basic elements deriving
from the related theory.

A typical inverted index structure consists primarily of two components: (i) the lexicon, a
list sorted in ascending lexicographical order containing all the distinct words appearing in the
collection and (ii) the inverted file, that stores all the occurrences of each word in the collection.
These occurrences are organized in inverted lists. In its simplest form, an inverted list /; of a term
t stores a list of postings which contain the integer identifiers of the documents (docIDs) where ¢
appears into.

To support ranked query processing, we store additional information within an inverted list:
(i) the term-document frequency (or just frequency) fz,, which reveals how many times a term
t appears in document d i.e., each posting S; is of the form (d;, f;) and (ii) some positional data,
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pix indicating the position of the term in the document. In this case the postings are of the
form (d;, fi, pio, Pit» - Pi.fi—1)- The inverted lists can be sorted either by docID, or by another
attribute (frequency or another scoring value (Brin and Page (1998))). In this paper, we consider
the situation where the inverted lists are sorted by increasing docID order; this setup allows more
effective index compression (refer to Witten et al. (1999); Chierichetti et al. (2009)) and supports
the parallel traversal of all of the query terms’ inverted lists during query processing (Manning
et al. (2008)).

There are two main methods exploiting the inverted index to evaluate a query: term-at-a-time
and document-at-a-time (Turtle and Flood (1995)). The first approach initially orders the query
terms in increasing frequency order; in the sequel the inverted list of each term is repeatedly
merged with the lists of the other terms, leading to the final result list (see Witten et al. (1999)
for a detailed description). On the other hand, in the latter method, the inverted lists are scanned
in parallel sequentially retrieving the documents which are relevant to the query. Document-at-
a-time evaluation is essential for large document collections where we can predict the number of
documents that could be retrieved (by using statistical methods) and the operation can be termi-
nated as soon as adequate qualitative documents have been retrieved Boldi and Vigna (2005).

To perform efficient parallel scanning of several inverted lists, it is beneficial that we maintain
a mechanism which allows us to skip large portions of the list by seeking the first docID larger
than or equal to a given one. In this way we avoid decoding useless portions of the list and
we are able to quickly access the desired information. For this reason, multiple works such
as Moffat and Zobel (1996); Navarro et al. (2000); Boldi and Vigna (2005); Anh and Moffat
(2006); Zhang et al. (2008); Chierichetti et al. (2009) propose partitioning the inverted list into
a series of adjacent blocks and maintain one or more pointers pointing to the beginning of each
block. During the evaluation of a query, the processor makes use of these pointers to locate the
correct block and decode only the data actually needed.
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Figure 1: Partitioning an inverted list into 7 blocks of postings (block-based organization). In the upper part we depict
the skip table which stores two pointers per block: one pointing at the docIDs and one pointing at the frequency values.

A block-based inverted list organization is depicted in Figure 1. The data in each block is
stored in three chunks: the first chunk is used to store the docIDs, the second chunk stores the
corresponding frequency values, whereas the third chunk contains the positional data. Since the
number of the occurrences of a term within a document can be infinitely large, an important issue
posed by the usage of a block-based scheme is to identify the location of the positional data for
a particular posting. The problem becomes even more challenging in case the corresponding
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data is compressed, because we need to locate the desired information within the compressed
sequence.

To address this issue, the researchers have proposed two basic ways to organize the data: (a)
interleaving, i.e. the positional data of a particular block are stored after the docIDs and the
frequencies of the same block, and (b) creating a completely separate structure for positions
with its own lookup mechanism. For instance, Yan et al. (2009a) propose interleaving, and they
introduce a fairly standard hierarchical look-up structure to access the positions. For each block
of an inverted list, this structure stores one docID and one pointer to the beginning of the block.
Furthermore, within each block the positional data is organized into sub-blocks of 8B postings.
For each of these sub-blocks, a pointer is used to store its offset from the beginning of the block.
To retrieve the positional data of a specific posting we first search for the correct sub-block
and then we decode all the positions for the postings of this sub-block. Then the positions of
the particular posting are retrieved by using the aforementioned offset value. Nevertheless, this
look-up operation is quite expensive and can decelerate query processing especially in case B is
small. Furthermore, this additional structure occupies extra space in memory.

On the other hand, Transier and Sanders (2010) organize positions by employing a separate
structure, namely indexed list. This list consists of two levels; the upper level contains point-
ers pointing to the data stored at the lower level. That is, for each posting they store a pointer
which shows the location of the corresponding positional values. Although this approach of-
fers direct access to the positional data without look-ups, it requires even more space than the
aforementioned look-up structure since one pointer per posting is very expensive.

In this paper we propose a hybrid between interleaving and data structures. In particular, we
choose to store the positional data contiguously (i.e. not in blocks), but along with each block
we also record a pointer which in combination with our encoding method, allows us to access
directly the positions of a specific posting. This renders our approach much more economic than
that of Transier and Sanders (2010), since instead of requiring one pointer per posting, it requires
one pointer per block.

On the other hand, the problem of selecting appropriate block sizes has been widely studied:
For instance, the work of Moffat and Zobel (1996) proposes setting skip pointers every VN,
postings of the inverted list, where N, is the number of documents containing 7. A number of
research articles Zhang et al. (2008); Ding et al. (2009); Yan et al. (2009a) place skips each
time a fixed number of postings (i.e. 128) has been encountered. Other papers study the is-
sue of dynamically setting skip pointers in a fashion which maximizes query throughput. For
instance, Boldi and Vigna (2005) embed compressed perfect skip lists in an inverted list to in-
crease the processing speed, whereas Silvestri and Venturini (2010) introduced a novel class of
encoders which partition the list in an optimal way that maximizes decompression rates, by using
dynamic programming.

Here we do not examine in depth the issue of inverted list partitioning. We rather focus on
the efficient representation of positions and zones which allows fast query evaluation. However,
notice that all the aforementioned skipping/partitioning techniques can be used in combination
with our proposals with no additional effort.

3. Document Zones

There are several features that differentiate Web documents from plain textual documents: the
former include hyper-links allowing the reader to quickly navigate from one page to another, and
5



Zone ZonelD | HTML
Body (Normal Text) 0 <body>...</body>

Anchor Text 1 <a>...</a>
Title Text 2 <title>...</tile>
Document’s URL 3 -
Headings 4 <hi1>...</h1>,<h2>...</h2>,...
Page Description 5 <meta name="Description" Content="...">
Image Description 6 <img alt="..." ...
7

Label Text <label>...</label>

Table 1: Zones of a typical Web page

they also possess a visual structure determined by the usage of HTML tags. A typical Web page
usually includes a title, some anchor text associated with its outgoing links, headings and other
locations of special interest such as meta-tags and URL. Apparently, the appearance of a word in
different locations of such a document is of different importance. For instance, the words used in
a document’s title usually represent its content and an effective search engine should treat these
words in a different way than the ones occurring in the normal text.

The structure of the Web documents have gained very little attention by the inverted index
researchers and engineers. The vast majority of the relevant work takes into consideration only
the position of a word to describe its occurrence within a document. One exception to this rule is
the early work of Brin and Page (1998) which introduces plain and fancy hits to identify words
appearing in a document’s text and title respectively. However, this work ignores the rest of
the physical locations of a document whereas it limits the maximum position value to an upper
bound of 12 bits.

To address this problem, Manning et al. (2008) partition each document into several parts of
special interest called zones. Zones are distinct, arbitrary locations of a Web document containing
free text and delimited by page formatting tags. It is not mandatory to be contiguous (they can
span across multiple locations of the document), but they cannot overlap. Unfortunately, the
aforementioned work does not address the issue of the efficient representation of zones within
the inverted index.

Table 1 records some the most typical zones that a Web page can be partitioned into. Each of
these zones is assigned a unique integer value, the ZonelD. Notice that for the case we are study-
ing (Web pages), we consider these eight zones only. Nevertheless, with a slight modification
our approach can support more zones and larger ZonelDs.

In this work we examine how zones can be used to improve the retrieval effectiveness of a
search engine. Moreover, we study efficient methodologies of including them within the inverted
index, the primary data structure that search engines employ to answer user queries.

3.1. Integrating Zones within the Inverted Index

We now show how a typical inverted index can be enriched by including zones. Within each
posting §; of the inverted list /; of a term ¢, we replace the positional data with a more general
quantity ; ;, describing the j™ occurrence of t within a document d;. Therefore, the new form of
the posting §; is:

Si : (di"fivhi,()»hi,l»'"9hi,ﬁ—1) (])
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Since we desire to describe the occurrence of a term by using both positions and zones, h; ; is
of the form

hij: DijsZij )

that is, each term occurrence is now described by a position-zone (p-z) pair and not by just
using positional values. From now on, we shall use the word occurrence to refer to such position-
zone pairs. Compared to a typical inverted index, this enriched form provides additional features
and functionality, since:

e Itis capable of answering a wider range of queries, for example “Retrieve all the documents
having the terms University AND Thessaly in title AND the term gr in their URL”

e We can exploit more sophisticated and effective ranking functions such as the BM25F Lu
et al. (2006), or fabricate other robust scoring approaches by taking the additional parame-
ters into consideration.

The inclusion of additional information makes index organization and compression more chal-
lenging. The requirements of Web-scale search engines include compactness (i.e. the new data
must be stored as efficiently as possible) and speed (i.e. we must be able to quickly access and
decode the index data). In the following Subsections we discuss further these requirements.

3.2. Encoding ZonelDs and Positional data

Inevitably, the inclusion of zonelDs in an inverted list will lead to an increase of the overall
size of the index. In this Subsection we study how we can minimize this effect and preserve high
decompression rates.

Let us return to the posting scheme described by Equations 1 and 2. A naive approach for
encoding each term occurrence (Equation 2) would suggest using two separate integers, one
for storing the positional value and one for storing the zonelD. Undoubtedly, this approach is
prohibitively expensive since we cannot afford wasting 64 bits? for each term occurrence.

For this reason, we suggest a two-level compression scheme, namely 7ZP, which initially
encodes one position-zone pair into a 32-bit space, and then, for each block of the inverted list,
it employs a fixed number of bits to encode the occurrences of that block. Fixed-bit compression
such as Packed Binary Anh and Moffat (2010) has two major advantages; at first, it allows fast
decompression since the decoding process is fairly simple and second, it enables access to the
positional data of a particular posting without look-ups and without decoding useless data. We
shall defend these claims shortly, especially the second one which is extremely important since
look-ups could drastically decelerate query processing Yan et al. (2009a).

Our analysis begins by considering the block-based list organization of Figure 1. Suppose
that the inverted list /; of a term ¢ is partitioned into $B;, blocks and each block B; € B is
comprised of S g, postings. Here we do not study the manner an inverted list is partitioned into
blocks, however to render our proposals compatible with the existing partitioning approaches, we
assume that S g, is not equal for all blocks (i.e. the blocks include variable numbers of postings).

Now we demonstrate how the occurrences hg, included in the postings S g, of a block B; can
be efficiently encoded by using our proposed TZP approach. During the first phase and for every

2in this paper we assume that each integer occupies 32 bits.
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Figure 2: First phase of TZP; Encoding a single term occurrence (position-zone pair) in a 32-bit space for z;, = 3 and
Py =29.

term occurrence h; € hg,, we reserve the z;, least significant bits of a 32-bit integer to encode the
zonelD z;, whereas the rest p;, = 32 — z,, bits are used to represent the positional value p;. In this
work we mainly focus on standard Web pages with eight zones at most, thus a setting of z;, = 3
suffices. However, for different types of documents alternative setups could be selected. Finally,
applying this method to all the occurrences of the block results in a sequence of new integers
having values equal to || = 2% p; + z;.

At the second phase, we first select the highest occurrence value |Ag, |4y for each block B; of

Algorithm 1 Encoding a bundle of K position-zone pairs with TZP. The function
Encode_Occurrence encodes a single pair with respect to the number of bits z;, that we reserve
for zones (in our case z;, = 3). Encode_Occurrences compresses an entire bundle of K position-
zones pairs; after the the maximum occurrence value #,,,, and the number of the required bits C
have been determined (steps 9-10), we store the binary representation of each occurrence within
the bit-vector H (steps 12-15). WriteBits is a typical bit-writer function which stores an integer
into H by using C bits.

int Encode_Occurrence (p, z, zp)

1. inth« 0
2. he2Z,(p)
3. heh|z

4. return h

byte Encode_Occurrences(plK], z[K], K)

1. inti<— 0,/ <0

2. while (i < K) {

3. hli] = Encode_Occurrence (plil, z[i], 3)
4. if (h[i] > hyax) {

5. Rmax = hli]

6. }

7. I+ +

8. }

9. int C « [ogy(tas — 1]

10. byte H < allocate [KC/8] bytes
11. i« 0

12. while (i < K) {

13. WriteBits(H, h[i], C)

14. i+ +

15. }

16. return H
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Figure 3: Partitioning an inverted list into 7 blocks of postings (block-based organization) according to TZP. The posi-
tional and zone data are packed separately at the end of the inverted list. For each block B; of the list, we store within the
skip table (a) a pointer Rg, pointing at the starting bit of the corresponding occurrence data and (b) the number of bits
Cg, used to encode each occurrence of the block.

the inverted list. In the sequel, we use Cg, = [loga(|hg,|max)] bits to produce a binary representa-
tion® of each occurrence in that block, and we store these representations into a bit vector. This
operation is very similar to the Packed Binary approach.

A pseudocode demonstrating how TZP is used to encode position-zone pairs is presented in
Algorithm 1. The operators that we use in our algorithm representation, include bitwise AND
(&), bitwise OR (|), left-shift of a value v by b bits (.%,(v)) and right-shift of value v by b bits
(Zp(v)).

TZP is not designed to operate on single integers; we can rather think of it as a method which
effectively compresses two correlated integers from which one of them has an upper bound. In
our examined occasion, we restrict zones to occupy only three bits. TZP can be generalized
to encode more than two integers. Therefore, if we have N integers which all describe a sin-
gle phenomenon (i.e. term occurrence in a document) and N — 1 of them can be restricted to
have an upper bound and relatively small values, TZP provides an efficient mechanism for their
compression.

3.3. Accessing ZonelDs and Positional data

Now we show how our fixed-bit encoding allows access to the occurrences of a particular
posting without look-ups. For each block 8; € $B; of an inverted list, we associate two values:
(a) a pointer Rg, which points at beginning of the occurrence data of 5;, and (b) a value Cg, which
represents the fixed number of bits used to encode each occurrence of B;. With this information
we can compute the location where the occurrences of a particular posting S éi- start from, and
avoid searching for it during query processing. The following equation provides the exact bit
where the occurrences of S ?81_ start from:

Jj-1
Ly =Rg +Cs ) fup 3)
x=0

3Recall that we are able to encode every positive integer ranging from 0... N — 1 by using [log, N1 bits.
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where f, g, is the x” frequency value stored within 8B;. Equation 3 informs us that to locate the
occurrence data for a particular posting, we first need to retrieve the associated Rg, pointer value;
then, we sum up all the frequency values of the previous postings of the current block 5;. This
sum of frequencies reveals the number of the occurrences between the beginning of the block
and the location of the desired data. Since each of these occurrences is represented by a fixed
number of bits, we just need to multiply the sum by Cg, to locate the first compressed occurrence
of the posting. The operation ends by decoding the next fjg Cg, bits and the occurrences are
retrieved.
Our proposed methodology has a series of advantages over other organization approaches:

e It allows us to directly access the desired data by using Equation 3 without look-ups. Con-
sequently, query processing is accelerated.

o [t saves the space cost of maintaining a separate look-up structure (Yan et al. (2009a)).

e It uses much fewer pointers than the approach of Transier and Sanders (2010) which em-
ploys indexed lists.

e It enables decoding of the information actually needed, without the need to decompress

Algorithm 2 Decoding position-zone pairs for the j” posting of a block B; according to TZP.
Initially we sum up all the frequency values of the previous postings (steps 2-5) of the current
block B;, and we locate the bit where the occurrences of the j” posting start from (step 6).
Then, we employ the ReadBits function to read each encoded occurrence from the bit-vector
H, starting from different points each time (steps 8—12). In the second phase, we extract the
positional and zone data out of each occurrence (steps 14—18). At step 15 we retrieve the three
lest significant bits of 4[x] which represent the zonelD, whereas at step 16 we right shift 4[x] by
3 positions to retrieve the positional value.

int Decode_Occurrences(j, B;, H)

1. intx«0,5s«<0

2. while (x < j) {

3. s s+ fis

4, X+ +

5.}

6. int start < Rg, + 5Cg,

7. x«0

8. while (x < fjg) {

9. h[x] < ReadBits(H, Cg,, start)
10. start « start + Cg,

11. X+ +

12. }

13. x«<0

14. while (x < fjg,) {

15. z[x] < h[x] & 0x00000007
16. plx] « Zs(hlx])

17. X+ +

18. }

19. return p,z
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entire blocks or sub-blocks of integers (unlike other compression techniques such as PFOR-
DELTA Heman (2005); Zukowski et al. (2006)).

Another important issue is to determine where we should store Rg, and Cg,. A convenient
location is within the skip structure (upper part of Figure 3); for each entry of the table, we also
record these two values and in case the processor decides that a block should be scanned, we are
able to immediately retrieve them.

Similarly to encoding, the decoding process of TZP also involves two phases. Algorithm 2
includes a pseudocode describing the entire operation. Suppose that we need to access the po-
sitional and zone data for the j posting of block B;. Initially, we locate the data as indicated
by Equation 3. If f; g, is the associated frequency value of § é;i, we sequentially read fjg, groups
of Cg, bits from the compressed sequence; each group represents an encoded occurrence of this
posting. In the next phase, we extract the desired zone and positional data out of each occurrence.

4. Probabilistic Retrieval

The issue of returning results of high quality is of primary importance for every search engine.
Its success is mainly based on the capability of the ranking function to locate results satisfying
the information needs of the users.

In this Subsection we provide a brief overview of the current state-of-the-art ranking functions
and in the sequel, we provide our own ranking method that exploits the additional information
stored in our proposed index setup. In Table 2 we summarize the symbols used by the presented
scoring functions and, also, we explain their meaning.

Symbol Meaning
C The entire document collection (corpus)
d An arbitrary document in the collection
Zjd The j* zone of d
N Number of documents in C
(0] A user query
t; The i term in Q
N, Number of documents containing #;
w;, = log(N/N,,) Inverse Document Frequency (IDF) of ¢
D0 The position of #; in query QO
Pria The position of ¢; in document d
DPuz; The position of ¢; in zone z;
Jan Number of occurrences of #; within d
le.‘d,,i Number of occurrences of #; within z;4
Iy The length of d (number of terms)
1= (Zﬁl I)/N The average document length in C
lzj; y The length of z;, (number of terms)
Ej = (Z?’:l l;)/N | The average length of z; in C

Table 2: Notation.

4.1. The BM25 Function
The BM25 weighting scheme was developed by Robertson and Jones (1976) as a way of

building a probabilistic model sensitive to term frequency and document length. It is not a single
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function, but actually a whole family of scoring functions, with slightly different components
and parameters. One of the most prominent instantiations of the function is as follows.

Given a query Q containing the terms #, 1, ..., #,, each document d is assigned a relevance
score that is given by the following formula:

S fana+ D)
S d) = = 4
m25(d) ;Wt, [P 4
bl
K= k2(1 — by + le) 5)

where ki, k, and b; are three predefined constants. Although there are some other variants of the
BM25 weighting scheme, the one we provide here is the most popular among them.

4.2. Zone Weighting

Zone weighting is related to the appropriate result scoring when ranking structured or semi-
structured documents. BM25F is a model proposed by Lu et al. (2006) and takes into considera-
tion the physical position of a term within a document (i.e. in which field of an XML document
a term appears). The introduction of zones in Section 3 and the usage of the enriched index
structure, allows us to use BM25F in standard Web documents.

For a user query Q = {#1, 1, ..., t,;}, scoring according to BM25F is performed in two phases:
Initially, we obtain the accumulated weight of a query term ¢; over all fields as follows:

SZ,'f%jvd,l;
W.(d 1) = | —2 (©6)

zja€d 1- b2 + bz%
“J
where b, is a predefined constant usually set equal to b, = 0.75, and S ;; is a static score assigned
to each document zone. The existence of the S, score allows us to modify the importance of
a term appearing in special locations within a document. For example, we could assume that
a document having the query terms in the title is more relevant to this specific query, than a
document which contains these terms in its normal text.
On the second phase, the accumulated weights are being used to compute the BM25F scores
according to the following formula:

Zﬂ W.(d, 1)
S pyosk P Wi W.(d,t;) + k3 ™

where, similarly, w;, represents the IDF of #; and k3 is a predefined constant.

4.3. Term Proximity Scoring

Document retrieval functions based on the vector space model (see for instance Salton et al.
(1975); Raghavan and Wong (1986); Lee et al. (1997)) and the bag-of-words representation of
documents, such as Okapi BM25 have been proved to be effective in ad-hoc information retrieval
tasks. One of their drawbacks is that they do not take the proximity of query terms within a
document into account. However, there are many queries where the best results contain the
query terms in a single phrase, or at least in close proximity as indicated by Sayood (2000);
Schenkel et al. (2007); Metzler and Croft (2005).
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The BM25TP scheme is an expansion to the BM25 weighting, attempting to integrate term
proximity into the original scoring function. It was firstly presented by Buttcher et al. (2006) and
it is very similar to the one proposed by Rasolofo and Savoy (2003). We examine this model
because in experiments with the TREC collection it was the only one exhibiting significantly
better performance than the others, according to Schenkel et al. (2007).

Suppose a user submits the query Q = {t1,1,...,1,}. With every query term ¢; we associate
an accumulator accy(t;) that stores the term’s proximity score within the current document d.
Whenever the query processor encounters a posting belonging to a query term ¢,, it computes
the distance (number of postings) between this posting and the previous posting belonging to the
term t,. If 7, # t,, then we increment the accumulators for both terms according to the following
formulas:

1
(ptx,d - Pty,d)2 ’
1
accy(ty) = acc(ty) + wt)_m,
tyd ~ Piod

If t, = t, we leave the accumulators unchanged. By using these accumulators the BM25TP
score is now defined as follows:

®)

accy(ty) = acc(ty) + wy,

)

n
S pmasTp = S pm2s + ,Z; min{1, Wli}%w (10)

The BM25TP provides significant improvements in result quality over BM25 scoring. These
gains are becoming even greater as the size of the document collection increases. This is due to
the fact that for larger collections, the probability of finding non-relevant documents that contain
the query terms by chance is greater than for smaller collections.

One drawback of this method is its insensitivity to the query terms ordering, since it holds
that (p;,4 — ptwd)2 = (Prd — p,x,d)z. Consequently, BM25TP assigns scores to the documents
regardless of the query formulation and fails to distinguish the difference between queries such
as John is faster than Mary and Mary is faster than John as Manning et al. (2008) mention. To
address this issue, we initially introduce a quantity &(#,, ¢,) which receives the following values:

1, — >0
£try) = { pro =P an

-1, pro-pyo<0

That is, in case we examine a document containing two terms which appear in reverse order
than in the query, £(%,, ;) receives a constant negative value (-1), whereas a constant positive
value is assigned in the opposite case. The following fraction:

au(terty) = (Proa = Poa) [Eltoty) (12)

is always positive in case the terms in the document are positioned in the same order as in
the query, and negative in the opposite case. Now, to reward both term proximity and correct
term ordering, we need to replace the square difference (p, 4 — p,),,d)z in the denominators of
Equations 8 and 9 by a function which is:

o always positive, regardless of p; 4 — p,.a > 0 or p, g — pi,.a < 0; i.e., we do not desire to
assign negative scores.
13



e becoming higher as p, 4 — p;, 4 increases and vice versa; i.e., it rewards term proximity
(since the score is inversely proportional to this quantity).

e becoming higher in case of p; 4 — p;,.« < 0 and vice versa; i.e., it rewards correct term
ordering.

A function which satisfies these conditions is the polynomial

Giltenty) = (aaltety)) = autt) + 1 (13)

which is always positive for all a,4(¢,) > 1 and a4(¢,) < 0, which in our case is always true,
since py_q4 — pPr,.4 receives values within (—oo, —=1JU[1, o). Notice that there is an infinite number
of polynomials satisfying the requirements that we have set, however, here we have chosen the
simplest one which requires the minimum processing. By replacing the square difference (p; 4 —
p,‘,,d)2 by the polynomial ¢,(#,), the accumulators of Equations 8 and 9 are transformed according
to the following relationships:

accl(ty) = accl(ty) + wy, (14)

Qod(tx’ ty) ’

acc)(ty) = acc)(ty) + wy, (15)

Pa (tx, ty) ’

This new form satisfies all the requirements that he have set: In case the query terms appear
close in a document, the value of ¢,(z,) is small, hence the accumulator value increases. Further-
more, if these terms appear in the opposite order with respect to the given query, ¢ (¢,) increases
thus reducing the overall document’s score.

Based on the accumulators of Equation 14 we introduce a modified scoring formula,
BM25TOP, which apart from term proximity, it also takes into account the query formulation
and the query terms ordering. The scores of BM25TOP are provided by the following equation:

L acc(t)(ky + 1)
S pmastop = S pm2s + Z min{l,w, —

i=1

16
acci(t;) + K (16)
where K is calculated as previously by using Equation 5. Note that the proposed enhancement for
term ordering applies not only to BM25TP, but also, to all term proximity scoring schemes which

utilize position-dependent accumulators, such as the effective variant proposed by Schenkel et al.
(2007).

4.4. Combining Term Proximity and Ordering with Zone Weighting

Until now, we have discussed several scoring models that take different parameters into con-
sideration. BM25TP is specially designed towards evaluating term proximity in a query, whereas
our BM25TOP enhancement also takes into consideration the way a query is formulated. On the
other hand, BM25F emphasizes on the physical location of a term in a document. Nevertheless,
to the best of our knowledge there is no publicly known model which combines term proximity,
query term ordering and zone weighting into a single scoring formula.

The main idea is that term proximity is a feature which should be further rewarded when the
query terms are positioned within the same zone. For instance, when two or more terms of a
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given query are encountered in close proximity within the title of a document, then the score of
this document should increase.

To incorporate term proximity and zone scoring, we initially replace the document accumula-
tors of Equation 14 by the zone accumulators, determined by the following relationship:

’ 1 .
accz‘/_(tx)+wtx PRONBE Iy, ty € 7

acc;f(tx) = { a7

, .
acc? (i), otherwise

Therefore, instead of assigning one accumulator per query term per document, we assign one
accumulator per query term per zone and we compute each of them according to equation 17.

Now let us return to Equation 6 which represents the accumulated weights of the query terms
over all the document zones. As we have already mentioned, we desire to reward term proximity
when the terms of a query appear into the same zone. For this reason, we integrate into these
weights our modified accumulator value; the new weights are now evaluated by applying:

T, (18)

acc’, (t;) _
W.d, 1) = Z S (1+ l hdj Seja
j ko GCCél_(ti) + ki 1—by+bo

zja€d

In this equation, the left quantity rewards the occurrence of a query term in a particular docu-
ment zone, whereas the right one rewards both term proximity and correct ordering. Notice that
the special weight S ;; applies to both terms, since term proximity is not equally important for all
zones. Consequently, the occurrence of two adjacent query terms in the title of a document is
more significant than a similar occurrence in its plain text. On the second phase, the accumulated
weights are being used to compute the BM25TOPF scores according to the following formula:

- W.(d, 1))

S pmastorr = le YW d 1) + K

19)

where, similarly, w;, represents the IDF k; is a predefined constant. BM25TOPF awards doc-
uments that contain all, or some of the query terms multiple times in significant locations (i.e.
title, headings etc) and moreover, the documents having the query terms close to each other. It
also takes into consideration the query term ordering, the document length, the zones length and
the inverse document frequencies of the query terms.

As we demonstrate in our experimental section, BM25TOPF improves retrieval effectiveness
by a significant margin compared to the existing approaches.

5. Experiments

The evaluation of the proposed methods is divided in two main parts: The first part consists of
the experiments we have conducted to attest the efficiency of TZP; to the best of our knowledge,
there are no works studying in depth the issue of including zones within the inverted index.
Consequently, there is a lack of similar approaches to compare our proposals with. For this
reason, we implemented the existing strategies for encoding and organizing the positional data
in typical indexes and we slightly modified them in order to support zones.
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The experimentation of this part is mainly focused on the presentation of the space and time
benefits deriving from the usage of TZP in terms of both compression efficiency and speed of oc-
currences access and decompression. The document collection we utilize here is the Clueweb(09-
TO9B data set, which is a subset of a larger collection, Clueweb09*. This subset consists
of 50,220,423 pages written in English and occupies approximately 1.42 TB in uncompressed
form.

In the real-world Web search engines, each machine typically searches a subset of the col-
lection, consisting of up to tens or hundreds of millions of Web pages (Zhang et al. (2008)).
Each query server maintains its own part of the index, hence the entire index is partitioned into
shards (Dean (2009)). Since in this work we desired to emulate a large-scale search system as
precisely as possible, we follow a similar strategy for constructing the index and we provide sep-
arate measurements for each shard. In total, the generated index structures in this work consist
of ten shards.

The second part of our experiments includes measurements of the quality of the results gener-
ated by the BM25TOP and BM25TOPF ranking functions. To ensure an unbiased evaluation, we
compared our methods against their three opponents (BM25, BM25F and BM25TP) by employ-
ing the Web Adhoc (WA) Task of the TREC-2009 Web Track (Soboroff et al. (2009)). The query
set of WA consists of 50 topics and for each query, a list of relevant documents is provided.

All the results we present in this work are achieved on a machine equipped with Corel7 920
processor (having the additional processing cores and HyperThreading disabled) and 12 GB of
RAM. The system was running the 64-bit distribution of Ubuntu Linux 10.04.

5.1. Experimental Index Setups

Here we describe the index setups that we shall utilize in order to compare our approach.
The first approach is the one illustrated in Figure 1, a scheme introduced by Ding et al. (2009)
where the inverted lists are partitioned into blocks of fixed sizes of 128 postings. The authors
suggest PForDelta (P4D) for encoding docIDs, frequencies and positions. The positions are
organized by using interleaving, that is, each block of the inverted list also accommodates the
corresponding positional data. To locate of the positions for a particular posting, we construct
the fairly standard hierarchical look-up structure introduced by Yan et al. (2009b) which stores
the appropriate pointers and docID values.

P4D encodes batches of 128 integers (as indicated by Heman (2005)); however, there are oc-
casions where we have fewer than 128 integers to encode. In such occasions, we are obliged to
construct a defective (refer to Boldi and Vigna (2005)) block of integers where we use dummy
entries to fill up the remaining space. Apparently, this leads to compression losses which be-
come remarkable when encoding positions. For this reason, Yan et al. (2009b) introduce a more
compact P4D variant, namely OptP4D which would automatically adapt to under full chunks by
using another compression method such as Variable Byte or Simple16.

VSEncoding is another encoding scheme proposed recently Silvestri and Venturini (2010). In
contrast to the other encoding schemes, this one automatically determines the size of each block
by computing the optimal manner that a list of integers should be partitioned, with respect to the
value of a cost function. In the sequel, VSEncoding encodes the integers of each block by utiliz-
ing a fixed number of bits (according to the largest value in the block). Although VSEncoding is
found to perform well in decompressing docIDs, in this paper we use it to encode the positional
data of an inverted list with the aim of comparing it against TZP.

4http://boston.lti .cs.cmu.edu/Data/clueweb09/
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Figure 4: Expanding the partitioned inverted list of Figure 1 to store zones. Apart from the three standard chunks which
store the docIDs, frequencies, and positions, we allocate one more to store the desired values.

In our experiments we expanded the three aforementioned index organization approaches with
the aim of supporting zones. In particular, for each block of the inverted list we appended a fourth
chunk as illustrated in Figure 4. This fourth chunk is used to store the encoded sequence of the
zonelDs. To locate the positional and zone data we employ a look-up structure similar to the one
proposed in Yan et al. (2009b). The difference is that apart from the regular pointers showing the
location of the positional data, it is also required to store an equal number of pointers pointing at
the respective zone data.

Finally, to demonstrate the overall growth in the size of an index caused by the inclusion of
zones, we also constructed a standard positional index for our experiments. The setup we selected
is similar to the one of Figure 1. DocIDs and frequencies are encoded by using the P4D method,
whereas the positional data are organized by using interleaving and compressed by applying the
OptP4D variant.

5.2. Evaluation of the space requirements

In this Subsection we examine the space occupied by the aforementioned index organizations.
Initially we record the inverted file sizes for both positional and enriched indexes, to evaluate
the benefits deriving from the usage of TZP. In the sequel, we measure the space occupied by
the accompanying data structures, that is, the skip table and the positions (and zones) look-up
structure.

5.2.1. Compressed inverted file sizes

The left part of Figure 5 illustrates the inverted file sizes expressed in GB for each of the ten
constructed shards. Furthermore, in the right part of the same Figure, we present the overall
index sizes for each organization approach.

The comparison of TZP against PAD and OptP4D shows that our method is more effective
than the plain P4AD approach. P4D encodes groups of 128 integers; for each group, we select a
parameter b in a manner that the large majority of the data elements (i.e. 90%) can be coded by
using b bits. The rest of the elements are called exceptions and are coded by employing 8, 16, or
32 bits. On the other hand, TZP encodes the word occurrences by using a fixed number of bits,
regardless of their values. Therefore, one could expect that PAD would perform better than TZP.
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Figure 5: Compressed inverted file sizes per shard (Left), and total index sizes for all ten shards (Right) for our four
experimental setups.

Nevertheless, this is not valid, since P4D cannot deal effectively with the groups that have
fewer than 128 elements each (defective groups). In these groups, the empty space is padded with
dummy entries and this leads to significant wasted space. As we already mentioned, OptP4D
addresses this problem by using P4D to encode the regular groups containing 128 values, but
instead switches to a different code for the defective ones.

In comparison with P4D, TZP produced an index that is about 3.9% smaller. On the other
hand, OptP4D and VSEncoding outperformed our method by a margin of 3.2% and 5.3% re-
spectively. However, both of these methods require a look-up structure in order to locate and
access the positional and zone data of a particular posting. As we will show shortly, this struc-
ture has remarkable space requirements, therefore the overall space occupied by these indexes is
increased.

The standard positional index occupies in total approximately 92 GB. In comparison to the
other three approaches, we conclude that the inclusion of zones within the inverted index leads
to an increase to the occupied space by a margin that fluctuates between 8.3% (for OptP4D) and
14.7% (for PAD).

5.2.2. Sizes of the auxiliary data structures

In this Subsection we examine the space requirements of the auxiliary data structures. The
auxiliary structures include the skip table which allows us to partially access and decode an
inverted list data during query processing, and the positions look-up structure which enables us
to access the positional and zone data for a particular posting. Recall that P4D and OptP4D
require both of these structures, whereas TZP is accompanied only by the skip table of Figure 3.

Our TZP approach suggests storing the occurrence data contiguously (i.e. not interleaving)
and maintaining only one pointer per block to locate the desired data per posting. However,
P4D and OptP4D encode groups of 128 elements, hence, in an interleaving scheme, a block
can contain multiple positional and zone chunks. For each of these chunks, it is necessary to
store a separate pointer to be able to access their data. In other words, we are usually obliged to
store multiple positional and zone pointers for each block of the inverted list. VSEncoding also
encodes groups of integers, but the size of each group is not fixed. However, the phenomenon of
a block containing multiple positional and zone chunks still exists.

Additionally, we notice that in case VSEncoding is employed to encode the occurrence data,
it constructs a large number of small blocks of integers. More specifically, we found that on
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Figure 6: Sizes of the auxiliary data structures used by our four examined indexes per shard.

Data Structure Index Size (GB)
Skip Table All except TZP 1.69
Skip Table + Pointers TZP 2.60
Positions Look-Up Positional OptP4D 3.21
Skip Table + Positions Look-Up Positional OptP4D 4.90
Occurrences Look-Up P4D/OptP4D/VSEncoding 4.58
Skip Table + Occurrences Look-Up | P4D/OptP4D/VSEncoding 6.27

Table 3: Total auxiliary data structure sizes for all ten shards.

average, for each block of 128 docIDs, VSEncoding organizes the respective occurrence data in
approximately 41 blocks. If we choose to store two pointers per each of these blocks (one for
positions and one for zonelDs), we must waste about 40.6 GB of disk space for all 10 index
shards. Furthermore, the large population of pointers causes a deceleration in query processing,
since searching for the right pointer in the aforementioned look-up structure is now slower. For
this reason, we store occurrence pointers in a way identical to the one we apply at the OptP4D
case (that is, we set pointers per 128 compressed occurrences).

Figure 6 depicts the sizes of the auxiliary data structures for all of the 10 shards of our exam-
ined indexes. Moreover, in the Table 3 we present the overall auxiliary data structure sizes for all
ten shards. In the second column of this Table we record the type of the index which makes use
of a specific data structure. For instance, the TZP approach exploits the skip table along with the
pointers we described in Subsection 3.3, whereas OptP4D employs both the skip table and the
occurrence look-up structure.

Notice the difference between the occurrence and position look-up structures. The former
stores pointers pointing at the positional and zone data, whereas the latter maintains pointers
pointing only at the positional data. The inclusion of these additional zone pointers causes an
increase of about 30% to the look-up structure (3.21 GB vs 4.58 GB).

The skip table which includes pointers (recall the upper part of Figure 3) is much more eco-
nomic than the look-up structures themselves. As a matter of fact this data structure occupies
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approximately 53% of the space occupied by the data structures of the positional P4D approach
(skip table plus the positions look-up structure, 4.9 GB) and only the 41.4% of the space occu-
pied by the auxiliary structures of the P4D approach (skip table plus the occurrences look-up,
6.27 GB).

In Table 4 we present the overall index sizes (inverted file plus auxiliary data structures) for
each of the examined schemes. In conclusion, we notice that the superiority of OptP4D and
VSEncoding over TZP in terms of compressed sizes is compensated by the significantly smaller
data structures that accompany our proposed index scheme.

Index Type Inverted Files | Data Structures | Total
TZP 104.68 2.60 107.28
OptP4D 101.30 6.27 107.57
P4D 108.88 6.27 115.15
VSEncoding 99.16 6.27 105.43
Positional OptP4D 92.91 4.90 97.81

Table 4: Total inverted index sizes expressed in GB, for all ten shards.

5.3. Query throughput evaluation

Query throughput is a measure characterizing the ability of a search engine to quickly process
the incoming queries. The speed at which a query is evaluated is of critical importance for
achieving the highest possible throughput.

For efficiency, search engines process their queries in two phases Zhang et al. (2008): During
the first phase, they traverse the inverted lists of the query terms and they identify the best results
by using docIDs and frequency values only. In the sequel, they construct the final ranked list
by applying more sophisticated techniques (such as the term proximity and/or zone weighting
methods) for the K best results of the previous phase only.

In this experimental phase we adopt this strategy with the aim of examining the performance
gains which derive from the usage of our model. For the needs of this experiment we employed
the query set of the Web Adhoc Task of the TREC-2009 Web Track, comprised of 50 topics
(we provide more details on this query set in Subsection 5.4). Initially we attest the occurrence
decompression rates achieved by TZP in comparison with P4AD and OptP4D. In the sequel, we
present the time saved by the omission of the occurrence look-up structure and finally, we mea-
sure the average size of the data accessed per query, for each of the index setups of our analysis.

5.3.1. Occurrences access and decompression

In this subsection we discuss the performance gains deriving from the omission of the occur-
rence look-up structure. The positional and zone data are required during the second phase of
query processing therefore, by avoiding to constantly seek for these values leads to significant
benefits during this phase only. Recall that TZP allows direct access to the occurrence data with-
out look-ups and moreover, it enables decompression only of the data actually needed during
query processing.

To measure the imposed time penalty during query processing, we have implemented this look-
up structure for positions and zonelDs. In Figure 7 we illustrate the average times consumed to
search for the desired data per query, when K is assigned different values.

The average seek times per query and per shard are 0.1 and 0.3 milliseconds for K = 200 and
K = 1000, respectively. The values of K have not been selected arbitrarily; we assign K = 200
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Figure 7: Occurrence look-up structure: Average seek times for positional and zone data per query and per shard.

because in Yan et al. (2009b) it is mentioned that higher values of K do not lead to any further
precision gains. We also choose to assign K = 1000, since the major Web search engines return
at most 1000 results in response to the queries they receive. Notice that the average times do
not scale proportionally to the values of K, since the value of K increases fivefold whereas the
times tripled. This is explained by the fact that some of our test queries produce fewer than 1000
results.

The seek penalty illustrated in Figure 7 is avoided by employing TZP and the methodology de-
scribed in Subsections 3.2 and 3.3. Recall that our proposed techniques allow us to pre-calculate
the location where the desired data is stored. Hence, no look-up operations are required at the
second phase and the speed gains are significant, especially in the case where the system receives
thousands of queries per second.

K =200 | K=1000

Queries 50 50
Query Terms 102 102
Postings 19,568 89,969

Postings per Query | 391.36 1,799.38

Table 5: Number of postings involved in the second phase of query processing for K = 200 and K = 1000.

Until now we have shown that the avoidance of occurrences look-ups during query evaluation
offers an acceleration to the entire operation. We now demonstrate how our model provides faster
occurrence decompression and leads to even better performances. Initially, in Table 5 we present
the number of postings processed in the second phase of query evaluation, for K = 200 and
K = 1000, for all the 50 queries that we have submitted to the system.

In Subsection 3.3 we discussed that when encoding occurrences, TZP dominates over the
group-based compression schemes such as P4D because we can access only the data actually
required and we do not need to decode entire groups of possibly unnecessary values. On the
other hand, in case P4D is selected, we need to decode an entire block of 128 elements, even if
only one value is required to process the query.

In Table 6 we record the values of several interesting characteristics of the second phase of
query processing for our three examined index setups. The first four rows of the table concern

21



K TZP OptP4D P4D VSE
Decompressed Occurrences 374,251 2,756,128 2,834,432 2,756,128
K =200 Total Decompression Time (msec) 1.64 8.57 8.34 8.02
Average Time per Query (msec) 0.0328 0.1714 0.1668 0.1604
Average Time per Posting (sec) 0.0838 0.4379 0.4262 0.4099
Decompressed Occurrences 1,044,234 | 11,192,608 | 12,394,752 | 11,192,608
K = 1000 Total Decompression Time (msec) 6.04 35.92 34.07 33.15
Average Time per Query (msec) 0.1208 0.7184 0.6814 0.6630
Average Time per Posting (sec) 0.0671 0.3992 0.3787 0.3684

Table 6: Occurrence decompression times per query and per posting, for K = 200 and K = 1000.

the setting K = 200, whereas the next four rows represent our measurements for K = 1000.

The first row shows the sum of the decompressed occurrences for all 50 queries of our test set.
TZP accesses much fewer values than the other approaches since in general, it decodes 7 to 12
times less data that PAD, OptP4D and VSEncoding. Hence, we expect that our method would
decode the desired information much faster than its opponent setups.

Indeed, in case we set K = 200, TZP consumes approximately 1.64 milliseconds to decom-
press the occurrence data for all the 50 submitted queries, a value which is translated to an
average of 0.033 milliseconds per query and 83.8 nanoseconds per posting. On the other hand
OptP4D and P4D were roughly 5.2 and 5.1 times slower, respectively. Regarding VSEncoding,
the method is faster than both P4D and OptP4D, but considerably slower than TZP. Similar speed
differences are also observed in the case of K = 1000; TZP decodes the positional and zone data
in times which are 5.9, 5.6, and 5.4 times faster than the respective ones of OptP4D, P4D and
VSEncoding.

5.4. Retrieval Effectiveness

To evaluate the performance of our proposed method in a fair and unbiased manner, it is
required that we obtain a predefined set of queries. Furthermore, for each of these queries,
we need to possess a list of humanly judged relevant documents. For this reason, we have
employed the results of the Web Adhoc (WA) Task of TREC-2009 Web Track Soboroff et al.
(2009). This task consists of 50 topics (test queries) all accompanied by a corresponding list of
relevant documents from the Clueweb09-T09B data set.

For the needs of this experiment, we have developed a query serving system consisting of ten
query servers and a broker. Each server was assigned a different index shard, whereas the broker
was responsible for merging the results generated by each server. For the evaluation, we used
the ‘trec_eval’ standard program utilized by the TREC community in order to calculate several
measures indicating the retrieval effectiveness of a system. These measures are Mean Average
Precision (MAP), R-Precision and Precision@n (P@n) for n = 10, 20 and 30.

BM25TOPF is compared against BM25, BM25TP, BM25TOP and BM25F. The values of the
different parameters of Section 4 that we used in our experiments are recorded on the left part of
Table 7. In addition, on the right part of Table 7 we provide the weighting scenario that we have
set in order to evaluate BM25F and BM25TOPEF. According to this scheme, a term occurring in
a document’s title is considered six times more important than one appearing within the main
text, whereas the ones appearing in the headings of a document are four times stronger than the
normal words.
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Zone S
Parameter | Value Body (Normal Text) !

Anchor Text 1
ki 1.2 -
A 70 Title Text 6

2 : Document’s URL 2

ks 2.0 -

Headings 4
by 0.9 —

Page Description 3
b, 0.75 —

Image Description 1

Label Text 1

Table 7: Parameter setting for the various ranking methods (Left) and zone weighting scenario for the BM25F and
BM25TOPF functions (Right).

Table 8 shows the performance of the five examined retrieval methods in the 50 queries of the
WA task. The first point that is highlighted by the presented results is that all methods performed
better than the plain BM25 model. The improvements are somehow limited when term proximity
scoring is considered (BM25TP and BM25TOP), and become significant for our zone weighting
scheme (BM25F).

Retrieval Method MAP P@10 | P@20 | P@30 | R-Precision
BM25 0.0599 | 0.2820 | 0.2460 | 0.2047 0.1127
BM25TP 0.0634 | 0.2820 | 0.2530 | 0.2220 0.1216
BM25TOP 0.0658 | 0.2940 | 0.2780 | 0.2387 0.1238
BM25F 0.0730 | 0.3140 | 0.2690 | 0.2407 0.1318
BM25TOPF 0.0784 | 0.3360 | 0.2820 | 0.2627 0.1390

Table 8: Performance of different retrieval methods for the 50 queries of the Adhoc Task of TREC-2009 Web Track.

BM25TOPF outperformed all of its adversary approaches and the results indicate that term
proximity in combination with zone weighting indeed leads to improved retrieval effectiveness.
The Mean Average Precision we achieved by using BM25TOPF was 0.0784 in comparison to
the MAP value of 0.073 performed by the second best method, BM25F. This is translated into
a result quality improvement of about 6.8%. Furthermore, BM25TOPF performed much better
than the proximity-only approaches; the MAP values for BM25TP and BM25TOP were 0.0634
and 0.0658, respectively.

The combination of term proximity with correct term ordering in BM25TP also leads to better
performance; BM25TOP produced results which were more qualitative by approximately 3.8%
(in terms of MAP) than those generated by BM25TP. However, both term proximity functions
were outperformed by BM25F and BM25TOPF. This indicates that zone weighting is a more
important feature than term proximity when ranking documents in Web search engines.

Regarding the average Precision values at cut off points 10, 20, and 30, BM25TOPF exhibited
better performance that its adversary approaches. The P@ 10 value was 0.336, 6.5% higher than
the corresponding P@ 10 value achieved by BM25F. Regarding the precision value at cut-off
point 20, BM25TOP was slightly outperformed by BM25TOPF, but defeated both BM25TP and
BM25F.
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6. Conclusions

In this paper we have studied the possibility to integrate additional information within an
inverted index. For this reason we attempted to identify several locations of special interest
within a Web document, called zones. We assigned each of these zones a unique identifier
(zonelD) and we studied effective ways of enriching the information stored within an index with
these identifiers.

In particular, we examined the problem of organizing and compressing such an index. We have
adopted block-based index organizations which allows us to individually access and decompress
the various inverted list data during query processing. Initially, we introduced occurrences, a
piece of information describing both the position of a word within a document, and its corre-
sponding zone. In the sequel, we introduced TZP, a compression method co-operating with all
of the existing partitioning strategies encountered in the literature, and offers compact storage of
the positional data along with the zoneIDs. TZP uses a 32-bit space to store a single word occur-
rence, and in the sequel, it allocates a fixed number of bits in order to encode the occurrences of
an entire block of the inverted list.

We have also studied how the term occurrences of an inverted list can be efficiently accessed
and decompressed. We have demonstrated that by exploiting a small number of pointers, the
query processor can directly access the desired data by calculating its location without perform-
ing any look-ups in additional structures. This is an advantage that gives a boost to query evalua-
tion. We have also discussed that TZP allows us to decode the information actually needed during
query processing, without the need of touching any unnecessary information. Our experiments
have shown that the TZP scheme outperforms other state-of the-art approaches by decoding the
occurrence data 5 to 6 times faster.

Finally, we have proposed a ranking function, BM25TOPF which combines term proximity
and zone weighting to compute the score of a document during query processing. The new
ranking function works in combination with the enriched index only and attempts to prove its
usefulness in returning more qualitative results to the user queries.

All these contributions were extensively evaluated through detailed experiments by using an
indexing system and a query serving module that we have developed. The data set we employed
is the Clueweb(09-T09B, a large set of 50 million pages crawled recently. BM25TOPF was
evaluated by using a the set of 50 queries of the Web Adhoc Task of TREC-09. Our experiments
with this query set have revealed that, in general, BM25TOPF achieves higher precision than the
existing state-of-the-art approaches, and provides more qualitative results.
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