
 Department of Information and Electronic Engineering

Advanced Computer Architecture & Parallel Programming Leonidas Akritidis

PYTHON THREADING

GOAL

The purpose of this lab is to demonstrate a step-by-step introduction in using threads in Python.

The following subjects will be covered:

 Creating Multiple Threads with Python

 Execution Scheduling

 Thread Lifecycle

 Daemon Threads

 Data Race

 Mutual Exclusion

Proceed through the pages of this document until you have gone through all the exercises.

 Department of Information and Electronic Engineering

2 Advanced Computer Architecture & Parallel Programming

EXERCISE 01: MULTIPLE THREADS

[Filename: 01_Exercise_multiple_threads.py]

We'll start with a demonstration, using Python's threading module to create several concurrent
threads.

 This program defines a simple function on line 7, called CPU waster, which has a while
loop that will spin forever. It doesn't do any useful work, but the thread running that
function will stay alive forever and continuously use CPU cycles.

 Lines 12 through 15 print out information about the program, including its process ID
number and the total number of threads in the process.

 The for loop on line 14 prints information about each of those threads.

 After that, it creates and starts 12 time waster threads, using a for loop on line 18-19.

 Department of Information and Electronic Engineering

3 Advanced Computer Architecture & Parallel Programming

EXERCISE 02: EXECUTION SCHEDULING

[Filename: 02_Exercise_execution_scheduling.py]

To demonstrate how scheduling can impact execution we will run this Python program that
creates two threads named Anna and George that continuously chop vegetables for about one
second.

 In the vegetable_chopper function beginning on line 8, the program uses the threading
module's current_thread and getName methods to retrieve the name of the current
thread. Then it initializes a local variable to count the number of vegetables this thread
chops.

 The while loop on line 11 will execute as long as the chopping variable that was initialized
on line 6 is True. Within each loop iteration it'll print a message and increment the value
of the local vegetable_count variable.

 Finally after the while loop finishes, the vegetable_chopper function prints out how many
total vegetables it chopped on line 14.

 Down in the main section on lines 17 and 18, we create and start two threads to execute
the vegetable_chopper function and we pass in the strings Anna and George to the
optional name parameter. Python allows you to set a thread's name to whatever you
want for your own use to identify the threads.

 Department of Information and Electronic Engineering

4 Advanced Computer Architecture & Parallel Programming

EXERCISE 03: THREAD LIFECYCLE

[Filename: 03_Exercise_thread_lifecycle.py]

To demonstrate the life cycle of a Python thread, from creation to termination, we will run this
example program.

 The program recreates the interactions between Anna and George, where George
spawns Anna as a second thread to help slice sausages to make soup.

 There are two ways to create a thread and specify its activity in Python. In the
previous Python examples, we put the code for our thread to execute into a function. And
then passed that function to the thread constructor method as a callable object using the
target parameter.

 The other way to create a thread in Python is to define a custom subclass that inherits
from the thread class and overrides its run method.

 That second approach is what we've done with the class named ChefAnna on line 6. It
inherits from threading.Thread and overrides two of its methods, init and run.

 These are the only two methods you should override from the thread class. Within
the init method, we simply use the super function to execute the parent thread class' init
method on line 9. Python will raise an error if you don't do that.

 Since George only sleeps for half a second after starting Anna's thread, but Anna sleeps
for three whole seconds, George will be done well before Anna.

 But he needs to wait until Anna finishes to continue on. This is where the join method
comes into play, causing George to wait until after Anna has completed everything she
needs to do before he can continue on.

 George calls the join method on line 31. Notice that we're calling the join method on the
Anna thread object from within the main George thread. That'll block George's
execution at that point until Anna terminates.

 After Anna's thread terminates, the main George thread will be able to continue on to
print its final message on line 34 that they're both done.

 Department of Information and Electronic Engineering

5 Advanced Computer Architecture & Parallel Programming

 Department of Information and Electronic Engineering

6 Advanced Computer Architecture & Parallel Programming

EXERCISE 04: DAEMON THREADS

[Filename: 04_Exercise_daemon_thread.py]

To demonstrate a daemon thread, we define a function called kitchen cleaner on line 6, which
represents a periodic background task like garbage collection.

 The kitchen cleaner uses an infinite while loop to continuously print a message that Olivia
cleaned the kitchen once every second.

 Down in the program's main section, we create and start a new kitchen cleaner thread
named Anna on lines 12 and 14.

 Then the main thread prints a series of messages that George is cooking, which are split
up by sleep statements and then finally a message that George is done on line 22.

 Comment line 13 and run the program again to see what is happening.

 Department of Information and Electronic Engineering

7 Advanced Computer Architecture & Parallel Programming

 We set Anna to be a daemon thread before she gets started by typing anna.daemon =
true.

 When a new thread is created, it'll inherit the daemon status from its parent. In our
case, the main thread is normal non-daemon thread, so by default, any threads that it
creates will be non-daemon threads.

 You must set the daemon property to configure a thread to be daemon or non-
daemon before starting it. Otherwise Python will raise runtime error.

 Daemon threads do not gracefully exit like normal threads. When all of the non-daemon
threads in a program are done executing, any remaining daemon threads will be
abandoned as Python exits.

 Department of Information and Electronic Engineering

8 Advanced Computer Architecture & Parallel Programming

EXERCISE 05: DATA RACE

[Filename: 05_Exercise_data_race.py]

In the following code, we can see an example of a data race, where two threads have access to
the same variable, namely garlic_count, without providing for protecting the variable.

 First run this code, and then change the range of line 9 to 100000.

 Run the code several times. What do you observe and why do you think this is
happening?

 Department of Information and Electronic Engineering

9 Advanced Computer Architecture & Parallel Programming

EXERCISE 06: MUTUAL EXCLUSION

[Filename: 06_Exercise_mutual_exclusion.py]

To demonstrate how to manually enforce mutual exclusion with locks in Python, we'll modify the
example program from earlier with two shoppers that have a data race as they can currently
increment the amount of garlic to buy.

 Locks are included as part of Python's threading module which is imported on line 3.

 We may create a new lock object using the constructor method from that module,
Threading.Lock.

 Now, to keep the two shopper threads from modifying the garlic count variable at the
same time, we call the pencil.acquire method before increasing the garlic_counter on line
14 and then we call the pencil.release method immediately after the for loop has finished.

 This prevents the data race and we get the expected output.

