
CLOUD COMPUTING

Amazon Elastic Compute Cloud – EC2

Amazon Elastic MapReduce – EMR

Leonidas Akritidis – lakritidis@ihu.gr



Introduction to Amazon EC2

 EC2 stands for Elastic Compute Cloud.

 A cloud service that provides secure and resizable 

compute capacity in the cloud.

 In simple words: flexible processing power on demand.

 Designed to make web-scale cloud computing easier for 

developers.

 SLA commitment of 99.99% availability for each 

Amazon EC2 region. Each region consists of at least 3 

availability zones.



EC2 Instances

 The services of EC2 are provided through the creation, 

deployment, and usage of EC2 instances.

 An instance is simply a virtual computing environment 

created with the aim of executing of a particular job.

 An instance type is a configuration of CPU, memory, 

storage, and networking capacity of an instance.

 There are 275 such instance types to help optimize the 

cost and performance of workloads.

 Available with choice of CPU, storage and networking 

options, operating system, and purchase model.



EC2 Instance Categories

 General Purpose: Ideal for business critical applications, 

small and mid-sized databases, web tier apps, etc.

 Compute Optimized: Ideal for high performance 

computing, batch processing, video encoding, and more.

 Memory Optimized: Ideal for high performance 

databases, distributed web scale in-memory caches, 

real time big data analytics, and more.

 Storage Optimized: Ideal for NoSQL databases, data 

warehousing, distributed file systems, and more.

 Accelerated Computing: Ideal for machine learning, 

graphic intensive applications, gaming, and more.



EC2 Instance Types and support

 More information and full details on the provided 

hardware per instance type 

https://aws.amazon.com/ec2/instance-types/

 Note: Some instance types are not supported by some 

availability zones (e.g. slide 14).

 If an instance type is not supported by the current 

availability zone of the user, then we should either:

 Change the availability zone/region, or

 Select another instance type.

https://aws.amazon.com/ec2/instance-types/


EMR: Amazon Elastic MapReduce

 Amazon offers the ability to create MapReduce clusters 

and deploy standard MapReduce jobs on these clusters, 

through its EC2 infrastructure.

 This service is called Elastic MapReduce (EMR).

 It resides inside the “Analytics” group of services, within 

the main menu of AWS management console.

 EMR launches EC2 instances that serve as MapReduce

processing nodes and HDFS data nodes.

 Supported instance types for EMR.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types.html


EMR Work flow (Step 2)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



EC2 Key Pairs (1)

 Key pairs constitute a strategy for securely accessing

and managing EC2 resources (in our case, the EMR 

cluster).

 The are used in replacement of the conventional “log-in” 

procedure through usernames and passwords.

 Key pair = Two keys: one held by Amazon (public 

key) and one held by the user (private key).

 The communication between the two parts (Amazon and 

the user) is performed by exchanging encrypted 

messages.



Public/Private keys – PEM/PPK files 

 The public and private keys are used to encrypt a 

message upon transmission, and decrypt the cipher upon 

receipt.

 A sniffer who steals an encrypted message cannot decrypt 

it. Its contents are inaccessible without the private key.

 A sniffer cannot pretend that he/she is any of the two 

communicating parts.

 A PEM or a PPK file will be created and associated with 

every key pair that is created by the user.

 (One of) These files are required to contact directly the 

master node of an EMR cluster via SSH.



Creating an EC2 Key Pair

 Key pairs are created from AWS management console.

 From the left-handed pane, select “NETWORK & 

SECURITY  Key Pairs”.

 Then, press the “Create Key Pair” button.

 Set a name for the key-pair.

 Select ppk File format.

 Download and store

the generated ppk file.

 This file will later grant

SSH access to the EMR

cluster via PuTTY.



EMR Work flow (Step 3)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



EMR & AWS Management Console



EMR: Creating a MapReduce Cluster

1. S3 bucket for MapReduce I/O.

2. Hadoop MapReduce and 

accompanying applications 

(Apache Hive data warehouse 

storage system, Mahout distributed 

linear algebra framework, etc).

3. The instance type determines the 

hardware specifications of the 

machines of the cluster.

4. Number of instances represent the 

number of machines in EMR Cluster 

(must be > 2, since 1 is reserved 

for the Master).

5. EC2 key pair for accessing the EMR 

cluster via SSH.











https://hive.apache.org/
https://mahout.apache.org/


EMR Cluster: Instance types

 Default instance type: m5.xlarge.

 A general purpose instance “provides a balance of 

compute, memory and networking resources, and can be 

used for a variety of diverse workloads.”



EMR Cluster: Instance type hardware

 Details for the hardware specifications of the m5.xlarge 

instances can be found under the M5 tab.

 Note: m5.xlarge may not be supported by the current 

availability zone (in this case, see again slide 5). 



Managing the EMR Cluster

 With these simple actions,

AWS will create and start

an EMR cluster with 3 nodes 

(that is, 3 EC2 instances).

 The cluster can be cloned

or terminated at any time

from the buttons at the top.

 The management and 

monitoring of the cluster

are performed from the

tab headers at the top of

the screen.



Managing the EMR Cluster (2)









1. IP address to connect with SSH.

Note: SSH Connection to the Master 

node of the cluster is not allowed 

by default. Several configuration 

options must be set before SSH 

connection is possible. See next.

2. EMR Cluster ID, creation date and 

uptime.

3. Master and Worker nodes general 

status. Subnet ID is crucial to access 

the VPC which hosts the cluster.

4. Security settings: active key pair, 

security groups and permissions for 

the Master and Worker nodes of 

the cluster.



Connecting to EMR Cluster via SSH (1)

 Slides 18 – 25 present the necessary configuration settings 

for accessing our EMR cluster via SSH.

 SSH (Secure Shell) is a protocol that establishes secure 

network connections over an encrypted channel (in contrast 

to Telnet where the connections are unencrypted).

 It is a command line tool that allows secure remote access 

to a network resource, by adopting the well-known client-

server architecture.

 We shall utilize PuTTY, a popular, open-source, SSH/Telnet 

client.



Connecting to EMR Cluster via SSH (2)

 For each one of the nodes of the EMR cluster, AWS 

automatically creates and launches an EC2 instance.

 These instances in turn, reside into Virtual Private 

Clouds (VPCs).

 To allow access to the Master of the EMR cluster, both the 

VPC and the security group of the respective EC2 

instance, must be granted the appropriate permissions.

 The checklist in the following slide contains the necessary 

steps to achieve this goal.



Configurations for SSH Connection

To establish a SSH connection with the EMR cluster, the 

steps of the following checklist must be completed.

1. Configure the VPC (Virtual Private Cloud) which hosts 

the EMR cluster.

2. Locate the EC2 instance which hosts EMR Master.

3. Grant the appropriate permissions for SSH access to the 

“ElasticMapReduce-master” security group.

4. Configuring PuTTY for establishing a SSH connection 

with the EMR Cluster.



Configuring the VPC





Step 1: configure the VPC (Virtual Private Cloud) which hosts the EMR cluster.

1. From the previous slide, on , click on the Subnet ID.

2. Click on the VPC of the Subnet.

3. From the Actions button, make sure that “DNS Resolution”, “DNS Hostnames”, 

and “ClassicLink DNS Support” are all enabled.



Configuring the EC2 instance





Step 2: locate the EC2 instance which hosts EMR Master.

1. From AWS Management Console, select “EC2”.

2. In the EC2 Dashboard, click on the “Running Instances: 3” link.

3. On the list with the three EC2, instances, locate the one which has the security 

group “ElasticMapReduce-master”. Click on the respective link.





Configuring the Security Group





Step 3: grant the permissions for SSH access to the “ElasticMapReduce-master” 

security group.

1. From the “Actions” button, select “Edit inbound rules”.

2. In the list of rules that opens, click on the “Add rule” button at the bottom of 

the list.

3. Add a rule for SSH access to anybody, as shown on the figure.

4. Click on the “Save rules” button.





Connecting to the EMR Cluster via 

SSH with PuTTY

Step 4: Now we are ready to use the popular, freeware, third party software, 

named PuTTY, to establish a SSH connection to the cluster.

1. Download PuTTY.exe to your computer from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

2. Start PuTTY.

3. In the Category list, click Session.

4. In the Host Name field, type the correct hostname (slide 16, field 1).

5. In the Category list, expand “Connection  SSH”, and then click “Auth”.

6. For Private key file for authentication, click Browse and select the private key 

file (ihu-keypair.ppk) used to launch the cluster.

7. Click Open.

8. Click Yes to dismiss the security alert.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Connecting to the EMR Cluster via 

SSH with PuTTY



EMR Work flow (Step 4)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



Preparing the MapReduce job

 At this point the problem to be solved and the algorithm 

to be executed become the most important elements.

 We will compute Scientometrics in parallel by using 

MapReduce.

 Relevant article: L. Akritidis, P. Bozanis, "Computing 

Scientometrics in Large-Scale Academic Search Engines 

with MapReduce", In Proceedings of the 13th 

International Conference on Web Information System 

Engineering (WISE), Lecture Notes in Computer Science 

(LLNCS), vol. 7651, pp. 609-623, 2012.



Scientometrics

 Metrics evaluating the research work of a scientist by 

assigning impact scores to his/her articles.

 Usually expressed as definitions of the form:

 A scientist a is of value V, if at least V of his articles have been 

assigned a score S ≥ V.

 A researcher must author numerous qualitative and 

influential articles.

 Most popular metric: h-index, defined as, 

 A scientist a has h-index h, if at least h of his articles have 

received h citations (i.e., a score S ≥ h).



h-index example

Article # Citation Count h-index

1 61 ≥ 1 1

2 59 ≥ 2 2

3 40 ≥ 3 3

4 36 ≥ 4 4

5 13 ≥ 5 5

6 11 ≥ 6 6

7 11 ≥ 7 7

8 10 ≥ 8 8

9 10 ≥ 9 9

10 6 ≤ 10 9



h-index in large-scale data

 To compute h-index, it is required that for each scientist 

we maintain a list of all of his/her articles sorted in 

decreasing order of citations.

 In large-scale data, there are numerous authors and 

numerous such lists.

 CiteSeerX dataset: 10 million articles.

 Microsoft Academic Graph: 209M articles, 253M authors.

 The required data does not fit into the main memory of 

a single workstation.

 h-index calculation must be performed in parallel.



Parallelizing the problem

 Goal: Compute Scientometrics in parallel

 Input: (pi, Cpi)  (paperID, paperContent)

 Output: (a,ha)  (author, hindex)

 To reach our goal, we have to construct for each author, 

a list of his/her articles sorted by decreasing number of 

citations:

 Then, we just iterate through the list and we compute the 

desired h-index value.

      1 2

1 2, , , , ,..., , Npp p

x x N xa SortedList p S p S p S 
 



More resources

 Download a draft preprint of the article.

 A presentation of the article in WISE 2012.

 A public GitHub repository with:

 The source code of the MapReduce algorithms in Java, and

 a toy dataset with 100 articles from CiteSeerX.

 The full CiteSeerX dataset.

http://users.sch.gr/lakritid/downloads/papers/WISE_2012_ab.pdf
http://users.sch.gr/lakritid/downloads/slides/WISE_2012_ab_slides.pdf
https://github.com/lakritidis/Scientometrics-MapReduce
https://csxstatic.ist.psu.edu/downloads/data


EMR Work flow (Step 5)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



Code & dataset

 Download the code from the aforementioned GitHub 

repository.

 Build, compile and generate an executable (binary) JAR 

file from the downloaded code.

 Some MapReduce, HDFS, YARN and other JARS maybe 

required on the build path of JAR.

 Alternatively, advanced users can compile the code and 

generate an executable binary JAR through SSH connection 

with the Master machine of their EMR cluster.

 Download the toy dataset again from the 

aforementioned GitHub repository.

https://github.com/lakritidis/Scientometrics-MapReduce
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-build-binaries.html


S3 ihu-bucket snapshots

jars folder

dataset folder



EMR Work flow (Step 6)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



EMR Steps

 Open the management console and navigate to the 

created EMR cluster.

 The “Steps” tab accommodates the interface for 

creating, cancelling and monitoring the MapReduce jobs 

that have been scheduled on this cluster.

 AWS includes several types of such steps.

 Running a standard & simplistic Word Count example job.

 Running a custom JAR file,

 etc.



EMR Steps management (1)







 



EMR Steps management (2)

1. Cluster Status: “Waiting” (cluster is ready to accept new 

jobs), “Running” (cluster is running the scheduled step/s), 

“Terminated”.

2. Add a new step button.

3. List of scheduled steps. The pending steps will be run 

sequentially unless the user cancels some of them.

4. Step status (pending, running, failed, completed, success).

5. Log files. In most cases stderr is the log file of interest. It 

enlists Java & MapReduce runtime errors.

 Click on “Add Step”.



Creating a Step in EMR cluster (1)

 A dialog box for the creation of a new step appears.

 Step type: Custom JAR.

 Name: A custom name.

 JAR location: the location of the executable JAR file 

within a valid S3 bucket.

 The arguments are

application-specific.

 In our case, they

reflect the input &

folders in S3.



EMR Steps management (2)

 Click on the “Add” button.

 The new job is appended in the “Steps” list with status 

“Pending”.

 The step will be executed automatically and its status 

will change according to its success/failure.

 On the latter case, the log files provide valuable 

information (especially the stderr one).



EMR Work flow (Step 6)

1. Create a bucket in Amazon S3.

2. Create an Amazon EC2 key pair for securely accessing 

the master node of the EMR cluster.

3. Create and configure an EMR cluster in EC2.

4. Study the problem and design a MapReduce algorithm.

5. Upload the input data to be processed and the 

executable code in a S3 bucket.

6. Deploy the job across the cluster.

7. Retrieve the output of the application in a S3 bucket.



Collecting the job’s output

 In the case of successful completion, EMR will 

automatically create a folder named “output” inside our 

ihu-bucket.

 This folder contains the files with the output of the job.

 In our example, only one such file exists, part-r-00000.

 For larger jobs with multiple Reducers, the output may 

span multiple files.



Collecting the job’s output

Parsed author name h-index

part-r-00000



Thank you! Any Questions?


