
 Department of Information and Electronic Engineering

Advanced Computer Architecture & Parallel Programming Leonidas Akritidis

PYTHON THREADING 2

GOAL

The purpose of this lab is to demonstrate the use of locks with threads in Python. The following

subjects will be covered:

 Re-entrant lock in Python (Rlock)

 Try Lock: a non-blocking version of the acquire method

 Read-Write Lock

 Deadlock

 Abandoned Lock

Proceed through the pages of this document until you have gone through all the exercises.
Run the python scripts using Python 3.

 Department of Information and Electronic Engineering

2 Advanced Computer Architecture & Parallel Programming

EXERCISE 01: RE-ENTRANT LOCK

[Filename: 01_Exercise_reentrant_lock.py]

To demonstrate how to use a reentrant lock in Python, we follow the example used to
demonstrate a data race and mutual exclusion with two shoppers that are concurrently
incrementing the amount of items to buy.

 Department of Information and Electronic Engineering

3 Advanced Computer Architecture & Parallel Programming

 On line 8, note that we use the constructor method with RLock, which is Python's
implementation of a reentrant lock that can be acquired multiple times before being
released.

 One interesting difference between the regular lock and Rlock in Python is that the
regular lock can be released by different threads than the one that acquired it.

 The reentrant lock must be released by the same thread that acquired it. And of course, it
must be released by that thread as many times as it was acquired before it will be
available for another thread to take.

EXERCISE 02: TRY LOCK

[Filename: 02_Exercise_nonblocking_acquire.py]

Try Lock, or Try Enter, is a non-blocking version of the lock or acquire method. It returns
immediately and one of two things will happen:

1. If the mutex you're trying to lock is available, it will get locked and the method will
return TRUE.

2. If the mutex is already possessed by another thread, the Try Lock method will
immediately return FALSE.

The returned value of true or false lets the thread know whether or not it was successful in
acquiring the lock.

The order of the statements on line 15 on each side of the and operator are evaluated from left
to right. Only if the left side of the and is true, will it evaluate the right side, and execute the non-
blocking acquire method.

The non-blocking acquire method is configured by setting the optional blocking parameter to be
false: pencil.acquire(blocking=False)

If the lock is available, then calling acquire will lock it, and return true. The program will then
execute the code between line 16 to 20 to add items to the shared notepad.

If the lock is not available, then the non-blocking acquire method will immediately return false,
and that thread will execute the else clause from lines 22 to 24.

Using the non-blocking acquire method, a program is executed much faster.

 Department of Information and Electronic Engineering

4 Advanced Computer Architecture & Parallel Programming

 Department of Information and Electronic Engineering

5 Advanced Computer Architecture & Parallel Programming

EXERCISE 03: READ-WRITE LOCK

[Filename: 03_Exercise_readwrite_lock.py]

A reader-writer lock, or shared mutex, can be locked in one of two ways.

1. It can be locked in a shared read mode that allows multiple threads that only need to
read simultaneously to lock it.

2. It can be locked in an exclusive write mode that limits access to only one thread at a
time, allowing that thread to safely write to the shared resource.

 A thread trying to acquire the lock in write mode can't do so as long as it's still being held
by any other threads in the read mode.

 Since only one thread can have the write lock at a time, all other threads wanting to read
or write will have to wait until the lock becomes available again.

 Recognizing when to use a read-write lock is just as important as knowing how to use it.
In certain scenarios, read-write locks can improve a program's performance versus using
a standard mutex but they are more complicated to implement, and they typically use
more resources to keep track of the number of readers.

 As general rule of thumb: it makes sense to use a shared reader-writer lock when you
have a lot more threads that will be reading from the shared data than the number
of threads that will be writing to it, such as certain types of database applications.

 If the majority of your threads are writing, then there's not much, if any, advantage to
using a read-write lock.

Reader-writer locks are a common feature in many programming languages that support
concurrency, however they're not included by default in Python.

Before running the following script, make sure you have installed the readerwriterlock by
following the link: https://pypi.org/project/readerwriterlock/

RWLock Variations:

 RWLockFair – fair priority for readers/writers

 RWLockRead – readers get priority

 RWLockWrite – writers get priority

https://pypi.org/project/readerwriterlock/

 Department of Information and Electronic Engineering

6 Advanced Computer Architecture & Parallel Programming

RWLock Methods:

 gen_rlock() – generates a reader lock object, which can be held by multiple threads at
once

 gen_wlock() – generates a writer lock object, which can only be held by a single thread at
once

Line 17: read_marker.c_rw_lock.v_read_count is used to display the number of threads that
currently hold the read marker.

 Department of Information and Electronic Engineering

7 Advanced Computer Architecture & Parallel Programming

EXERCISE 04: DEADLOCK

[Filename: 04_Exercise_deadlock.py]

Deadlock: Each thread of a group of threads is waiting for another thread to take action

Liveness: We want our programs to be free from deadlock to guarantee liveness. So we need:

 Properties that require a system to make progress

 Threads may have to “take turns” in critical section

In this program, each thread is competing for two of the three chopsticks placed around the
table, labeled here as A, B and C. In our example Python program, we instantiate those three
lock objects on lines 6 through 8 and name them chopstick A, B, and C.
We also create a variable named sushi_count to represent the amount of sushi left between the
philosophers.
The dining philosophers’ problem can be solved by giving priorities. In this case, chopstick A
has the highest priority, B is second and C is third. Each philosopher should always acquire their
highest priority chopstick first. We can see on line 25 that George acquires A before B, Anna
acquires B before C and Bill acquires A first and then C.

 Department of Information and Electronic Engineering

8 Advanced Computer Architecture & Parallel Programming

Try running the program replacing the lines 25 to 27 with the following to see how the deadlock
appears:
 threading.Thread(target=philosopher, args=('George', chopstick_a, chopstick_b)).start()
 threading.Thread(target=philosopher, args=('Anna', chopstick_b, chopstick_c)).start()
 threading.Thread(target=philosopher, args=('Bill', chopstick_c, chopstick_a)).start()

EXERCISE 05: ABANDONED LOCK

[Filename: 05_Exercise_abandoned_lock.py]

If one thread or process acquires a lock and then terminates because of some unexpected
reason it may not automatically release the lock before it disappears. That leaves other tasks
stuck waiting for a lock that will never be released.

In the following program we intentionally create a crash condition by dividing by zero but we
protect other threads by using context managers. We replace the acquire method on line 14 to
say “with first_chopstick:”, then nested within that goes another call “with second_chopstick:”

When we run this program, the thread that finds sushi_count == 10 will crash because it will run
a division by zero. As locks work with context managers, the exception will not crash the whole
program.

