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1.1 Introduction

Blind signal processing deals with the outputs of unknown systems excited by unknown inputs. At first
sight the problem seems intractable, but a closer look reveals that certain signal properties allow us to
extract the inputs or to identify the system up to some, usually not important, ambiguities. Linear
systems are mathematically most tractable and, naturally, they have attracted most of the attention.
Depending on the type of the linear system, blind problems arise in a wide variety of applications, for
example, in digital communications (Godard, 1980; Treichler and Agee, 1983; Shalvi and Weinstein, 1990;
Talwar et al., 1994; Tong et al., 1994; ?; ?; Yellin and Weinstein, 1996; Torlak and Xu, 1997; Paulraj and
Papadias, 1997; Papadias and Paulraj, 1997; Tsatsanis and Giannakis, 1997; Diamantaras et al., 2000;
Diamantaras and Papadimitriou, 2004a,b), in biomedical signal processing (Choi et al., 2000; Cichocki
et al., 1999; Jung et al., 1998; ?; Makeig et al., 1997; McKeown et al., 1998; Vigário et al., 2000), in
acoustics and speech processing (Shamsunder and Giannakis, 1997; Parra and Spence, 2000; Parra and
Alvino, 2002; Douglas and Sun, 2003), etc. Many recent books on the subject (Haykin, 2000a,b; Cichocki
and Amari, 2002; Hyvärinen et al., 2001) provide extensive discussion on related problems and methods.

The most general finite, linear, time invariant (LTI) system is expressed by a multichannel convolution
of length L, operating on a discrete vector signal s(k) = [s1(k), · · · , sn(k)]T ,

x(k) =
L−1∑
i=0

Hi s(k − i). (1.1)

The FIR filter taps Hi are complex matrices, in general, of size m × n, m ≥ 1. Thus the output is an
m-dimensional complex vector x(k). For n,m > 1, Eq. (1.1) describes a linear, discrete, multi-input
multi-output (MIMO) system.

Types of mixing systems. We shall study two special cases of system (1.1) sharing many similarities
but also having some special characteristics as described below:.

1. Instantaneous mixtures.
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In this case we have more than one sources and observations, i.e. m,n > 1, but there is no convolu-
tion involved, so L = 1. The output vector is produced by a linear, instantaneous transformation:

x(k) = Hs(k). (1.2)

This type of system is also called memoryless.

2. Single Input Single Output (SISO) convolution.

In this case we have exactly one source and one observation, so m,n = 1, but the convolution is
non-trivial, i.e. L > 1.

x(k) =
L−1∑
i=0

hi s(k − i). (1.3)

Eq. (1.3) describes a linear, SISO FIR filter.

Types of blind problems. Regardless of the specific system type, there are two kinds of blind problems
which are of interest here, depending on whether we desire to extract the input signals or the system
parameters.

1. Blind source extraction.

In this type of problem our goal is to recover the source(s) given the observation signal x(k) or x(k).
If there are more than one sources the problem is called Blind Source Separation (BSS ). In the case
of BSS the linear system may be either instantaneous or convolutive (general MIMO). In the case
of Blind Deconvolution (BD) we want to invert a linear filter which, of course, operates on its input
via the convolution operator, hence the name “de-convolution” attributed to this problem. The
problem is very important, for example, in wireless communications, where n transmitted signals
corrupted by intersymbol interference (ISI), multiuser interference (MUI), and noise are received at
m antennas.

The source separation/extraction problem has an inherent ambiguity in the order and the scale
of the sources: the original signals can not be retrieved in their original order or scale unless
some further information is available. For example, if the source samples (symbols) are drawn
from a known finite alphabet then there is no ambiguity in the scale. If however, the alphabet is
symmetric with respect to 0, then there exists a sign ambiguity since both signals s(k) and −s(k)
are plausible. Furthermore, the ordering ambiguity is always present if the problem involves more
than one sources.

2. Blind system identification.

In this type of problem our goal is to obtain the system parameters rather than recovering the
source signals. If the system is memoryless then our goal is to recover the mixing matrix H. If the
system involves non-trivial convolution then the goal is to extract the filter taps h0, ..., hL−1, or
H0, ..., HL−1.

Approaches to Blind Signal Processing. Typically, blind problems are approached either using
statistical properties of the signals involved, or exploiting the geometric structure of the data constellation,
as described next.

1. Higher order methods.

According to the central limit theorem, the system output –which is the sum of many input samples–
will approach the Gaussian distribution, irrespective of the input distribution. A characteristic
property of the Gaussian distribution is that all higher-order cumulants (for instance, the kurtosis)
are zero. If the inputs are not normally distributed, their higher order cumulants will be non-zero,
for example positive, and so (1.1) will work as a “cumulant reducer”. Clearly, the blind system
inversion –the linear transform that will recover the sources from the output– should function as a
“cumulant increaser”, i.e. it should maximize the absolute cumulant value for a given signal power.
In fact, this is the basic idea behind all higher-order methods.
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2. Second order methods.

Alternatively, second order methods can be applied when the sources have colored spectra, regardless
of their distribution. If the source colors are not identical then the time-delayed covariance matrices
have a certain eigenvalue structure which reveals the mixing operator, in the memoryless case. This
information can be used for recovering the sources as well. In the dynamic case, things are more
complicated although, again, second order methods have been proposed based on the statistics of
either the frequency or the time domain.

3. A third approach: exploiting the signal geometry.

Neither higher-order nor second-order methods exploit the cluster structure or shape of the input
data when such a structure or shape exists. Consider for example a source signal s(k) whose samples
are drawn from a finite alphabet AM = {±1, · · · ± (M/2)} (M= even). Let the SISO FIR filter
described in Eq. (1.3) be excited by s(k). Writing N equations (N ≥ L) of the form (1.3) for N
consecutive values of k, we obtain the following matrix equation:

x(k)
x(k + 1)

...
x(k +N − 1)

 =


s(k) s(k − 1) · · · s(k + 1− L)

s(k + 1) s(k) s(k + 2− L)
...

...
...

s(k +N − 1) s(k +N − 2) · · · s(k +N − L)




h0

h1

...
hL−1

 (1.4)

x = Sh (1.5)

where the N ×L Toeplitz matrix S involves (N +L− 1) unknown input symbols. It is possible, in
principle, to identify h in a deterministic way by an exhaustive search over all MN+L−1 possible
S’s such that minh ∥x− Sh∥2 = 0. Although it is highly impractical, this observation tells us that
there is more to blind signal processing than statistical processing. If the sources for example, have
a certain structure which produces clusters in the data cloud, or the input distribution is bounded
(e.g. uniform) then one can exploit the geometric properties of the output constellation and derive
fast and efficient deterministic algorithms for blind signal processing. These methods are treated
in this chapter. In particular, Section 1.2 discusses blind methods for systems with finite alphabet
sources. The discussion covers both instantaneous and the convolutive mixtures and it is based
on the geometric properties of the data cloud. Section 1.3 discusses the case of continuous valued
sources which are either sparse or have a specific input distribution, for example uniform. Our
discussion on continuous sources covers only the case of instantaneous systems. Certainly there is
a lot of room for innovation along this line of research since many issues, today, remain open.

1.2 Finite Alphabet sources

Blind problems involving sources with Finite Alphabets (FA) have drawn a lot of attention, because
such types of signals are common in digital communications. Popular modulation schemes, for instance,
Quadrature Amplitude Modulation (QAM ), Pulse Amplitude Modulation (PAM ) and Binary Phase Shift
Keying (BPSK ), produce signals with limited numbers of symbols. A large body of literature exists on the
instantaneous mixture problem, not only because it is the simplest one but also because most methods
dealing with the more realistic convolutive mixture problem lead to the solution of an instantaneous
problem. In (Anand et al., 1995) the blind separation of binary sources from instantaneous mixtures
is approached using separate clustering and bit-assignment algorithms. An extension of this method
is presented in (Kannan and Reddy, 1997) where a Maximum Likelihood (ML) estimate of the cluster
centers is provided. Talwar et al. (1996) presented two iterative least squares methods: ILSP (Iterative
Least Squares with Projection) and ILSE (Iterative Least Squares with Enumeration) for the BSS of
binary sources. The same problem is treated in (van der Veen, 1997) where the Real Analytical Constant
Modulus Algorithm (RACMA) is introduced based on the SVD of the observation matrix. In (Pajunen,
1997) an iterative algorithm is proposed for the blind separation of more binary sources than sensors.
Finite alphabet sources and instantaneous mixtures are discussed in (Belouchrani and Cardoso, 1994)
where a Maximum Likelihood approach is proposed using the EM algorithm. (Grellier and Comon,
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1998) introduce a polynomial criterion and a related minimization algorithm to separate FA sources. In
all the above methods the geometric properties of the data cloud are not explicitly used. Geometrical
concepts, such as the relative distances between the cluster centers, were introduced in (Diamantaras,
2000; Diamantaras and Chassioti, 2000). It turns out that just one observation signal is sufficient for
blindly separating n binary sources, in the noise free case, under mild assumptions. A similar algorithm
based on geometric concepts was later proposed in (Li et al., 2003).

In this section we shall study the geometric structure of data constellations generated from linear
systems operating on signals with finite alphabets. We’ll find that the geometry of the obtained data
cloud contains information pertaining to the generating linear operator. This information can be exploited
either for the blind extraction of the system parameters or for the blind retrieval of the original sources.

1.2.1 Instantaneous mixtures of binary sources

The simplest alphabet is the two element set, or binary alphabet Aa = {−1, 1}. We shall assume that
the samples of some source signals are drawn from Aa, and the signals will be called binary antipodal
or, simply, binary. In digital communications the carrier modulation scheme using symbols from Aa is
called Binary Phase Shift Keying (BPSK). The reader is encouraged to verify that our results can be
easily generalized to any type of binary alphabet, for example, the nonsymmetric set Ab = {0, 1}.

In this subsection we shall concentrate on problem type 1, i.e. on linear memoryless mixtures of many
sources, n > 1. Depending on the number of output signals (observations) m, we treat three distinct
cases (a) m = 1, (b) m = 2, and (c) m > 2.

A single mixture

The instantaneous mixture of n sources linearly combined into a single observation is described by the
following equation

x(k) =
n∑

i=1

hi si(k) = hT s(k), (1.6)

h = [h1 · · ·hn]
T , s(k) = [s1(k) · · · sn(k)]T .

We assume that the mixing coefficients hi are real and that si(k) ∈ Aa. If the coefficients are complex
then the problem corresponds to the case m = 2 which is treated in Section 1.2.1. We start by studying
the noise-free system since our primary interest is to investigate the structural properties of the signals
and not to develop methods to combat the noise. Of course, eventually, the development of a viable
algorithm will have to deal with the noise issue.

Eq. (1.6) can be seen as the projection x̃(k) of s(k) along the direction of the normal vector h̃, scaled
by ∥h∥:

x(k) = ∥h∥ x̃(k) (1.7)

x̃(k) = h̃T s(k) (1.8)

h̃ = h/∥h∥ (1.9)

The set of values of x(k) will be called the constellation of x(k) and it will be denoted by X . It is a set
of (at most) 2n points in 1-D space, R.

Two sources. In order to facilitate our understanding of the geometric structure of X let us start by
assuming that there are only n = 2 sources. Thus, there exist four possible realizations of the vector
s(k), which form the source constellation S = {s−−, s−+, s+−, s++}, where

s−− = [−1,−1]T , s−+ = [−1, 1]T , s+− = [1,−1]T , and s++ = [1, 1]T .
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Figure 1.1: The source constellation (circles) of two independent binary sources is projected on four
different directions. The relative distances of the projection points (marked by squares) is clearly a
function of the slope of the projection line.

Consequently, the output constellation X also consists of four distinct values:

x−− = ∥h∥ x̃−− = hT s−−,

x−+ = ∥h∥ x̃−+ = hT s−+,

x+− = ∥h∥ x̃+− = hT s+−,

x++ = ∥h∥ x̃++ = hT s++.

Figure 1.1 shows the projections x̃−−, x̃−+, x̃+−, x̃++, of the source constellation S for four different
normal mixing vectors h̃. It is obvious that the relative distance between the points on the projection
line is a function of the angle θ between the projection line and the horizontal axis. Apparently, the
problem involves a lot of symmetry. In particular, it is straightforward to verify that we obtain the same
output constellation X for the angles ±θ, ±(π/2− θ), ±(π− θ), and ±(3π/2− θ), (any θ). This multiple
symmetry is the result of the interchangeability of the two sources, s1 and s2, as well as the invariance
of the source constellation to sign changes. These ambiguities are however acceptable, since it is not
possible to recover the original source order or the original source signs. Both the source order and the
sign are unobservable as it is eminent from the following relations:

x(k) = [±h1,±h2] [±s1(k),±s2(k)]
T

= [±h2,±h1] [±s2(k),±s1(k)]
T

Therefore, let us assume, without loss of generality, that the mixing vector h satisfies the following
constraint

h1 > h2 > 0. (1.10)

Under this assumption, the elements of X are ordered:

x−− = −h1 − h2 < x−+ = −h1 + h2 < x+− = +h1 − h2 < x++ = +h1 + h2 (1.11)
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Indeed, the first and third inequalities in (1.11) are obvious since the mixing coefficients are positive. The
second inequality is also true since x+− − x−+ = 2(h1 − h2) > 0.

Thus, by clustering the (observable) output sequence {x(1), x(2), x(3), · · · } we obtain four cluster
points c1, c2, c3, c4, which can be arranged in increasing order and set into one-to-one correspondence
with the elements of X .

c1 = x−− < c2 = x−+ < c3 = x+− < c4 = x++ (1.12)

c1 = −c4; c2 = −c3 .

Then using (1.11) we can recover the mixing parameters:

h1 = (c3 − c1)/2, (1.13)

h2 = (c2 − c1)/2. (1.14)

Example 1 Figure 1.2 shows the position of the cluster points c1, ..., c4, for the random mixing vector
h = [0.9659, 0.2588]T . According to (1.11), (1.12), these cluster points are:

c1 = x−− = −1.2247
c2 = x−+ = −0.7071
c3 = x+− = 0.7071
c4 = x++ = 1.2247

By computing the distances between the pairs (c3, c1) and (c2, c1), we obtain directly the unknown mixing
parameters:

(c3 − c1)/2 = 0.9659 = h1

(c2 − c1)/2 = 0.2588 = h2
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Figure 1.2: The distances c3-c1 and c2-c1 between the cluster points are equal to twice the size of the
unknown mixing parameters.

If our aim is to identify the mixing parameters h1, h2, then (1.13) and (1.14) have achieved our goal.
If, in addition, we want to extract the hidden sources then we may estimate each input sample s(k),
separately, by finding the binary vector b = [b1, b2]

T ∈ A2
a, so that hTb best approximates x(k). This

corresponds to the following binary optimization problem,

ŝ(k) = arg min
b∈A2

a

|x(k)− hTb|, for all k. (1.15)

Luckily the above optimization problems are decoupled, for different k, and so the solution is trivial.
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More than 2 sources. The whole idea can be extended to more than two sources using recursive
“system deflation”. This process iteratively identifies and removes the two smallest mixing parameters,
thus eventually reducing the problem to either: (a) the 2-input case which is solved as above, or (b) the
single-input case which is trivial. Our linear mixture model is again the one described in Eq. (1.6) with
n > 2 and some real mixing vector h = [h1, · · · , hn]

T .
As before, without loss of generality, we shall assume that the mixing parameters are positive and

arranged in decreasing order
h1 > h2 > · · · > hn > 0. (1.16)

We have already shown that for n = 2 the centers ci are arranged in increasing order. For n > 2

things are a bit more complicated. Let us define B(n) to be the 2n × n matrix whose i-th row b
(n)
i

T
, is

the binary representation of the number (i− 1) ∈ {0, · · · , 2n − 1}:

B(n) △
=



−1 −1 · · · −1 −1
−1 −1 · · · −1 1
−1 −1 · · · 1 −1
...

...
...

...
1 1 · · · −1 1
1 1 · · · 1 −1
1 1 · · · 1 1


(1.17)

Although the sequence {c1, · · · , c2n}, of the centers

ci = b
(n)
i

T
h =

n∑
j=1

b
(n)
ij hj , i = 1, · · · , 2n (1.18)

is not exactly arranged in increasing (or decreasing) order, there is a lot of structure in the sequence as
summarized by the following facts (Diamantaras and Chassioti, 2000):

• the first three centers c1 < c2 < c3 are the three smallest values in the sequence ci. Similarly, the
last three centers c2n−2 < c2n−1 < c2n are the three largest values in the sequence {ci};

• the sequence c1, ..., c2n , defined by Eq. (1.18) consists of consecutive quadruples, each arranged in
increasing order:

c4i+1 < c4i+2 < c4i+3 < c4i+4, i = 0, · · · , 2n−2 − 1

The smallest element of the i-th quadruple is

c4i+1 = [
n−2∑
j=1

b
(n)
4i+1,j hj ]− hn−1 − hn. (1.19)

• The differences

δ1 = c4i+2 − c4i+1 = 2hn (1.20)

δ2 = c4i+3 − c4i+1 = 2hn−1 (1.21)

δ3 = c4i+4 − c4i+1 = 2(hn−1 + hn) (1.22)

between the members of the i-th quadruple are independent of i.

• Since

c2 = c1 + 2hn

c3 = c1 + 2hn−1

the two smallest mixing parameters hn−1, hn, can be retrieved using the values of the three smallest
centers c1, c2, and c3:

hn = (c2 − c1)/2 (1.23)

hn−1 = (c3 − c1)/2 . (1.24)
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Once we have obtained hn−1 and hn we can define a new sequence {c′i} by picking the first elements
of each quadruple shifted by the sum (hn−1 + hn) thus obtaining:

c′i = c4(i−1)+1 + hn−1 + hn =
n−2∑
j=1

b
(n)
4(i−1)+1,j hj , i = 1, · · · , 2n−2 (1.25)

Notice however, that the first n− 2 bits of the [4(i− 1)+1]-th row of B(n) are all the bits of the i-th row
of B(n−2). In other words,

b
(n)
4(i−1)+1,j = b

(n−2)
ij , j = 1, · · · , n− 2

therefore,

c′i = b
(n−2)
i

T
h =

n−2∑
j=1

b
(n−2)
ij hj , i = 1, · · · , 2n−2 (1.26)

Using these facts the following recursive algorithm is constructed

Algorithm 1 (: n binary sources, 1 observation)
Step 1. Compute the centers ci and sort them in increasing order
Step 2. Compute hn, hn−1, from Eqs. (1.23), (1.24).
Step 3. Compute the differences δi, using Eqs. (1.20), (1.21), (1.22).
Step 4. Remove the set {c1, c2, c3, c1 + δ3} from the sequence {ci}. Set c′1 = c1 + hn + hn−1 as the first
element of a new sequence {c′i}.
Step 5. Repeat until all elements have been removed:

Find the smallest element cj of the remaining sequence {ci};
Remove the set {cj , cj + δ1, cj + δ2, cj + δ3} from {ci};
Keep cj + hn + hn−1 as the next element of the sequence {c′i}.

At the end, the new sequence {c′i} will be 4 times shorter than the original {ci}.
Step 6. Recursively repeat the algorithm for the new sequence {c′i} and for a new n′ = n − 2 to obtain
hn′ = hn−2, hn′−1 = hn−3. Eventually, n′ = 2 or n′ = 1.

Steps 4 and 5 are the basic recursion which reduces the problem size from n to n − 2 by replacing
the sequence ci by c′i. At step 6, we will iteratively obtain the pairs (hn, hn−1), (hn−2, hn−3), ..., until
we reach the case where n′ = 2 or n′ = 1. The case for n′ = 2 sources was treated in the previous
subsection. The case for n′ = 1 is trivial since it involves only one source. In this case, the observation
is simply a scaled version of the input, x(k) = h1s1(k), thus, the estimation of h1 and s(k) is easy: we
have h1 = |x(k)| (since |s(k) = 1| and h1 > 0) and so s(k) = x(k)/h1.

Example 2 Consider the following system with 4 sources and 1 observation:

x(k) = −0.4326s1(k) + 1.2656s2(k) + 0.1553s3(k)− 0.2877s4(k)

The mixing vector h = [−0.4326, 1.2656, 0.1553,−0.2877] does not satisfy (1.16). The algorithm will
recover the vector ĥ = [1.2656, 0.4326, 0.2877, 0.1553] which does satisfy (1.16) and it is identical to h
except for the permutation and sign changes of its elements.
Step 1: The sorted sequence of centers is

c = { −2.1412,−1.8306,−1.5658,−1.2760,−1.2552,−0.9654,−0.7006,−0.3900,
0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412 }

Step 2: Using Eqs. (1.23), (1.24) we compute ĥ3 = 0.2877, ĥ4 = 0.1553.
Step 3: Using Eqs. (1.20), (1.21), (1.22), we obtain δ1 = 0.3106, δ2 = 0.5754, δ3 = 0.8860.
Step 4: Remove {c1, c2, c3, c1 + δ3} = {−2.1412,−1.8306,−1.5658,−1.2552} from c. Set c′1 = −1.6982.
New sorted sequence:

c = { −1.2760,−0.9654,−0.7006,−0.3900,
0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412 }.
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Step 5: Remove {c1, c1 + δ1, c1 + δ2, c1 + δ3} = {−1.2760,−0.9654,−0.7006,−0.3900} from c. Set c′2 =
−0.8330. New sorted sequence:

c = {0.3900, 0.7006, 0.9654, 1.2552, 1.2760, 1.5658, 1.8306, 2.1412}.

Step 6: Remove {c1, c1 + δ1, c1 + δ2, c1 + δ3} = {0.3900, 0.7006, 0.9654, 1.2760}. Set c′3 = 0.8330. New
sorted sequence:

c = {1.2552, 1.5658, 1.8306, 2.1412}.

Step 6: Remove {c1, c1 + δ1, c1 + δ2, c1 + δ3} = {1.2552, 1.5658, 1.8306, 2.1412}. Set c′4 = 1.6982. New
sorted sequence:

c = ∅.

The new sequence c′ = {−1.6982,−0.8330, 0.8330, 1.6982}, yields the estimates of the remaining mix-

ing parameters ĥ1 = 1.2656, ĥ2 = 0.4326.

Two mixtures

In the case of m = 2 mixtures the observed data x(k) lie in the 2-dimensional space R2. Although it is
possible to see each mixture separately as a single-mixture-multiple-sources problem, as the one treated
in Section 1.2.1, this is not the most efficient approach to the problem. It turns out that the 2-D structure
of the output constellation reveals the mixing operator H in a very elegant and straightforward way. To
see that, let us start by considering the data constellation of a binary antipodal signal s1(k) (Figure 1.3a).
The constellation actually consists of two points on the real axis: s− = −1 and s+ = 1. Next, consider a

linear transformation from R1 to R2 which maps s1(k) to a vector signal x(1)(k) = [x
(1)
1 (k), x

(1)
2 (k)]T :

x(1)(k) = h1s1(k) (1.27)

The linear operator h1 = [h11, h12]
T is a 2-dimensional vector shown in Fig. 1.3b. The constellation of

x(k) is shown in Fig. 1.3c and it also consists of two points x− = −h1 = s−h1 and x+ = h1 = s+h1.
Now let us look at shape of the data cloud corresponding to the linear combination of several binary

antipodal sources s1(k), ..., sn(k). It is instructive to study the shape of this cloud as n increases gradually
from n = 2 and upwards. The linear mixture of n = 2 sources

x(2)(k) = h1s1(k) + h2s2(k) (1.28)

has the geometric structure shown in Figure 1.4b, for the mixing vectors h1, h2, shown in Figure 1.4a.
The data cluster contains four points: x++ = s+h1 + s+h2, x

+− = s+h1 + s−h2, x
−+ = s−h1 + s+h2,

and x−− = s−h1 + s−h2.
Adding a third source s3(k) with the mixing vector h3 the data mixture

x(3)(k) = h1s1(k) + h2s2(k) + h3s3(k) (1.29)

has the constellation shown in Figure 1.5. Now the data cluster contains eight points: x+++ = s+h1 +
s+h2+ s+h3, x

++− = s+h1+ s+h2+ s−h3, x
+−+ = s+h1+ s−h2+ s+h3, x

+−− = s+h1+ s−h2+ s−h3,
x−++ = s−h1 + s+h2 + s+h3, x−+− = s−h1 + s+h2 + s−h3, x−−+ = s−h1 + s−h2 + s+h3, and
x−−− = s−h1 + s−h2 + s−h3.

By simple inspection of Figs. 1.3, 1.4, and 1.5, one can make the following useful observations:

1. The number of cluster points is 2n, where n is the number of binary sources.

2. The data constellation is a symmetric, self-repetitive figure. While the symmetry is obvious, the
self-repetitive structure can be seen by comparing, for example, Fig. 1.5b against Fig. 1.4b. The
first consists of two copies of the latter shifted by the vectors −h3 and h3. The same is true for
Figs. 1.4b and 1.3c except that the shift is by the vectors −h2 and h2.

3. For every cluster point there exist n copies at the directions h1 or −h1, and h2 or −h2, ..., and hn

or −hn.
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Figure 1.3: (a) Data constellation of a binary antipodal signal s1(k). (b) Linear transformation vector
h1. (c) Data constellation of the transformed signal x(1)(k) = h1s1(k).

It is even more interesting and, in fact, very useful to study the properties of the convex hull of the
data constellation set. By definition, the convex hull of a set of points in 2-D space is the smallest polygon
that contains them or, in other words, the bounding polygon for these points. Figures 1.6a-c show the
convex hulls H1, H2, and H3, for the data constellations corresponding to the mixtures x(1), x(2), and
x(3), respectively. Let d is the distance between the two alphabet symbols. It can be shown that any
convex hull H satisfies the following properties (for the proof see (Diamantaras, 2002)):

1. Every edge e of H is parallel to some mixing vector hi, i ∈ {0, 1, · · · , n}. Also, e has length d∥hi∥.
For the binary antipodal alphabet Aa, we have d = 2.

2. Every vector hi corresponds to a pair of edges, i.e. it is parallel to two edges ei and e′i of equal
length d∥hi∥. It follows that H has 2n edges.

3. H is symmetric. If the alphabet is symmetric around 0 (e.g. Aa) then the center of symmetry is
the point xO = 0. Otherwise, the center of symmetry is a non-zero point x′

O ∈ Rm.

These important results show that there is a two-to-one correspondence between the edges of the
convex hull and the unknown mixing vectors: there is a pair of edges parallel to each mixing vector and
furthermore, the edges have length equal to d times the length of their corresponding mixing vectors.
Thus we easily come to the following procedure for the identifying the hi’s:

Algorithm 2 (: n binary sources, 2 observations)
Step 1. Find the constellation set X of the 2-D mixture x(k).
Step 2. Compute the convex hull H of X .
Step 3. H consists of 2n edge pairs {ei, e′i}, ei∥e′i, i = 1, · · · , n. The number of sources is n.
Step 4. The mixing vectors are: hi = ei/d, upto an unknown ordering and sign.
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Figure 1.4: (a) Mixing vectors h1, h2. (b) Data cluster for the mixture x(2)(k) = h1s1(k) + h2s2(k) of
two binary antipodal sources.
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Figure 1.5: (a) Mixing vectors h1, h2, h3. (b) Data cluster for the mixture x(3)(k) = h1s1(k)+h2s2(k)+
h3s3(k) of three binary antipodal sources.

Of course, the original order and sign of the vectors are irretrievable. As we have seen, this is a
general, problem-inherent limitation and it is not specific to this (or any other) particular method. In
fact, the limitation cannot be overcome without additional information regarding the sources or the
mixing operators.

More than 2 mixtures.

It is not difficult to see that the whole convex hull idea can be extended to the case where m ≥ 3. Again,
the edges of the convex hull will be parallel to the mixing vectors hi except that, now, the convex hull lies
in Rm. The algorithms for computing the convex hull in m-dimensional spaces are not as simple as the
ones for the 2-D case. For a comprehensive discussion of this topic see (Preparata and Shamos, 1985).

1.2.2 Instantaneous mixtures of M-ary alphabet sources

The results of Section 1.2.1 can be easily extended to M -ary signals, i.e. signals whose alphabet contains
M discrete and equally distributed values. For example, the alphabet A5 = {−1,−1/2, 0, 1/2, 1}, contains
M = 5 symbols symmetrically distributed around 0. Similar results, as in the binary case, hold here as
well. Again, the convex hull directly connects the constellation geometry with the unknown mixing
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Figure 1.6: Convex hulls for data constellations of mixtures of n binary sources. (a) n = 1, (b) n = 2,
(c) n = 3.
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Table 1.1: True and estimated mixing vectors.

h1 ĥ1 h2 ĥ2 h3 ĥ3

0.3000 0.3017 − 0.1000 −0.0960 − 0.4000 0.3917
0.5000 0.4902 0.6000 0.6089 −0.1000 0.1009

vectors. Let d be the distance between the maximum and minimum symbols in the M -ary alphabet AM

d = max{AM} −min{AM}

Also let H be the convex hull of the constellation X of the mixture x(k) = h1s1(k) + · · ·+ hnsn(k)

1. The number of cluster points is Mn, where n is the number of M -ary sources.

2. The data constellation is a symmetric, self-repetitive figure.

3. Every edge e of H is parallel to some mixing vector hi, i ∈ {0, 1, · · · , n}, and e has length d∥hi∥.

4. Every vector hi corresponds to a pair of edges, i.e. it is parallel to two edges ei and e′i of equal
length d∥hi∥. It follows that H has 2n edges.

5. H is symmetric. For alphabets symmetric around zero the center of symmetry is xO = 0.

We may use Algorithm 2 without modifications for the solution of the M -ary case as well.

1.2.3 Noisy data

The analysis of the previous subsections pertains to systems with noiseless outputs. In most applications
however, the observation is burdened with noise, either because the system itself is noisy or the receiving
device introduces errors in the measurements. The additive noise model is commonly used for describing
the observation error:

x(k) = Hs(k) + v(k) (1.30)

Without loss of generality, and for the sake of visualization we shall focus on the two-output case. An
entirely similar discussion holds for the cases n = 1 or n > 2. The vector signal v(k) = [v1(k), · · · , vn(k)]T ,
contains the noise components vi(k) for each observed output signal i = 1, · · · , n. The constellation of
x is now less crisp since the true centers are surrounded by a cloud of points (Fig. 1.8a). The methods
presented in Sections 1.2.1 and 1.2.2 can be still applied preceded by a clustering process that will
estimate the actual centers from the noisy data cloud. Such clustering methods include the ISODATA
or K-means algorithm (Lloyd, 1982; MacQueen, 1967; Duda et al., 2001), the EM algorithm (Dempster
et al., 1977), the neural gas algorithm (Martinetz et al., 1993), Kohonen’s Self-Organizing Feature Maps
(SOM) (?), RBF neural networks (Moody and Darken, 1989), and many others. For a detailed treatment
of clustering methods refer to (Theodoridis and Koutroubas, 1998). Figure 1.8b shows the estimation
of the true centers using the k-means algorithm in a system with 3 binary inputs and 2 linear output
mixtures with noise power at 15db. Notice that the estimation errors inside the convex hull do not affect
the results. It is only the errors at the boundary that are significant. We apply the blind identification
method of Section 1.2.1 using the estimated centers provided by k-means, obtaining the results shown in
Table 1.1.

1.2.4 Convolutive mixtures of binary sources

The convolutive mixtures of binary sources are described by the output of the MIMO FIR system (1.1).
The blind problems related to such systems are considerably more difficult than the corresponding in-
stantaneous mixture problems, but at the same time, they are much more important. Convolutive mixing
models, for example, can describe multipath and crosstalk phenomena in wireless communications, being
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Figure 1.7: Convex hulls of mixture constellations from n M -ary sources (M = 5). The source symbols
are drawn from the alphabet {−1,−0.5, 0, 0.5, 1}, with maximum distance d = 2. (a) n = 1, (b) n = 2,
(c) n = 3.
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Figure 1.8: (a) Data constellation for a noisy memoryless linear system with 3 binary inputs and 2 outputs
(mixtures). The noise level is 15db. Superimposed are the true cluster centers marked with ’o’. (b) True
cluster centers (o) and estimated cluster centers (x) using the k-means algorithm. Also shown is the true
convex hull (solid line) and the estimated convex hull (dashed line).

in that sense, much more realistic than instantaenous models. In this section we shall approach the
blind source separation and blind system identification problems of MIMO FIR models using the geo-
metric properties of the data constellation. We shall treat, first, the simpler Single-Input Single-Output
(SISO) problem and then continue on to the Multi-Input Single-Output (MISO) case. The proper MIMO
problem is not explicitly discussed since it can be seen as a multitude of m decoupled MISO problems.

Blind SISO deconvolution as instantaneous BSS

In this section we shall use the results of the previous sections to solve the blind SISO identification
and deconvolution problems. Our approach is to relate any given SISO system with an overdetermined
instantaneous mixtures model, hence the same methods can be applied as in Sections 1.2.1 and 1.2.1. Let
us consider a linear, FIR, single-input single-output (SISO) system with a binary antipodal input s(k),

x(k) =
L−1∑
i=0

his(k − i) (1.31)

We shall assume that the impulse response hi, i = 0, · · · , L− 1, is real. Let us create a vector sequence
x(k) using time-windowing of length m on the output sequence x(k)

x(k) = [x(k), · · · , x(k −m+ 1)]T (1.32)

Then using the system Equation (1.31) we have

x(k) = Hs(k) (1.33)

where H is the Toeplitz system matrix

H =


h0 h1 · · · hL−1 0 · · · 0
0 h0 · · · hL−2 hL−1 0 0

. . .
. . .

0 · · · 0 h0 · · · hL−2 hL−1

 (1.34)

and

s(k) = [s(k), s(k − 1), · · · , s(k −m− L+ 2)]T (1.35)



16 Haykin, e.a.: New Directions in Statistical Signal Processing, MIT Press 2006

Now, Eq. (1.33) describes m linear instantaneous mixtures x′
i(k) = x(k − i), i = 0, · · · ,m − 1, of n

sources s′j(k) defined as follows:

s′j(k) = s(k − j + 1), j = 1, 2, · · · , n = m+ L− 1

Thus, we have successfully transformed the problem into the same form treated in Section 1.2.1:

x′
i(k) =

n∑
j=1

hijs
′
j(k) (1.36)

where hij is the (i, j)-th element of H. Equivalently, we can write

x(k) =
n∑

j=1

hjs
′
j(k) (1.37)

where the mixing vectors h1, ..., hn are the columns of H. Given the above formulation, the results of
Section 1.2.1 apply directly to this problem. There are, however, some special points to be noted:

1. For any non-trivial FIR filter of length L > 1, the number of observations x′
1, ..., x

′
m, is necessarily

less than the number of sources s′1, ..., s
′
n, since n = m+ L− 1 > m.

2. The mixing vectors have no arbitrary form. For example, h1 has the form [×, 0, · · · , 0]T and hn

has the form [0, · · · , 0,×]T .

3. The sources are not independent. In fact, any one is a shifted version of any other.

Next, we shall give examples for two cases (a) m = 1 and (b) m = 2.

Example 3 (Time widow of length m = 1.) Suppose that we observe the output x(k) of a SISO filter
h = [−0.4937, −1.1330, 0.7632, 0.1604]T excited by the binary input s(k). Using Algorithm 1 we shall
identify the filter with the necessary permutation and sign changes so that the estimated taps will be
positive and arranged in decreasing order. Thus we shall obtain ĥ = [1.1330, 0.7632, 0.4937, 0.1604]T

and so

x(k) = ĥ1ŝ
′
1(k) + ĥ2ŝ

′
2(k) + ĥ3ŝ

′
3(k) + ĥ4ŝ

′
4(k)

= (−h2)(−s′2(k)) + h3s
′
3(k) + (−h1)(−s′1(k)) + h4s

′
4(k)

Obviously, the estimated sources ŝ′i correspond to the true “sources” s′i as follows:

ŝ′1(k) = −s′2(k) = −s(k − 1),

ŝ′2(k) = s′3(k) = s(k − 2),

ŝ′3(k) = −s′1(k) = −s(k),

ŝ′4(k) = s′4(k) = s(k − 3).

Since the signals ŝ′i are shifted versions of the original source, s(k), it is easy to recover their correct
order and relative sign changes by computing for each signal, the time-shift with maximum correlation to
an arbitrary reference, for example, ŝ′1. Applying the same ordering and sign changes to ĥ we obtain ±h.

Example 4 (Time widow of length m = 2.) Consider the same SISO filter as before and let us use
time-widowing of length m = 2 to obtain the vector sequence x(k):

x(k) =

[
x(k)

x(k − 1)

]

=

[
−0.4937 −1.1330 0.7632 0.1604 0

0 −0.4937 −1.1330 0.7632 0.1604

]
s(k)

s(k − 1)
s(k − 2)
s(k − 3)
s(k − 4)
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Using Algorithm 2 we estimate the original mixing vectors h1 = [−0.4937, 0]T , h2 = [−1.1330, −0.4937]T ,
h3 = [0.7632, −1.1330]T , h4 = [0.1604, 0.7632]T , h5 = [0, 0.1604]T , but with an arbitrary order and sign
change. The estimated mixing vectors can be put to the correct order by observing that the true system
parameters satisfy the following

h1,1 = h2,2 = −0.4937,

h2,1 = h3,2 = −1.1330,

h3,1 = h4,2 = 0.7632,

h4,1 = h5,2 = 0.1604,

h5,1 = h1,2 = 0 .

Since the sign of each estimated vector is arbitrary, we compare the absolute values |ĥi,1|, against |ĥj,2|
and we change the signs of either ĥi or ĥj, as necessary, so that ĥi,1 = ĥj,2. Once the correct order of
the mixing vectors is retrieved we automatically obtain the correct filter impulse response (up to a sign).
Subsequently, the system input, s(k), is retrieved using standard (non-blind) deconvolution methods.

Blind SISO identification

An alternative approach for identifying the impulse response h = [h0, · · · , hL−1]
T of a general SISO

system (1.31) has been proposed by Yellin and Porat Yellin and Porat (1993). The method is not based
on constellation geometry but rather on the properties of the successor values of “equivalent” observations.
The source symbols s(k) may be drawn from an M -ary alphabet AM = {±1, · · · ,±(M/2)} (M=even).
Before we proceed we need to introduce the concept of equivalence between two observations:

Definition 1 (Observation Equivalence) Two observations x(k) and x(l) are said to be equivalent
if the input values that produce them according to Eq. (1.31) are identical: s(k − i) = s(l − i), for all
i = 0, · · · , L− 1.

Note that two equivalent observations are necessarily equal, but the converse may not be true. Indeed, it
is possible that two equal observations x(k) = x(l), are produced by two different strings of input symbols
[s(k), · · · , s(k − L+ 1)] ̸= [s(l), · · · , s(l − L+ 1)].

Consider four sets of (N+1) consecutive observations from (1.31): Xj = {x(j), x(j+1), · · · , x(j+N)},
Xk = {x(k), x(k+1), · · · , x(k+N)}, Xl = {x(l), x(l+1), · · · , x(l+N)}, Xm = {x(m), x(m+1), · · · , x(m+
N)}. Further assume that the pairs {x(j), x(k)} and {x(l), x(m)} are equivalent. Define

σjki = [s(j + i)− s(k + i)]/2,
σlmi = [s(l + i)− s(m+ i)]/2; i = 1, · · · , N (1.38)

and note that σjki, σlmi ∈ A0
M = AM ∪ 0. Let the following conditions be true:

A. σjk1, σlm1 are nonzero and coprime, i.e. their greatest common divisor is 1.

B. For all α, β ∈ AM ∣∣∣∣ σjk1

σlm1

∣∣∣∣ = ∣∣∣∣αβ
∣∣∣∣⇒ |α| = |σjk1|, |β| = |σlm1|

C. For all α, β ∈ A0
M ,

σjk1

σlm1
̸= σjki − α

σlmi − β
, for all i = 2, · · · , N

The method starts by identifying the first filter tap h0 upto a sign, and continues by recursively identifying
the remaining taps given the previous ones. Begin with the remark that x(j) and x(k) are equivalent,
so [s(j), · · · , s(j − L + 1)] = [s(k), · · · , s(k − L + 1)]. Then, the successor values of x(j), x(k), can be
written as

x(j + 1) = h0s(j + 1) +

L−1∑
i=1

his(j + 1− i),
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x(k + 1) = h0s(k + 1) +
L−1∑
i=1

his(k + 1− i),

so,
x(j + 1)− x(k + 1)

2
= σjk1h0. (1.39)

Similarly, for x(l + 1), x(m+ 1):

x(l + 1)− x(m+ 1)

2
= σlm1h0, (1.40)

and so,
x(j + 1)− x(k + 1)

x(l + 1)− x(m+ 1)
=

σjk1

σlm1
(1.41)

By assumption B, the ratio |σjk1/σlm1| is produced by a unique enumerator-denominator pair in AM .
Thus both values σjk1 and σlm1 can be uniquely identified, upto a sign, leading to the magnitude esti-
mation of h0 by:

|h0| =
|x(j + 1)− x(k + 1)|

2|σjk1|
=

|x(l + 1)− x(m+ 1)|
2|σlm1|

(1.42)

Without loss of generality, we may assume that h0 > 0, and proceed to the estimation of h1 as follows:
write the second successors of x(l), x(k), as

x(j + 2) = h0s(j + 2) + h1s(j + 1) +
L−1∑
i=2

his(j + 1− i),

x(k + 2) = h0s(k + 2) + h1s(k + 1) +
L−1∑
i=2

his(k + 1− i),

hence,
x(j + 2)− x(k + 2)

2
= σjk2h0 + σjk1h1. (1.43)

Similarly,
x(l + 2)− x(m+ 2)

2
= σlm2h0 + σlm1h1. (1.44)

The pair of Equations (1.43), (1.44) involve three unknowns: σjk2, σlm2, h1. However, it turns out that
since the first two unknowns come from the discrete set A0

M and condition C is true, the solution is

unique. Indeed, assume there existed two different solutions {σ(1)
jk2, σ

(1)
lm2, h

(1)
1 }, {σ(2)

jk2, σ
(2)
lm2, h

(2)
1 }. Then

by (1.43), (1.44) we have

(σ
(2)
jk2 − σ

(1)
jk2)h0 = (h

(2)
1 − h

(1)
1 )σjk1 (1.45)

(σ
(2)
lm2 − σ

(1)
lm2)h0 = (h

(2)
1 − h

(1)
1 )σlm1 (1.46)

Thus,

σjk1

σlm1
=

σ
(2)
jk2 − σ

(1)
jk2

σ
(2)
lm2 − σ

(1)
lm2

which is impossible, according to assumption C. Therefore, there exists a unique solution to Eqs. (1.43),
(1.44). From these equations there follows that

h1 =
(x(j + 2)− x(k + 2)

2
− σjk2h0

)
/σjk1 =

(x(l + 2)− x(m+ 2)

2
− σlm2h0

)
/σlm1

so the unique h1 can be obtained by finding the intersection between the sets

F1 =
{

x(j+2)−x(k+2)
2σjk1

+ αh0

σjk1
; α ∈ A0

M

}
F2 =

{
x(l+2)−x(m+2)

2σlm1
+ βh0

σlm1
; β ∈ A0

M

}
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This is computationally trivial since the two sets are finite with few elements. Inductively, for hi, i > 2,
and given the values for h0, ..., hi−1, we form the “deflated” successors

x̄(j + i+ 1) = x(j + i+ 1)−
i−1∑
p=1

σjk(p+1)hi+p (1.47)

x̄(k + i+ 1) = x(k + i+ 1)−
i−1∑
p=1

σjk(p+1)hi+p (1.48)

x̄(l + i+ 1) = x(l + i+ 1)−
i−1∑
p=1

σlm(p+1)hi+p (1.49)

x̄(m+ i+ 1) = x(m+ i+ 1)−
i−1∑
p=1

σlm(p+1)hi+p (1.50)

and we obtain a set of two equations similar to (1.43), (1.44)

x̄(j + i+ 1)− x̄(k + i+ 1)

2
= σjk(i+1)h0 + σjk1hi. (1.51)

x̄(l + i+ 1)− x̄(m+ i+ 1)

2
= σlm(i+1)h0 + σlm1hi. (1.52)

which are solved in a similar fashion, producing the unknown tap hi. Thus, the whole approach is
summarized in the following algorithm

Algorithm 3 (Yellin & Porat)
Step 1. Collect T observation measurements.
Step 2. Find pairs of equivalent measurements. Estimate h0 according to (1.42)
Step 3. Estimate h1 using h0 and the pairs of equivalent observations
Step 4. Continue with the estimation of h2, ..., hn given the previous estimates
Step 5. Use the estimated impulse response to deconvolve the observation sequence and obtain the system
input.

Remarks.

• The choice of pairs of equivalent observations (Step 2 in Algorithm 3) is far from trivial. The
indices j, k, l, m, must satisfy various constraints so that the assumptions of the method are met.
Firstly, according to condition A, we must have σjk1, σlm1 ̸= 0 implying that x(j + 1) ̸= x(k + 1),
x(l + 1) ̸= x(m + 1). Secondly, according to condition C, for all i = 2, · · · , N the ratios σjki/σlmi

should not be equal to σjk1/σlm1. A thorough discussion on the implementation details are given
in the original paper (Yellin and Porat, 1993).

• The method can be easily extended to handle complex input constellations (such as QAM) and/or
complex filter taps.

• For the special case of i.i.d. input signals it is estimated that a sufficient batch size that guarantees
E > 2 equivalent pairs of measurements is T = 2.44E0.61NMN/2.

• It is not possible to satisfy condition C if the source alphabet is binary (AM = Aa), because there
is a limited choice for the values of σjki, σlmi, which belong to the set A0

a = {−1, 0, 1}.

MISO systems: direct source extraction

The blind source extraction directly from the output of a Multi-Input Single-Output (MISO) system
is treated in (Diamantaras and Papadimitriou, 2005). This work is an extension of earlier work on
SISO systems (Diamantaras and Papadimitriou, 2004a). The key to the approach in both cases is the
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structure of the successor values of equivalent observations induced by the fact that the sources are binary.
Subsequently, we shall present the results for the more general MISO case. Let us consider a multi-input
single-output (MISO) model described by the following equation:

x(k) =
L−1∑
i=0

hT
i s(k − i) (1.53)

where hi for i = 0, ..., L − 1, are a set of unknown real n-dimensional mixing vectors or filter taps. The
source vector signal s(k) = [s1(k) · · · , sn(k)]T is composed of n independent binary antipodal signals:
si(k) ∈ Aa. The observations of the mixtures are real-valued scalars. For each k, the vector s(k) can

take one of 2n values denoted by b
(n)
i , i = 1, · · · , 2n. The vector b

(n)
i

T
is the i-th row of the matrix B(n)

defined in (1.17).
Let us extend the concept of observation equivalence, defined before for SISO systems, to MISO

systems by simply replacing the scalar inputs with vector inputs. Each observation x(k) is generated by
the linear combination of L n-dimensional source vectors, therefore, the observation space X ∋ x(k) is
a discrete set consisting of, at most, 2M elements, M = nL. The cardinality |X | will be less than 2M if

and only if there exist two different L-tuples {b(n)
j0

, · · · ,b(n)
jL−1

} and {b(n)
l0

, · · · ,b(n)
lL−1

}, of binary vectors

such that
∑L−1

i=0 hT
i b

(n)
ji

=
∑L−1

i=0 hT
i b

(n)
li

. The following avoids this situation:

Assumption 1 Two observations x(k), x(l), are equivalent if and only if they are equal.

Hence, |X | = 2M . In other words, to every observation value r ∈ X corresponds a unique L-tuple {b̄0(r),
· · · , b̄L−1(r)} of consecutive source vectors that generates this observation. No other observation value
r′ ∈ X corresponds to the same L-tuple of binary vectors. For any x(k) = r, we have

x(k) =
L−1∑
i=0

hT
i b̄i(r) (1.54)

since, by definition,
b̄i(r) = s(k − i), for i = 0, · · · , L− 1.

Now the successor observation, x(k + 1), can be written as:

x(k + 1) = hT
0 s(k + 1) +

L−1∑
i=1

hT
i s(k − (i− 1))

= hT
0 s(k + 1) +

L−1∑
i=1

hT
i b̄i−1(r) (1.55)

Since s(k + 1) is an n-dimensional binary antipodal vector, x(k + 1) can take one of the following 2n

possible values:

yp(r) = hT
0 b

(n)
p +

L−1∑
i=1

hT
i b̄i−1(r), p = 1, · · · , 2n (1.56)

Note that the successor values yp(r) do not depend on the specific time index k but only on the observation
value r. Therefore, each observation value r creates a class of successors Y(r) with cardinality |Y(r)| = 2n.

Furthermore, we have
∑2n

p=1 b
(n)
p = 0, so the mean ȳ(r) of the members of Y(r) is:

ȳ(r) =
1

2n

2n∑
p=1

yp(r)

=
1

2n

(
hT
0

2n∑
p=1

b(n)
p + 2n

L−1∑
i=1

hT
i b̄i−1(r)

)

=

L−1∑
i=1

hT
i b̄i−1(r). (1.57)
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Now, let us replace every x(k) = r with the mean ȳ(r) to obtain a new sequence

x(2)(k) =

L−1∑
i=1

hT
i b̄i−1(r)

x(2)(k) =

L−1∑
i=1

hT
i s(k − i+ 1) (1.58)

The new MISO system (1.58) has the same taps as the original system (1.53) except that it is shorter
since h0 is missing. We will say that the system has been deflated, and the whole procedure will be .
An additional but trivial difference is that the source sequence is time-shifted. Based on the discussion
above, the whole filter- or system-deflation method, is summarized as follows:

Algorithm 4 (System deflation.)
Step 1. For every r ∈ X locate the set of time instances K(r) = {k : x(k) = r}.
Step 2. Find the successor set Y(r) = {x(k + 1) : k ∈ K(r)}. This set must contain 2n distinct values
y1(r), ..., y2n(r).

Step 3. Compute the mean ȳ(r) = 1/2n
∑2n

i=1 yi(r).
Step 4. Replace x(k) by ȳ(r), for all k ∈ K(r).

Clearly, for this method it is essential that all observation/successor pairs [r, yi(r)], i = 1, · · · , 2n, will
appear, at least once, in the output sequence x. Applying the deflation method L− 1 times, the system
will be eventually reduced to an multi-input single-output instantaneous problem:

x(L)(k) = hT
L−1s(k − L+ 1) (1.59)

The BSS problem of the type (1.59) has been treated in Section 1.2.1.
The main disadvantage of this method stems from the assumption that the dataset must contain

every possible obsrervation/successor pair. As the size of the MISO system increases this assumption
requires exponentially larger observation datasets. An alternative approach starts by observing that for
any r ∈ X the centered successors:

ci = yi(r)− ȳ(r) = hT
0 b

(n)
i i = 1, · · · , 2n (1.60)

are independent of r. Thus every observation has the same set of centered successors. We shall refer to
the set C = {ci; i = 1, · · · , 2n} as the centered successor constellation set of system (1.53). C can be
easily computed by first obtaining Y(r), for any r, and then subtracting the mean ȳ(r) from each element
yi(r) ∈ Y(r). Note that C is symmetric in the sense that c ∈ C ⇔ −c ∈ C.

Now, for every observation value r = x(k) ∈ X we have

x(k) = hT
0 s(k) +

L−1∑
l=1

hT
l s(k − l) (1.61)

r = hT
0 b

(n)
i +

L−1∑
l=1

hT
l b̄l(r), some i (1.62)

= ci +

L−1∑
l=1

hT
l b̄l(r), some i (1.63)

Furthermore, due to the symmetry of the constellation set, there exists a “dual” observation value rd ∈ X
such that

rd = −ci +
L−1∑
l=1

hT
l b̄l(r) (1.64)
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rd = r − 2ci (1.65)

Assume that for every observation r ∈ X , there exists a unique index j ∈ {1, · · · , 2n} such that r−2cj ∈ X .
Then the dual value rd can be identified by testing all r − 2cj , j = 1, · · · , 2n, for membership in the
observation space X . Let us now replace x(k) by the average of r, rd, to obtain

x̃(2)(k) = (r + rd)/2 = r − cj =
L−1∑
l=1

hT
l b̄l(r) (1.66)

Note that bl(r) = s(k − l), so

x̃(2)(k) =
L−1∑
l=1

hT
l s(k − l) (1.67)

Eq. (1.67) describes a new, shortened MISO system,

Assumption 2 For only one r0 ∈ X , there exist at least 2n ki, i = 1, · · · , 2n ∈ {1, 2, · · · ,K} such that
x(ki) = r0, x(ki +1) = σi(r0), i = 1, · · · , 2n. In addition to that, every possible value of X exists at least
once in the dataset.

Summarizing the above results, our second method for obtaining the deflated system (1.67) is described
below:

Algorithm 5 (System Deflation 2.)
Step 1. Locate an observation value r0 for which 2n distinct successors σi(r0), i = 1, · · · , 2n, exist in the
dataset
Step 2. Compute the successor constellation set C according to (1.60)
Step 3. For every observation r = x(k) find the (unique) value j for which r − 2cj ∈ X .
Step 4. Replace x(k) by r − cj

Again, the L− 1 times repetition of this algorithm will reduce the system into a memoryless one

x̃(L)(k) = hT
L−1s(k) (1.68)

which can be treated as described in section 1.2.4.

Example 5 (MISO system identification and source separation.) We shall demonstrate the ap-
plication of the second method via a specific example. Assume that we observe the output x(k) of a
two-input-one-output system (Fig. 1.9a). The system has two binary inputs s1, s2, convolution length
L = 3, and filter taps h1 = [−0.9024, 1.5464]T , h2 = [−0.6131, 0.7166]T , h3 = [−0.4131,−0.1621]T . The
output constellation contains 2nL = 64 clusters: X = {±4.3537,±4.0295,±3.5275, · · · }. Already, the first
value r = −4.3537 has 2n = 4 distinct successors in the output sequence x(k). From those successor
values the centered successor constellation set is easily computed to be

C = {−2.4488,−0.6440, 0.6440, 2.4488}.

After the deflation steps 2 and 3 we obtain a new sequence x(2)(k) (Fig. 1.9b). Now the output constella-
tion contains 2n(L−1) = 16 clusters: X (2) = {±1.9049, ±1.5807, ±1.0787, · · · } and the centered successor
constellation set is

C(2) = {−1.3297,−0.1035, 0.1035, 1.3297}.

We use this set to obtain a second deflated signal x(3)(k) (Fig. 1.9c). This signal actually corresponds to
an instantaneous mixture of the two sources. The output constellation has only 4 clusters:

X (3) = {−0.5752,−0.2510, 0.2510, 0.5752}.



Blind Signal Processing Based on Data Geometric Properties 23

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

x

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

x(2)

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

x(3)

k

Figure 1.9: (top) Output signal from a 2-input-1-output FIR system of length L = 3. The output
constellation contains 2nL = 64 distinct clusters. (middle) First deflated signal with 2n(L−1) = 16
clusters. (bottom) Second deflated signal with 2n(L−2) = 4 clusters. The last signal corresponds to an
instantaneous mixture of the 2 sources.

We may apply Algorithm 1 from Section 1.2.1 to obtain an estimate of the mixing parameters and of
the input signals as well. We obtain ĥ3,1 = 0.4131 = −h3,1, ĥ3,2 = 0.1621 = −h3,2. Subsequently
performing the optimization (1.15) for the estimation of the sources we get perfect reconstruction (except
for the sign):

ŝ1(k) = −s1(k),

ŝ2(k) = −s2(k).

1.3 Continuous sources

In Section 1.2 we exploited the constellation structure of signals generated by linear systems with finite
alphabet inputs. In many applications, however, the range of values of the source data is continuous. In
this case the geometrical properties of the signals can still be exploited to derive efficient deterministic
blind separation methods provided that the sources are sparse, or the input distribution is bounded, or
the number of observations is m = 2.

1.3.1 Early approaches: 2 mixtures, 2 sources

It is possible to generalize the geometric properties of binary signals described in Section 1.2.1, when the
sources symbols are bounded. We start with the simplest case of two instantaneous mixtures x1, x2, and
two sources s1, s2, (m = n = 2):

x(k) = [x1(k), x2(k)]
T = h1s1(k) + h2s2(k) (1.69)

We shall describe two of the earliest and most characteristic methods by (Puntonet et al., 1995) and
(Mansour et al., 2001).
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The method of Puntonet e.a. The geometry of mixtures of binary signals bears similarity to the
geometry of mixtures of bounded sources. Consider the mixing model (1.69) and let s1(k), s2(k) ∈
[−B,B]. The linear operation (1.69) transforms the original square source constellation (Fig. 1.10a) into
a parallelogram-shaped constellation with edges parallel to the vectors h1 and h2 (Fig. 1.10b).

The blind identification task is then equivalent to finding the edges of the convex hull of the output
constellation. Puntonet e.a. Puntonet et al. (1995) proposed a simple procedure for doing that. This
procedure is composed of two steps:

• Locate the outmost corner xO of the parallelogram by finding the observation with the maximum
norm: xO = x(k0), k0 = argmaxk{∥x(k)∥2}.

• Translate the observations x′(k) = x(k) − x(k0) such that xO becomes the origin, and com-
pute the slopes of the parallelogram by computing the minimum and maximum ratios: rmin =
mink(x

′
2(k)/x

′
1(k)), rmax = maxk(x

′
2(k)/x

′
1(k)). These are the ratios h12/h11, h22/h21, not neces-

sarily in that order.

Once the slopes of the edges are determined, the mixing matrix is estimated by

Ĥ =

[
1 1/rmin

rmax 1

]
(1.70)

Since (rmin, rmax) = (h12/h11) or (h22/h21) we have,

Ĥ =

[
1 h21/h22

h12/h11 1

]
or

[
1 h11/h12

h22/h21 1

]
(1.71)

Remember now that

H = [h1, h2] =

[
h11 h21

h12 h22

]
so,

Ĥ = H

[
1/h11 0
0 1/h22

]
or Ĥ = H

[
0 1/h12

1/h21 0

]
In either case, the source estimate ŝ(k) = Ĥ−1x(k) will be

ŝ(k) = [h11s1(k), h22s2(k)]
T or ŝ(k) = [h12s2(k), h21s1(k)]

T (1.72)

Thus, the estimated sources will be equal to the true ones except for the usual unspecified scale and
order.

Note that the method works even if the source pdf is semi-bounded, for example, bounded only from
below. In that case the parallelogram is open-ended but the visible corner is sufficient for identifying the
two slopes. The main drawbacks of this approach are two: (a) it cannot generalize to more sources or
observations and (b) it will not work if the source pdf is not bounded (for example, Gaussian, Laplace,
etc).

The method of Mansour e.a. Another simple procedure for the solution of the 2× 2 instantaneous
BSS problem has been proposed by Mansour e.a. Mansour et al. (2001). The transformation s 7→ x
described by (1.69) represents a skew, rotation, and scaling of the original axes in 2 dimensions. The
first step of the procedure is to remove the skew by prewhitening x using the covariance matrix Rx =
E{x(k)x(k)T }. If Rx = LxL

T
x is the Cholesky factorization of Rx, let

z(k) = L−1
x x(k) (1.73)

The mapping x 7→ z is called prewhitening transformation because the output vector z(k) is white:
Rz = {z(k)z(k)T } = L−1

x RxL
−T
x = I. The prewhitening transformation (1.73) makes the axes become

orthogonal again, but the rotation and the scaling remains. The next step is to compensate for the
rotation by computing the angle θ of the furthermost point of the constellation of z from the origin. We
consider two cases:
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Figure 1.10: (a) Source constellation for two independent sources uniformly distributed between −1 and
1. (b) Output constellation after a 2× 2 linear, memoryless transformation of the sources in (a).

• The sources are uniformly distributed, say, between −1 and 1 (Figure 1.11a). The source constel-
lation is a square and the angle θ corresponds to a corner of the square. Therefore, in order to
compensate for θ, the corner should return to its original position at π/4. This is achieved by the
following orthogonal transformation:

y(k) =

[
cos(π/4− θ) − sin(π/4− θ)
sin(π/4− θ) cos(π/4− θ)

]
z(k) (1.74)

• The sources are super-Gaussian, i.e. kurt(si) = Es4i − 3(Es2i )
2 > 0, i = 1, 2 (Figure 1.11b). The

constellation of s in this case is “pointy” along the directions [±1, 0] and [0,±1]. The angle θ
corresponds to one of the “hands” of the X-shaped constellation for x. Clearly, θ should be reduced
to 0. This is done by the following rotation transformation:

y(k) =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
z(k) (1.75)

In both cases there remains an unknown scaling of the sources which cannot be removed since it is
unobservable in all BSS problems.

1.3.2 Sparse sources, 2 mixtures

Another special case of continuous sources that can be successfully treated using geometric methods is
the case of sparse sources. A signal si(k) is sparse if it is equal to zero most of the time. The sparseness
of the si is measured by the “sparseness probability”

pS(si) = Pr{si(k) = 0}

Values of pS closer to 1 correspond to more sparse data, whereas values closer to 0 represent dense data.
Consider now the typical instantaneous mixing model:

x(k) = Hs(k) (1.76)

assuming that all the sources are sparse. Then it is highly likely that there exist some time instances such
that only one source is active at that instance. If, for example, only si is non-zero at time k, then x(k) is
proportional to hi, the i-th column of H. The number of outputs m is not important, as long as m ≥ 2.
In fact, the number of outputs may even be less than the number of sources (m < n). In the subsequent
discussion we shall use the convenient value m = 2 because it will help us visualize the results. (Bofill
and Zibulevsky, 2001) observed that the data are clustered along the directions of the mixing vectors
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Figure 1.11: The linear, instantaneous transformation s 7→ x introduces skew, rotation, and scaling on
the original axes. The whitening transform x 7→ z removes the skew, making the axes orthogonal again.
Then the rotation can be removed by an orthogonal transformation z 7→ y. (a) If the source distribution
is uniform we must rotate so that θ becomes π/4. (b) If the source distribution is super-Gaussian then
we must rotate so that θ becomes 0.
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Figure 1.12: Output constellation for m = 2 outputs and n = 4 sparse sources. The top three plots
correspond to different sparseness probabilities (a) pS = 0.6, pS = 0.7, (c) pS = 0.8. The solid lines are
the directions of the four vector-columns of H. The three bottom figures (d), (e), and (f) are polar plots of
the data density (potential) function with spreading parameter σ = 8 corresponding to the constellations
(a), (b), and (c), respectively.
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hi, i.e. the columns of H. Figure 1.12 shows the output constellation for the memoryless system (1.76)
with m = 2 outputs, n = 4 sparse inputs, and different sparseness levels. As the sparseness of the inputs
increases, the four clustering directions become more easily identifiable (see Figs. 1.12a,b,c).

Thus blind system identification is achieved by identifying the directions of maximum data density.
Assuming that the sources are zero-mean, so they can take both positive and negative values, the clus-
tering will extend to the negative directions −hi as well. Since, for each i, both opposing directions hi

and −hi are equally probable, it is not possible to identify the “true” vector. This is a manifestation
of the sign ambiguity which is inherent to the BSS problem. Not surprisingly, the ordering ambiguity is
also present in the sense that there is no predefined order on the directions of maximum data density.

For m = 2, a practical algorithm has been proposed in (Bofill and Zibulevsky, 2001). For any 2-
dimensional vector x = [x1, x2]

T ̸= 0 let us define the angle of x,

θ(x) = arctan(x2/x1). (1.77)

The directions θ where the random variable θk = θ(x(k)) has the highest density are the directions of
the mixing vectors. The density is estimated by the use of a potential function U(θ) :

U(θ) =
∑
k

w(k) t(θ − θk;σ) (1.78)

t(α;σ) =

{
1− α

π/(4σ) , for |α| < π/(4σ);

0, otherwise.
(1.79)

where w(k) = ∥x(k)∥ is a weight putting more emphasis on more reliable data, t is a triangular function,
and σ adjusts the angular width, i.e. the spread of each local contribution to the potential function (see
Figs. 1.12d,e,f). The directions of the mixing vectors are identified as the peaks of the potential function.
The number of sources need not be known in advance since it can be identified by the number of peaks.

Following the mixing matrix identification step, the sources can be estimated in a second step, using
the N observation samples x1, ..., x(N). In the presence of noise the samples s(1), ..., s(N), can be
estimated by solving N small minimization problems:

min
s(k)

1

σ2
∥Hs(k)− x(k)∥2 + λ

n∑
j=1

|sj(k)|, for k = 1, · · · , N. (1.80)

The first term minimizes the square error (σ is the noise variance), while the second term is a penalty
for non-sparsity. In the absence of noise, the optimization problem is formulated in a slightly different
fashion:

min
s(k)

n∑
j=1

|sj(k)|, subject to x(k) = Hs(k). (1.81)

Example 6 (Separation of full ensemble music) Bofill and Zibulevsky report a number of experi-
ments with real data including mixtures of speech (four voices), music (five songs), single musical tones
(six flutes), and simple melodies from a single musical instrument (six flute melodies). The results of
these experiments are published on-line (Bofill). Here we shall present the separation experiment of five
songs from two mixtures. The source data were 5 seconds long excerpts from five full-ensemble music
pieces extracted from standard CDs. The data were downsampled to 11,025 Hz monophonic and were
preprocessed as follows:

• All sources were normalized to unit energy.

• Two mixtures were generated using a 2× 5 mixing matrix H. The five mixing vectors (the columns
of H) are formed with equally spaced angles.

• The mixtures were rescaled between −1 and 1 and processed in frames of length T with a hop distance
d, between starting points of successive frames.

• Each frame was transformed with FFT of length T and only the coefficients of the positive half
spectrum were kept. All FFT segments were concatenated in a single vector which is was the input
to the separation algorithm.



Blind Signal Processing Based on Data Geometric Properties 29

Mixtures

Sources
Recovered Sources

Figure 1.13: Blind separation of 5 full ensemble music pieces from 2 linear mixtures.

In this particular experiment the frame parameters were T = 4096 and d = 1228 samples. The five
sources, the two mixtures, and the five reconstructed signals are shown in Figure 1.13. The signal to
reconstruction-error ratio, for a wide range of values of the smoothness parameter σ, was around 15db.

1.3.3 Dense sources, 2 mixtures: Geometric ICA

The data-density concepts for sparse or bounded sources cannot be directly extended to non-sparse
sources. However, Theis et al. (2003b,a); Jung et al. (2001) have developed a theory relating the data
densities in the polar coordinates with the mixing vectors hi, i = 1, · · · , n, when the sources are non-
sparse, provided that their pdf is symmetric, non-Gaussian, and unimodal (i.e. has only one peak).
This theory applies to memoryless systems of the type (1.76) with m = 2 outputs and n ≥ 2 inputs.
Extensions for m > 3 are possible but impractical due to the high computational cost and the extremely
large required data sets.

In an analogous way to the sparse case, the method is based on the properties of the density (pdf)
ρΘ̄ of the random variable

θ̄ = θ(x) mod π,

where θ(x) is the angle of x defined in (1.77). Here, however, the peaks of the density may not have
a one-to-one correspondence with the mixing vectors, especially when the number of sources is greater
than the number of observations (n > m). The basic result is that the angles

θi = θ(hi), i = 1, · · · , n (1.82)

of the mixing vectors hi, satisfy the Geometric Convergence Condition (GCC) defined below:

Definition 2 (Geometric Convergence Condition) The set of angles {θ1, ..., θn}, θi ∈ [0, π), sat-
isfies the GCC if, for each i, θi is the median of ρY restricted to the receptive field Φ(θi).
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Definition 3 (Receptive field) For a set of angles {θ1, · · · , θn}, θi ∈ [0, π), the receptive field Φ(θi) is
the set consisting of the angles θ closest to θi:

Φ(θi) = {θ ∈ [0, π) : |θ − θi| ≤ |θ − θj | for all j ̸= i}

Since the angles of the true mixing vectors satisfy the GCC we hope that we can find them by devising
an algorithm which converges when the GCC is satisfied. This is exactly the aim of the Geometric ICA
Algorithm (Theis et al., 2003b,a). This iterative algorithm works with a set of n unit-length vectors
(and their opposites) and terminates only when the angles of these vectors are the medians of their
corresponding receptive fields. It is conjectured that the only stable points of this algorithm are the true
mixing vectors.

The algorithm starts by picking n random pairs of opposing vectors: {wi(0), w′
i(0) = −wi(0)},

i = 1, · · · , n. For each iteration k, a new observation vector x(k) is projected onto the unit circle

z(k) =
x(k)

∥x(k)∥

Then we locate the vector wj(k) closest to z(k) and we update the pair wj(k), w
′
j(k), as follows:

wtemp
j = wj(k) + η(k)

z(k)−wj(k)
∥z(k)−wj(k)∥

wj(k + 1) = wtemp
j /∥wtemp

j ∥
(1.83)

w′
j(k + 1) = −wj(k + 1) (1.84)

The other w’s are not updated in this iteration. It can be shown that the set W = {w1(∞), · · · ,
wn(∞)} is a fixed point of this algorithm if and only if the angles θ(w1(∞)), ..., θ(wn(∞)) satisfy the
GCC. We already know that the set A = {θ(h1), · · · , θ(hn)} satisfies the GCC, therefore, we hope
that, at convergence, {θ(w1(∞)), · · · , θ(wn(∞))} = A. If this is true then the vectors w1(∞), ...,
wn(∞) are parallel to the mixing vectors h1, ..., hn, although not necessarily in that order. Since
the order and scale are insignificant, this is not a problem. If m = n, then the estimated matrix
Ĥ−1 = [w1(∞), · · · , wn(∞)]−1 solves the BSS problem. In the overdetermined case (m > n) the general
algorithm for the source recovery is the maximization of P (s) under the constraint x = Hs. This linear
optimization problem can be approached using various methods, such as, for example, the one described
in Section 1.3.2.

The FastGEO Algorithm. An alternative way to find the mixing vectors is to design a function
which is zero exactly when its arguments satisfy the GCC. Then we simply have to compute the zeros
of this function, for example, by exhaustive search. This approach describes the so-called FastGEO
algorithm (Theis et al., 2003b; Jung et al., 2001). Let us separate the interval [0, π) into n subintervals
with separating boundaries ϕ1, ..., ϕn, and let θi be the median of θ̄ in the subinterval [ϕi, ϕi+1],

θi = F−1
Θ̄

(
FΘ̄(ϕi) + FΘ̄(ϕi+1)

2

)
, i = 1, · · · , n (1.85)

where FΘ̄ is the cumulative distribution function of θ̄, F−1
Θ̄

is the inverse function of FΘ̄ (we assume it
exists) and ϕn+1 = ϕ1 + π (see Figure 1.14). Then the function

µ(n)(ϕ1, · · · , ϕn−1) =

[
θ1 + θ2

2
− ϕ2, · · · ,

θn−1 + θn
2

− ϕn

]T
(1.86)

is zero if and only if
θi + θi+1

2
= ϕi+1, i = 1, · · · , n− 1
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Figure 1.14: The angles θi of the mixing vectors hi satisfy the Geometric Convergence Condition if they
are the median of the random variable θ(x) within the interval Φ(θi) = [ϕi, ϕi+1]. Φ(θi) is called the
receptive field of θi and it is the set consisting of the angles θ closest to θi.

for all i, and so by definition the receptive field Φ(θi) is exactly the subinterval [ϕi, ϕi+1] and θi is the
median of its receptive field, in other words, the set {θi, · · · , θn} satisfies the GCC. For each set of
separating boundaries {ϕ1, · · · , ϕn−1} we compute the medians θ1, ..., θn by (1.85) and then the function
µ(n)(ϕ1, · · · , ϕn−1) by (1.86). The FastGeo algorithm is the exhaustive search for the zeros of µ(n).

Especially for n = 2 we let ϕ1 = ϕ and we have ϕ2 = ϕ+ π/2, so

µ(2)(ϕ) =
θ1 + θ2

2
− (ϕ+ π/2).

Example 7 Let x1, x2 be 2 instantaneous mixtures of 2 uniform sources s1, s2. The mixtures were
generated by the following mixing operator

H =

[
0.0735 0.2913

−0.3391 0.3725

]
The distribution of the angle y = ϕ(x) is shown in Fig. 1.15. The same figure shows the receptive
field boundaries {ϕ1, ϕ2, ϕ3} = {77.0998, 167.0998, 257.0998} (in degrees) corresponding to the angles
{θ1, θ2} = {51.9759, 102.2237} of the mixing vectors h1 = [0.0735,−0.3391]T , h2 = [0.2913, 0.3725]T .
The angles θ2 and θ1+180 are the medians of the angle distribution in the corresponding receptive fields.

1.4 Conclusions

Blind signal processing (BSP), refers to a wide variety of problems where the output of a system is
observable but neither the system nor the input are known. The large family of BSP problems includes
Blind Signal Separation (BSS), Blind System or Channel Identification (BSI or BCI), and Blind Decon-
volution (BD). Traditional approaches exploit statistical properties of second or higher order. Recently a
third approach has emerged using the geometric properties of the data cloud. This approach exploits the
finite alphabet property of the input data or the shape of the constellation depending on the probability
density of the sources. In such an approach our basic tools are methods for data clustering and shape
description such as the convex hull. The advantage of the geometric approach is the finite nature of
the methodology following the clustering step. Typically, this methodology is fast for small problem
sizes, i.e. for few sources or short channels. The main disadvantage is the combinatorial explosion which
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Figure 1.15: The distribution of the angle θ(x) for 2 instantaneous mixtures of 2 uniformly distributed
sources. The receptive field boundaries are defined by the angles ϕi. The angles θi of the mixing vectors
are the medians of each receptive field.

incurs when the problem size grows large. To combat this drawback channel-shortening methods may
come to our assistance. The problem however is far from solved and many issues still remain open. In
this chapter we presented the main geometric principles used in blind signal processing. We presented a
comprehensive literature survey of geometric methods and we outlined the basic methods for blind source
separation, blind deconvolution and blind channel identification.
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