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ABSTRACT 

 

In recent years Bayesian networks have been often used to model and analyze complex relationships 

between input and output data. In the hydrological sciences, such a relationship is the one describing 

one of the complex natural phenomena, the rainfall-runoff process. Because of the highly nonlinear 

nature of this relationship, it is not easy at all to account for any kind of inherent uncertainty. The 

present study contributes in confronting the uncertainties in streamflow predictions and in better 

understanding the spatial variability of this hydrological phenomenon, which is quite important in 

hydro-climatological time series analyses and equally significant in water resources management 

approaches. 

 

A Bayesian network is a kind of decision support system based on probability theory and inference 

making using the Bayes rule. This rule describes mathematically how existing beliefs can be modified 

with the input introduction of new evidence. This property makes Bayesian Networks a powerful and 

widespread tool in many areas of artificial intelligence and statistics because of efficient algorithms that 

make probabilistic inference effective in highly-structured problem domains. The significant 

contribution of the Bayesian method is the uncertainty estimation of the outputs in the form of 

confidence intervals, which are particularly needed in practical water resources applications.  

 

The objective of this paper is to illustrate how Bayesian models could be developed to provide a formal 

framework for estimating the uncertainty in hydrologic scaling relationships, such as the rainfall-runoff 

relationship. More analytically, in the present study a Bayesian network is introduced to simulate the 

relationship between rainfall and runoff in a mountainous watershed in North California. The model is 

tested using daily rainfall and streamflow data series from the drainage basin. It is shown that the 

model can successfully approximate the rainfall-runoff relationship and efficiently estimate the 

resulting streamflow.   
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1. INTRODUCTION 

 

Precipitation, snow, interception and evapotranspiration are the dominating factors affecting the water 

flow on any mountainous watershed surface. Precipitation and snow is water delivered to Earth from 

the atmosphere and they are the major water sources in a mountainous system in addition to streams, 

springs, soil moisture, groundwater, and vegetation. Before reaching the ground, part of precipitation 

and snow will be intercepted and retained by the forest canopy and ground litter (Chang, 2006). The 

amount of precipitation intercepted by the forest canopy has been determined indirectly from the 

difference between the measured precipitation and the amount reaching the ground as throughfall rain 

and stemflow (Johnson, 1990). A similar way of defining rainfall interception is commonly determined 

by comparing rain amounts measured above a forest canopy or in an open site against throughfall 

measured below a forest canopy (Ward and Trimble 2003). From this process a portion of the rainfall 

and snow water never reaches the ground because it vaporizes back to the air and the amount of 

interception loss is determined by storm and forest characteristics (Chang, 2006).  

 

The intercepted amounts of rainfall vary considerably between 10% and 30% (Landsberg et al, 1997) 

and depend on forest composition, tree geometrical characteristics and seasonal changes in foliage 

cover. In snow-affected zones, like the watershed of the present case-study area, canopy interception of 

snowfall can become as high as 30% of precipitation in dense forests and as important as rainfall 

interception during the winter period (Lundberg and Koivusalo, 2003). Canopy interception of 

precipitation and snow by forest stands is significant, particularly in coniferous forests like the pine 

forest of our research area. The main process responsible for changes in water yield as a result of 

alterations in vegetation at the mean annual scale is evapotranspiration (Zhang et al, 2001). Changes in 

forest composition, structure, or density that reduce evapotranspiration rates generally increase water 

yield from mountainous watersheds. A number of studies have shown that annual water yield can 

increase between 15 and 500 mm with forest removal, although these changes often last for only a few 

years and depend on many parameters like climate, soil characteristics, and percentage and type of 

vegetation removal (Brown et al, 2005). 

 

A large number of models have been developed to simulate the relationship of rainfall-runoff. These 

models are categorized as empirical, black-box, conceptual and physically-based models. Among them, 

this particular physical phenomenon has been simulated with two feed-forward neural networks trained 

with the backpropagation algorithm. The first was a simple three-layer network with one hidden layer 

while the second one was more complicate with four layers (two hidden layers). Results show that the 

simple feedforward neural network produced better prediction performance efficiencies than the 

multiple neural network with two hidden layers (Botsis and Latinopoulos, 2010). In addition, the 

application of neural networks in rainfall-runoff relationship was investigated with one simple feed-

forward neural network, the results of which show that the neural networks are usually capable of 

representing either normal or extreme flow conditions (Triantafyllou et al, 2011). Moreover, an 

application of a support vector regression (SVR) model for the simulation of the rainfall-runoff 

relationship depicted some important issues of nonlinear models applying in runoff forecasting. Next, a 

comparison was made between support vector regression and neural networks models, which showed 

that SVR can replace some of the neural network models for weather prediction applications (Botsis et 

al, 2011). These models are of the black-box type and it is important to compare them with more 

sophisticated models like Bayesian networks. These can estimate the parameters of the water-balance 

system with probabilities. This is a unique advantage, especially in cases where some parameters are 

difficult to measure, like interception and evapotranspiration. Herr and Krzysztofowicz (2010) present 
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how the analytic-numerical Bayesian forecasting system can be used as a generator of the Bayesian 

ensemble forecast of river stages and investigate the sample size requirements for ensemble forecasts. 

Reggiani and Weerts (2008) presented an application of a Bayesian processor to asses the predictive 

uncertainty on water level predictions in the river Rhine flood forecasting system. 

 

In the present paper a Bayesian approach to estimate the effects of interception and evapotranspiration 

in runoff prediction is introduced. The research work described herein focuses on in the rainfall-runoff 

relationship and aims at confronting the uncertainties in streamflow predictions. The success of this 

approach depends on the accuracy of the input data of Bayesian network (rainfall-snow and streamflow 

measurements) and on the accuracy estimation of the conditional probability table (CPT) of two 

variables, namely interception and evapotranspiration. The developed Bayesian network model is 

applied to a time series of daily rainfall and runoff measurements in a mountainous forested watershed.  

 

2. METHODOLOGY 

 

2.1 Bayesian networks 

A Bayesian network (BN) is a decision support system that is successfully used for many years in 

numerous and diverse research fields, such as hydrology and artificial intelligence. Bayesian networks 

simulate the operation of natural systems, and are most effective when designed and set up with data 

and measurements of some field variables. In this work the water balance of a mountainous forested 

watershed is studied. More specifically, the relationship of rainfall-runoff, which is one of the most 

complicate hydrologic phenomena, is thoroughly investigated. It should be noted that the water balance 

of the watershed and the ultimate rate of runoff depend directly on interception and evapotranspiration. 

Bayesian networks are a type of decision support system based on a theory of probability using Bayes’ 

rule, which describes mathematically how existing beliefs can be modified with the introduction of new 

evidence. The two fundamental rules of probability theory have the form of equations (1) and (2). 

 ���	����	�	
� = ∑ �	
, ���   (1) 

 �������	����	�	
, �� = �	�|
� ∙ �	
�	  (2) 

The probability that X will take the value xi and Y will take the value yj is written as p(X=xi, Y=yj) and 

it is called the joint probability of X=xi and Y=yj. The sum rule of probability p(X=xi) is sometimes 

called the marginal probability, because it is obtained by marginalizing, or summing out, the other 

variables (in this case Y):  

 �	
 = ��� = ∑ �	
 = �� , � = ������  (3) 

If considering only those instances for which X = xi, then the fraction of such instances for which Y = 

yj is called the conditional probability of Y=yj given X=xi and it is written as p(Y=yj|X=xi). Here 

p(X,Y) is a joint probability and is verbalized as “the probability of X and Y”. Similarly, the quantity 

p(Y|X) is a conditional probability and is verbalized as “the probability of Y given X”, whereas the 

quantity p(X) is a marginal probability and is simply “the probability of X”. From the product rule, 

together with the symmetry property p(X,Y) = p(Y,X), one can immediately produce the following 

relationship between conditional probabilities, which is called Bayes’ theorem (Bishop, 2006). 

 �	�|
� = �	�|��∙�	��
�	�� 	 (4) 

Equation (4) constitutes the relationship between the probabilities p(X) and p(Y) and the conditional 

probability of X given Y. Ιf the joint distribution of two variables factorizes into the product of the 



 

marginals, so that p(X,Y) = p(X)p(Y), then X and Y are said to

it follows that p(Y|X) = p(Y), and so the

the value of X. In the Bayesian approach, neither a real 

nor a distinction between “variables” and “parameters”

priori” variables and parameters (values for parameters and variables that were measured, estimated, or 

taken from the literature), and “posterior” values (most likely values for parameters and variables, 

taking into account all a priori values and their uncertainty

2009). Bayesian networks have been used to model a variety 

This paper describes a BN developed in the context of catchment water resources management. The 

focus of this application is in the generation of

processes and especially the effect of interception and evapotranspiration in 

relationship. Moreover, this study aims 

predictions and in appreciating 

important for hydro-climatological time series 

applications. Finally, it is shown how BNs can be used to support catchment decision making.

 

2.2 Data preparation  

The precipitation data from four meteorological stations and 

of the case study are used as inputs in 

Data Exchange Center (Department of Water Resources), while 

U.S. Geological Survey. Precipitation measurements are the aggregate of daily rainfall and daily water 

content of snow for 21 years in the period from 31

Figure 1
 

The daily streamflow measurements for the same period 

California. The data were first preprocessed by using 

exceptionally extreme values and 

measurements, we used the method of 

rainfall from the values of four meteor

preprocessed time series of rainfall and streamflow 

time series for rainfall and streamflow data.

 

2.3 Rainfall-runoff model  

In the BN model developed in this study,

three other factors: rainfall, interception

interception, and evapotranspiration 

will also change. Consequently, s

factors. In Figure 2 the dependence 

that p(X,Y) = p(X)p(Y), then X and Y are said to be independent. From the product rule, 

that p(Y|X) = p(Y), and so the conditional distribution of Y given X is indeed independent of 

In the Bayesian approach, neither a real distinction between “knowns” and “unknowns” 

nor a distinction between “variables” and “parameters” is made. The distinction is rather between “a 

priori” variables and parameters (values for parameters and variables that were measured, estimated, or 

rom the literature), and “posterior” values (most likely values for parameters and variables, 

ri values and their uncertainty and using the model) (Van der Tol et al, 

etworks have been used to model a variety of environmental systems (Kragt, 2009). 

developed in the context of catchment water resources management. The 

in the generation of a model for better understand

processes and especially the effect of interception and evapotranspiration in 

relationship. Moreover, this study aims in methodically dealing with the uncertainties in streamflow 

 the spatial variability of this hydrological phenomenon, which is 

climatological time series analyses and for water resources management

it is shown how BNs can be used to support catchment decision making.

from four meteorological stations and the streamflow data in 

inputs in the BN. Precipitation data were obtained from 

(Department of Water Resources), while streamflow data 

. Precipitation measurements are the aggregate of daily rainfall and daily water 

the period from 31-01-1989 to 31-01-2011.  

1: Time series of rainfall and streamflow data

The daily streamflow measurements for the same period are those of the Trinity River

The data were first preprocessed by using interpolation to correct 

exceptionally extreme values and for completing missing data in the time series.

measurements, we used the method of arithmetic mean is used to calculate the average value of daily 

rainfall from the values of four meteorological stations. The Bayesian approach is applied using 

preprocessed time series of rainfall and streamflow as model inputs. Figure 1 shows the preprocessed 

time series for rainfall and streamflow data. 

developed in this study, the state of the factor streamflow

nterception and evapotranspiration. This means that if the 

evapotranspiration alltogether, or just any one of them is changed then

Consequently, streamflow is considered conditionally depend

dependence between the problem’s critical factors (variables)

Rainfall Streamflow
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be independent. From the product rule, 

conditional distribution of Y given X is indeed independent of 

distinction between “knowns” and “unknowns” 

. The distinction is rather between “a 

priori” variables and parameters (values for parameters and variables that were measured, estimated, or 

rom the literature), and “posterior” values (most likely values for parameters and variables, 

and using the model) (Van der Tol et al, 

of environmental systems (Kragt, 2009). 

developed in the context of catchment water resources management. The 

understanding of the catchment 

processes and especially the effect of interception and evapotranspiration in the rainfall runoff 

the uncertainties in streamflow 

iability of this hydrological phenomenon, which is 

water resources management 

it is shown how BNs can be used to support catchment decision making.  

streamflow data in the catchment area 

obtained from the California 

streamflow data were taken from the 

. Precipitation measurements are the aggregate of daily rainfall and daily water 

 
Time series of rainfall and streamflow data 

Trinity River in Northern 

correct measurement errors with 

series. Then, for the rainfall 

to calculate the average value of daily 

The Bayesian approach is applied using the 

Figure 1 shows the preprocessed 

treamflow depends on the states of 

This means that if the rainfall, 

changed then the streamflow 

dependent on the states of these 

(variables) is indicated by a 
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simple graph, where the factors are represented by nodes and their mutual dependences by arrows. 

Note that the directions of arrows indicate the cause-effect processes and their feasibility. Referring to 

the graph in Figure 2, it is clear that, while changes in rainfall, interception and/or evapotranspiration 

values can all affect streamflow rates, a reverse process is not feasible.  

 
Figure 2: Bayesian Network 

The BN model comprises three components: (a) a set of variables that represent the factors relevant to 

watershed water balance, (b) the links between these variables and (c) the CPTs behind each node that 

are used to calculate the state of the node. Where two nodes are linked the destination node is termed 

the ‘child’, the node from which the link originates is known as the ‘parent’ (Bromley, 2005). In our 

application the variables rainfall (R), interception (I) and evapotranspiration (E) are the parents and 

the variable streamflow is the child. Moreover, the links represent a possible action or an observed 

condition between the parents and the child that is the effect of water balance variables in the 

streamflow. The links represent different scenarios that might arise between the variables. All network 

nodes have three possible states: low, medium and high. The time series for rainfall and streamflow (S) 

were quantized into low, medium and high levels using appropriate limits based on the available data 

measurements. Rainfall (and snow) data were divided into three subfields using the following limits.  

 �0, �!�"�#$ , ��!�"�#,
%
!�"�#$ , �%!�"�#,�"�#$  (5) 

The streamflow measurement data were divided into three groups of equal size in order to avoid having 

very few data in any group. For the interception and evapotranspiration variables there are no measured 

data, so they were quantized and the corresponding conditional probability tables were constructed by 

using appropriate limits drawn from the literature. The data of the literature that supported the 

formation of the conditional probability tables were based on observations of the effect of interception 

and evapotranspiration in streamflow. The key to constructing a good network is to have the best 

available data with which to construct the CPTs, although the best data available may be imperfect and 

not fully reliable. A particular strength of Bayesian networks is that they will accommodate any type of 

data, but of course the less reliable the information the more uncertain will be the result and the wider 

the distribution of probabilities. In some instances the data for a variable are non-existent and in these 

cases it may be necessary to rely on expert opinion (Bromley, 2005). It is known that changing the 

evapotranspiration or interception will have an impact on the runoff potential. But to quantify 

‘potential’ is difficult, and relevant data is unlikely to exist. In this study, data and information from 

observations of forested mountainous watersheds from a number of studies used to complete the CPTs 

of P(S│I) and P(S│E). With this type of subjective input the degree of uncertainty is likely to be 
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greater than that obtained from measured data, but the ability to use this type of input enables the 

Bayesian networks to overcome potential problems of data scarcity.  

 

Table 1 shows the probability of S (streamflow) being in any particular state (s1, s2, s3) given a state of I 

(interception - i1, i2, i3) and it can be written as P(S│I). For example if interception is in state i3 (high), 

the probability of streamflow being in state s1 (low) is 0.6 (60%), s2 (medium) is 0.3 (30%) and s3 

(high) is 0.1 (10%). In the same way Table 2 depicts the probability of S being in any particular state 

(s1, s2, s3) given a state of E (evapotranspiration - e1, e2, e3) and it can be written as P(S│E). For 

example if evapotranspiration is in state e2 (medium), the probability of streamflow being in state s1 

(low) is 0.35 (35%), s2 (medium) is 0.5 (50%) and s3 (high) is 0.15 (15%). Note that each column must 

add up to 1 and the probabilities given are based on the fact that variables I and E have a 100% 

probability of being in state i1, i2 or i3 and e1, e2 or e3. But in reality it is unlikely to be certain of the 

state of interception and evapotranspiration and especially in all the surface of the mountainous 

forested catchment. There will always be some uncertainty in the determination of parameters which 

are affecting in the water balance of a basin. Applying Bayes theorem in the present case study leads 

equation 4 to the following form: 

 �	&|#, ', (� = �	),*,+|,�∙�	,�
�	),*,+� 	 (6) 

Equation (6) provides the conditional probability of S given R, I, E. 

 

Table 1: Conditional probability table P(S│I) 

CPT - Conditional 

Probability Table - P(S│I) 

Interception (Variable I) 

Low (i1) Medium (i2) High (i3) 

Streamflow 

(Variable S) 

Low (s1) 0.1 0.3 0.6 

Medium (s2) 0.3 0.5 0.3 

High (s3) 0.6 0.2 0.1 
 

Table 2: Conditional probability table P(S│E) 

CPT - Conditional 

Probability Table - P(S│E) 

Evapotranspiration (Variable E) 

Low (e1) Medium (e2) High (e3) 

Streamflow 

(Variable S) 

Low (s1) 0.05 0.35 0.65 

Medium (s2) 0.3 0.5 0.3 

High (s3) 0.65 0.15 0.05 

 

Interception and evapotranspiration fluxes between the land surface, the forest canopy and the 

atmosphere are important components of the water balance in mountainous watersheds.  

 
Figure 3: The case study watershed in Northern California 
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Our model network is applied to the study of the affect of interception and evapotranspiration in the 

rainfall-runoff relationship in a mountainous forested watershed which is located in Northern California 

(Figure 3). This region has the same geographic latitude as Northern Greece. The watershed size is 

about 385.9 km
2
 and the larger part of the catchment surface is covered by pine forest. 

 

3. RESULTS 

 

The initial plan of this study was to design a BN in order to investigate the water balance of 

mountainous forested watersheds and, in addition to that, to focus in the uncertainty inherent in this 

complex hydrological phenomenon. The developed BN model is indeed able to calculate the effect of 

interception and evapotranspiration in rainfall-runoff relationship and in streamflow prediction. 

       

Table 3: Results of Bayesian network 

P(S│R,I,E) 

 R=1 R=2 R=3 R=1 R=2 R=3 R=1 R=2 R=3  

I=1 0.0179 0.0000 0.0000 0.2857 0.0584 0.0225 0.6964 0.9416 0.9775 

E=1 I=2 0.0705 0.0000 0.0000 0.6248 0.2367 0.1032 0.3046 0.7633 0.8968 

I=3 0.2111 0.0000 0.0000 0.5610 0.2712 0.1214 0.2279 0.7288 0.8786 

 S=1 S=2 S=3  

 R=1 R=2 R=3 R=1 R=2 R=3 R=1 R=2 R=3  

I=1 0.1645 0.0000 0.0000 0.6246 0.3094 0.0370 0.2108 0.6906 0.9630 

E=2 I=2 0.3075 0.0000 0.0000 0.6487 0.6914 0.4540 0.0438 0.3086 0.5460 

I=3 0.5994 0.0000 0.0000 0.3793 0.7289 0.4994 0.0213 0.2711 0.5006 

 S=1 S=2  S=3   

 R=1 R=2 R=3 R=1 R=2 R=3 R=1 R=2 R=3  

I=1 0.4071 0.0000 0.0000 0.4993 0.4464 0.2304 0.0936 0.5536 0.7696 

E=3 I=2 0.5858 0.0000 0.0000 0.3992 0.8013 0.5995 0.0150 0.1987 0.4005 

I=3 0.8259 0.0000 0.0000 0.1688 0.8287 0.6423 0.0053 0.1713 0.3577 

 S=1 S=2 S=3  

 

In Table 3, the posterior probability of low (S=1), medium (S=2) and high (S=3) streamflow is 

produced by different scenarios of possible states of the other three parameters: rainfall, interception 

and evapotranspiration. For the case of high streamflow results show that when the interception and 

evapotranspiration are increased, the streamflow is decreased, but in the state of high rainfall the effect 

of water balance parameters is sensibly lower. The BN results show also that the probability of 

generating low streamflow is zero when rainfall values range from medium to high. When rainfall is 

low the probability of generating low streamflow values varies, depending on the states of both 

interception and evapotranspiration. Specifically, when the interception and evapotranspiration change 

(from low to medium and to high range) the probability of low streamflow increases. More balanced 

seem to be the results in the case of medium streamflow, a fact showing more clearly the effect of 

interception and evapotranspiration. In Figure 4 the results of the model for the case of high rainfall, 

expressed as percentages, are presented.  

 

Table 4 presents the percentage change of probabilities of high streamflow for all combinations of 

interception and evapotranspiration, when the state of rainfall changes first from low to medium and 

secondly from medium to high. For example for low interception and low evapotranspiration the 



 

probability increase of high streamflow is 35.21% from low to medium rainfall. For the same state

interception and evapotranspiration the probability increase of high streamflow is 3.81% from medium 

to high rainfall. 

Figure 4: 

 

From this result we conclude that, as long as the storm events are more rapid, the effect of interception 

in the final runoff is lower. On the other hand when the state of rainfall changes from medium to high, 

the percentage change of high rainfall probabi

to small differences between low and high ranges

should be also noted the great difference in high streamflow between the rainfall states l

and medium-high. 

 

Table 4: Compar
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changing each of the parameters and observing the related changes in the posterior probabilities. In 
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Compinations of Interception 

probability increase of high streamflow is 35.21% from low to medium rainfall. For the same state

interception and evapotranspiration the probability increase of high streamflow is 3.81% from medium 

: Results of Bayesian Network for high rainfall

From this result we conclude that, as long as the storm events are more rapid, the effect of interception 

n the other hand when the state of rainfall changes from medium to high, 

the percentage change of high rainfall probability is extremely lower. The second result is probably due 

to small differences between low and high ranges of rainfall. Figure 5 presents the results of table 4. It 

should be also noted the great difference in high streamflow between the rainfall states l

Comparison between different states of rainfall

R=1 – R=2 R=2 – R=3  

35.21% 3.81% 

E=1 227.61% 39.44% 

491.45% 39.02% 

S=3  

R=1 – R=2 R=2 – R=3  

150.59% 17.49% 

E=2 604.57% 76.93% 

1224.67% 101.56% 

S=3  

R=1 – R=2 R=2 – R=3  

219.79% 20.55% 

E=3 1172.77% 84.66% 

3132.08% 108.81% 

S=3  

(2002) propose an empirical approach to sensitivity analysis, based on 

changing each of the parameters and observing the related changes in the posterior probabilities. In 

study the sensitivity analysis was used to identify the most ‘sensitive set’ of variables in the 

Bayesian network. So the values of CPTs of evapotranspiration and interception were change

Compinations of Interception - Evapotranspiration

Rainfall - Runoff
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Figure 5: Streamflow compare between different states of rainfall

 

4. CONCLUSIONS 

 

The presented BN efficiently models

runoff relationship. The advantage of the proposed methodology

procedure, based solely on rainfall

for the interception and evapotranspiration

advantage of identifying hydrological variables that are

accurately over the entire surface of the basin

 

The results from the BN application 

that the storm events generate floods. Moreover 

evapotranspiration reduce the final amount of runoff.

the probabilities of generating high streamflow, because the high runoff in a water basin creates floods. 

Probably, the most important aspect 

hydrological phenomenon of water balance in forested mountainous watersheds. 

determine the percentage of effect of interception and evapotranspiration in streamflow and to calculate 

the likelihood of generating the 

evapotranspiration are decisive in final streamflow generation.

hydrological variables is less than the cases of customary rainfalls.

 

The Bayesian technique for estimat

streamflow in watersheds is open to a wide range of possible

flood forecasting applications, where reliability and

requirements. The test on measurement data of rainfall and streamflow has demonstrated the efficiency 

of the technique and application to measurements data has giver qualitative confirmation of 

improvements that can be obtained by its application.

combining, in a Bayesian  sense, 
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the variations of the model’s output were examined

variations in parameters in a percentage of 10% did not significantly affect the model

Streamflow compare between different states of rainfall

presented BN efficiently models the effects of interception and evapotranspiration in 

The advantage of the proposed methodology is its very

rainfall-runoff measurements and two conditional probability

for the interception and evapotranspiration variables. Moreover the Bayesian approach has the 

identifying hydrological variables that are very difficult or impossible to measure 

accurately over the entire surface of the basin.  

application follow the reasonable rule of physical hydrological 

that the storm events generate floods. Moreover it is predictable that the effect of interception and 

evapotranspiration reduce the final amount of runoff. The most remarkable results of 

high streamflow, because the high runoff in a water basin creates floods. 

aspect of this work is that we focus in the uncertainty of 

ydrological phenomenon of water balance in forested mountainous watersheds. 

determine the percentage of effect of interception and evapotranspiration in streamflow and to calculate 

generating the streamflow. The results show that the values of

decisive in final streamflow generation. Yet, in storm events the effect of these 

hydrological variables is less than the cases of customary rainfalls.  

timating the probabilities of generating low, medium and especially high 

is open to a wide range of possible applications. It

where reliability and reduction of uncertainty in the results 

The test on measurement data of rainfall and streamflow has demonstrated the efficiency 

of the technique and application to measurements data has giver qualitative confirmation of 

ined by its application. Todini (2001) arrives at the same conclusion 

Bayesian  sense, weather radar-based rainfall estimates with rain

he assessment of the effects of time variations in the rainfall spatial co-variance structure as a function 

of the different weather types and the application of the model in a variety of 

the improvement of the BN in rainfall-runoff modeling

Compinations of Interception - Evapotranspiration

R=1 - R=2 R=2 - R=3
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were examined for every evidence. The 

the model’s behavior. 

 
Streamflow compare between different states of rainfall 

interception and evapotranspiration in the rainfall-

its very simple operational 

nd two conditional probability tables, those 

. Moreover the Bayesian approach has the 

very difficult or impossible to measure 

the reasonable rule of physical hydrological phenomena 

is predictable that the effect of interception and 

The most remarkable results of the BN model are 

high streamflow, because the high runoff in a water basin creates floods. 

focus in the uncertainty of the complex 

ydrological phenomenon of water balance in forested mountainous watersheds. The study tries to 

determine the percentage of effect of interception and evapotranspiration in streamflow and to calculate 

values of interception and 

in storm events the effect of these 

low, medium and especially high 

It is particularly useful in 

in the results are the major 

The test on measurement data of rainfall and streamflow has demonstrated the efficiency 

of the technique and application to measurements data has giver qualitative confirmation of the 

2001) arrives at the same conclusion by 

based rainfall estimates with rain-gauge measurements. 

variance structure as a function 

in a variety of watersheds with different 

runoff modeling. 

Evapotranspiration
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