
Positional Data Organization and Compression
in Web Inverted Indexes

Leonidas Akritidis and Panayiotis Bozanis

University of Thessaly, Glavani 37, Volos, Greece

Abstract. To sustain the tremendous workloads they suffer on a daily
basis, Web search engines employ highly compressed data structures
known as inverted indexes. Previous works demonstrated that organiz-
ing the inverted lists of the index in individual blocks of postings leads
to significant efficiency improvements. Moreover, the recent literature
has shown that the current state-of-the-art compression strategies such
as PForDelta and VSEncoding perform well when used to encode the
lists docIDs. In this paper we examine their performance when used to
compress the positional values. We expose their drawbacks and we in-
troduce PFBC, a simple yet efficient encoding scheme, which encodes
the positional data of an inverted list block by using a fixed number of
bits. PFBC allows direct access to the required data by avoiding costly
look-ups and unnecessary information decoding, achieving several times
faster positions decompression than the state-of-the-art approaches.

1 Introduction

Due to the critical importance of the inverted index organization in the over-
all efficiency of a search engine, a significant part of IR research is conducted
towards the determination of an effective index setup strategy. In particular,
several works proposed methodologies for storing the index data in a special
manner which allows us to skip large portions of the lists during query process-
ing. These approaches suggest partitioning the inverted lists of the index in a
number of adjacent blocks which can be individually accessed and decompressed.
Undoubtedly, the omission of the unnecessary information stored within the in-
dex significantly accelerates the evaluation of a query, since the lists traversal is
faster and we also decompress less data.

The benefits of these methods are magnified in the case where we store posi-
tional data within the index. This is due to the fact that the size of the positions
is several times larger than that of docIDs and frequencies and the indexes con-
taining positional values are about 3 to 5 times larger than the non-positional
ones. Therefore, it is extremely important to devise an effective mechanism to
organize and compress the positional data, since a naive solution could lead to
prohibitively large indexes and reduced query throughput.

In this work we demonstrate that although the current block compression
methods are both effective and efficient when applied at docIDs and frequencies,
they do not perform equally well when they operate upon the positional data of

II

an inverted list. We introduce PFBC, a scheme which encodes the positions of
an inverted list block by using a fixed number of bits allowing us to a) access
the required data almost instantly and b) decode only the data actually needed,
without touching any unnecessary information. We demonstrate that with a
small cost in space, PFBC outperforms all the adversary compression methods
in terms of speed, when applied on the positional data of the index.

2 Background and Related Work

In this Section we provide some elementary information about the inverted index
organization and compression and we present the most significant related work.

Due to the huge volumes of text and the great length of the inverted lists,
Web search engines store their inverted indexes in highly compressed forms ei-
ther in main memory or disk. There is a multitudinous family of compression
algorithms which can be used to encode the index data. The interested reader
can refer to [2], [9] and [11] for overviews and performance benchmarks. Some of
the recently proposed state-of-the-art schemes such as PForDelta [7] and VSEn-
coding [9] are capable of encoding entire bundles of integers achieving both
satisfying compression effectiveness and very high decompression speeds.

One of the most important goals when designing query processing algorithms
is to skip any unnecessary information stored within the inverted lists. For this
reason, [8] introduced the block-based index organization, which suggests parti-
tioning each list in blocks of fixed or variable sizes. Within each block, the data is
organized in chunks which respectively accommodate the docIDs, the frequency
values, and the positional data. Other optimized block-based organizations were
introduced in [1], [3], [5].

Although the issue of inverted list partitioning is well-studied, the matter of
the organization of the positional data is still open. The research that has been
conducted towards this problem resulted into two basic approaches: (a) interleav-
ing, i.e. the positional data belonging to a particular block is stored sequentially
after the docIDs and the frequency values, and (b) creating a completely sepa-
rate structure for positions with its own lookup mechanism. For instance, [12]
describe a tree-like look-up structure which operates on interleaved positional
data. On the other hand, [10] organize the positions by employing a separate
structure, namely indexed list. The problems of these methods are (a) they re-
quire increased storage, (b) they decelerate query processing due to the look-up
operations and (c) they decode redundant information.

3 The Positions Fixed-Bit Compression (PFBC)

In this Section we describe PFBC, a simple, yet efficient approach for encoding
and organizing the positional data of an inverted list.

Our analysis begins by considering the block-based list organization of Figure
1. Suppose that the inverted list It of a term t is partitioned into BIt blocks and
each block Bi ∈ BIt is comprised of SBi postings. In the sequel, we identify

III

B1
Pointer R

B1
COcc. Bits

2BPointer R

B1
Postings S

B
1

Block

2BCOcc. Bits

Postings S B2

Block B
2

BT
Pointer R

BT
COcc. Bits

Postings S BT

Block B
T

77,64,83,119,....,250,1,1

1,1,2,1,3,1, ... 3,1,4,1 3,3,1,10,1,3,...,3,14,1,1

1,1,7,1,1,59,...,1,323,1 1,1,605,3

1,3,3,1

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

21,10,15,144,155,117,17,36,10,25,...,14,87,96,55,69,72,88,134,313,73,7..,15,25,53,111,64,410,557,29

DocumentIDs

Frequencies

Positions

S
k

ip
 T

ab
le

Fig. 1. Organizing an inverted list into blocks according to PFBC.

the highest positional value |pBi |max for each block Bi of the inverted list and
we allocate a number of CBi

= dlog2(|pBi
|max − 1)e bits to produce a binary

representation of each occurrence in that block. A pseudocode demonstrating
how PFBC encodes a bundle of K positional values is presented in Algorithm 1.

The fixed bit compression methodology of PFBC is expected to introduce
some compression loss in comparison to PForDelta. Actually, the latter encodes
the largest integers of a list as exceptions and the rest of them by using a fixed-
bit scheme, similar to the one we described. This operation is proved to be very
effective in the case of docIDs, because in the docIDs blocks the number of large
integers is small. However, when P4D is applied at blocks of positional data,
the benefits are diminished because in such blocks the number of large integers
cannot be predicted. Indeed, as we demonstrate by our experiments, PFBC is
outperformed by P4D in terms of compressed sizes by only a small margin.

3.1 Accessing and decompressing the positional data with PFBC

To achieve direct access to the compressed positional data, it is required that we
store two values for each block Bi of the list: (a) the aforementioned CBi

value
which denotes the number of bits we used to encode the positions of the block
Bi, and (b) a pointer RBi pointing at the beginning of the positional data of
Bi. Exploiting this limited amount of information, we are able to calculate the
location of the positional data for any posting belonging to Bi. The following
equation provides the exact bit Sj where the positions of a posting j start from:

Sj = RBi + CBi

j−1∑
x=0

fx,Bi (1)

where fx,Bi is the xth frequency value stored within Bi. Consequently, to
locate the positional data for an arbitrary posting j we first need to dereference
the corresponding RBi

pointer value. Then, we need to sum up all the frequency
values of the previous postings of the block; this sum reveals the number of the
positional values stored between the beginning of the block and the location

IV

Algorithm 1 Encoding a bundle of K positional values with PFBC. After the
identification of the highest positional value (steps 3-8), we calculate C, which
is the number of bits required to encode all K integers (step 9). The function
write() in step 13 is used to store each pi value into a storage P by using C bits.

byte PFBC − Encode(K, p[K])

1. int i← 0, pmax ← 0, C ← 0
2. byte P
3. while (i < K) {
4. if (pi > Pmax) {
5. pmax = pi
6. }
7. i + +
8. }
9. C ← dlog2(pmax − 1)e
10. P ← allocate dKC/8e bytes
11. i← 0
12. while (i < K) {
13. write(pi,P, C)
14. i + +
15. }
16. return P

of the desired data. Since the compressed positions are stored by using a fixed
number of bits, we just need to multiply the sum by CBi to locate the first
compressed position of the posting. The operation ends by decoding the next
fj,Bi

CBi
bits and the positions are retrieved.

PFBC exhibits a wide range of advantages over the adversary approaches:

– It facilitates direct access to the positional data by using equation 1. No
expensive look-ups for positions in tree-like structures are required. Conse-
quently, query processing is accelerated;

– It saves the space cost of maintaining a separate look-up structure [12], since
the involved pointers can be stored within the skip table;

– It uses fewer pointers than the indexed lists of Transier and Sanders [10];
– It enables decoding of the information actually needed, without the need to

decompress entire blocks or sub-blocks of integers.

The RBi
and CBi

values are stored within the the skip structure (upper
part of Figure 1); for each entry of the skip table, we also record these two
values. This strategy is both effective and efficient; no extra space is required,
but only the room occupied by the values themselves. Furthermore, in case the
query processor decides that a posting belonging to a particular block should
be exhaustively evaluated by decoding its corresponding positional data, we are
able to immediately access RBi

and CBi
.

Algorithm 2 includes a pseudocode which demonstrates how PFBC is used
to decompress the positional data for a specific posting. To access and decode

V

Algorithm 2 Decoding the positional data of the jth posting of the block Bi.

int PFBC −Decode(j, Bi,P)

1. int x← 0, s← 0
2. while (x < j) {
3. s← s + fx,Bi

4. x + +
5. }
6. int start← RBi + sCBi

7. x← 0
8. while (x < fj,Bi) {
9. p[x]← read(P, CBi , start)
10. start← start + CBi

11. x + +
12. }
13. return p

the positions for the jth posting of the block Bi, we initially accumulate all the
frequency values of the previous j − 1 postings of the block (steps 2–5). In the
sequel, we read the RBi and CBi values from the skip table and we locate the
required data as indicated by Equation 1. If fj,Bi is the associated frequency
value of the jth posting, we sequentially read fj,Bi

groups of CBi
bits from the

compressed sequence; each group represents a positional value of this posting.

4 Experiments

In this Section we compare PFBC against the state-of-the-art compression meth-
ods. More specifically, we created three inverted indexes having their docIDs and
frequencies organized in the same manner. Each inverted list was split into blocks
of 128 postings and P4D was used to encode the DocIDs and the frequencies.
In the first index we applied the strategy proposed by [12], i.e. the positions are
compressed with OptP4D and accessed by using a separate look-up structure.
In the second case, the positions are encoded according to VSEncoding [9] and
accessed in a way identical to the one we apply at the OptP4D case (that is, we
set pointers every 128 compressed positions).

The sample document collection we employed in our experiments is the
Clueweb09-T09B data set, which consists of about 50 million pages. To sim-
ulate a real-world search engine environment, the document collection was split
up into ten separate segments (called shards) consisting of about 5 million doc-
uments and each segment was indexed separately [6].

4.1 Compressed index sizes

Now let us evaluate the performance of PFBC against the adversary state-of-
the-art approaches in terms of compression effectiveness. Apart from the size of

VI

Data Structure OptP4D VSEncoding PFBC

Inverted Index 90.8 90.2 92.0
Skip Table 1.7 1.7 1.7
Pointers to positions - - 2.1
Positions look-up 4.1 4.1 -
Total 96.6 96.0 95.8

Table 1. Overall space requirements (in GB) of our experimental index setups

the inverted file, we also measure the space occupied by the accompanying data
structures (i.e. skip table, pointers to positions, and position look-up structure).

In Table 1 we record the overall space requirements of each index setup that
we examine. Notice that each organization approach does not make use of all
data structures. For instance, our PFBC approach does not require the existence
of a positions look-up structure, whereas all strategies employ a skip table. The
absence of a data structure is denoted by using a dash symbol.

Among our examined encoding algorithms, VSEncoding achieved the best
compression performance; the ten inverted files of all shards occupy in total
roughly 90.2 GB. On the other hand, OptP4D performed imperceptibly worse
resulting in an inverted file which occupied less than 1% more space. As we
anticipated, the usage of PFBC introduced some slight losses; Compared to
VSEncoding, the inverted files of PFBC occupied in total about 2% more space.

In Table 1 we report the sizes of the auxiliary data structures. The skip
table which includes the positional pointers (recall the upper part of Figure 1)
is much more economic than the look-up structures themselves. As a matter of
fact this data structure occupies approximately 65% of the space occupied by
the data structures of the OptP4D and VSEncoding approaches (skip table plus
the positions look-up structure, 5.8 GB). In the last row of Table 3 we present
the overall index sizes (inverted file plus auxiliary data structures) for each of
the examined schemes. In conclusion, we notice that the superiority of OptP4D
and VSEncoding over PFBC in terms of compressed sizes is compensated by the
significantly smaller data structures that accompany our proposed index scheme.
As a result, PFBC presents marginal savings of 0.02-0.08%.

4.2 Query Throughput

In this Subsection we examine the performance of PFBC against the adversary
approaches in terms of speed during query processing. To perform this experi-
ment, we submitted a set of 50 conjunctive queries drawn from the Web Adhoc
Task of the TREC-2009 Web Track. For each query we measure several statistics
such as the decompression times and the size of the accessed data.

The submitted queries were answered by employing a two-stage processing
method: During the first phase we traverse the inverted lists of the query terms by
employing DAAT, and we quickly identify the most relevant results by accessing
docIDs and frequency values only. In the second phase we apply more complex

VII

K OptP4D VSEncoding PFBC

K = 200

Decompressed positions 2,756,128 2,756,128 374,251
Decompressed positions/query 55,123 55,123 7,485
Total access time (msec) 0.11 0.11 0
Total decompression time (msec) 5.56 5.14 1.01
Average time per query (msec) 0.11 0.10 0.02

K = 1000

Decompressed positions 11,192,608 11,192,608 1,044,234
Decompressed positions/query 223,852 223,852 20,885
Total access time (msec) 0.31 0.31 0
Total decompression time (msec) 23.94 21.10 4.02
Average time per query (msec) 0.48 0.42 0.08

Table 2. Access and decode times per query and per posting for different values of K.

ranking schemes such as BM25TP [4] to the K best results determined in the
previous stage by retrieving the positional values. We experimented with two
values of K; the first one is K = 200 and was selected because in [12] the
authors prove that higher values do not lead to any further precision gains.
Furthermore, since the major Web search engines return at most 1000 results,
we also choose to set K = 1000. Since the inverted indexes we constructed
were comprised of ten shards, we repeated our experiments ten times; each time
the query processor was assigned a different index shard. The results of our
experiments are illustrated in Table 2.

Table 2 is divided in two parts; the upper part contains the results we
recorded for K = 200, whereas the lower one includes the results for K = 1000.
The first line represents the total number of positional values accessed by each
method for all the ten index shards, whereas the second line shows the number
of the decompressed positions per query. PFBC outperforms the adversary ap-
proaches by a significant margin, since the fixed-bit compression scheme allows
us to locate exactly the data we need to access and we do not have to decode
entire blocks of integers. In total, the organization method with the look-up
structure employed by OptP4D and VSEncoding touched 7.4 times more data
than the one applied by PFBC for K = 200. In case we set K = 1000, PFBC is
even more efficient, since the other methods decode about 10.7 times more data.

The next line reveals the average position look-up times consumed by each
method per query. The algorithm of Table 2 allows PFBC to calculate the lo-
cation of the positional data without searching for it, consequently, the latency
is nullified in this case. Regarding the other two approaches which employ the
aforementioned look-up structure, they introduce a latency of about 0.11 msec
per query for K = 200 and 0.31 msec for K = 1000.

Now let us examine the decompression rates achieved by each method. The
lines 3 and 7 of Table 2 include the total amount of time required to decode the
positional values for all the 50 queries of our experiment. Furthermore, lines 4
and 8 reveal the average decompression time per query. On average, VSEncoding
outperformed the OptP4D approach by a margin ranging between 1% and 2%
for different values of K. PFBC was the fastest among the evaluated schemes,

VIII

since it achieved about 5 times faster decompression compared to VSEncoding
for both settings of K.

5 Conclusion

In this paper we introduced PFBC, a method especially designed for organizing
and compressing the positional data in Web inverted indexes. PFBC operates
by employing a fixed number of bits to encode the positions of each inverted list
block, and stores a limited number of pointers which enable the direct retrieval
of the positional data of a particular posting. Compared to the current state-of-
the-art compression techniques, PFBC offers improved efficiency allowing direct
access without look-ups, and very fast decompression. The experiments we have
performed on a 50 million document collection demonstrated that in contrast to
OptP4D and VSEncoding, the proposed approach touches much fewer data and
allows about 5 times faster positions decompression.

References

1. Anh, V., Moffat, A.: Structured index organizations for high-throughput text
querying. In: String Processing and Information Retrieval, pp. 304–315 (2006)

2. Anh, V., Moffat, A.: Index compression using 64-bit words. Software: Practice and
Experience 40(2), 131–147 (2010)

3. Boldi, P., Vigna, S.: Compressed perfect embedded skip lists for quick inverted-
index lookups. In: String Processing and Information Retrieval, pp. 25–28 (2005)

4. Buttcher, S., Clarke, C., Lushman, B.: Term proximity scoring for ad-hoc retrieval
on very large text collections. In: Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information retrieval, pp.
621–622 (2006)

5. Chierichetti, F., Kumar, R., Raghavan, P.: Compressed web indexes. In: Proceed-
ings of the 18th international conference on World wide web, pp. 451–460 (2009)

6. Dean, J.: Challenges in building large-scale information retrieval systems: invited
talk. In: Proceedings of the Second ACM International Conference on Web Search
and Data Mining, pp. 1–1 (2009)

7. Heman, S.: Super-Scalar Database Compression between RAM and CPU Cache.
Master’s Thesis. University of Amsterdam. Amsterdam, The Netherlands (2005)

8. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM
Transactions on Information Systems (TOIS) 14(4), 349–379 (1996)

9. Silvestri, F., Venturini, R.: Vsencoding: efficient coding and fast decoding of integer
lists via dynamic programming. In: Proceedings of the 19th ACM international
conference on Information and knowledge management, pp. 1219–1228 (2010)

10. Transier, F., Sanders, P.: Engineering basic algorithms of an in-memory text search
engine. ACM Transactions on Information Systems (TOIS) 29(1), 2 (2010)

11. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing
Documents and Images (1999)

12. Yan, H., Ding, S., Suel, T.: Compressing term positions in web indexes. In: Pro-
ceedings of the 32nd international ACM SIGIR conference on Research and devel-
opment in information retrieval, pp. 147–154 (2009)

