This article was downloaded by:[HEAL-Link Consortium]

On: 6 May 2008

Access Details: [subscription number 786636650]

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Parallel,
Emergent and Distributed Systems

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713729127
ARTIFICIAL NEURAL NETWORKS AND ITERATIVE

LINEAR ALGEBRA METHODS

K. G. Margaritis &, M. Adamopoulos ; K. Goulianas & D. J. Evans °
& |nformatics Centre, University of Macedonia, Thessaloniki, Greece
b parallel Algorithms Research Centre, Loughborough University of Technology, UK

Online Publication Date: 01 January 1994

To cite this Article: Margaritis, K. G., Adamopoulos, M., Goulianas, K. and Evans,
D. J. (1994) 'ARTIFICIAL NEURAL NETWORKS AND ITERATIVE LINEAR
ALGEBRA METHODS', International Journal of Parallel, Emergent and Distributed
Systems, 3:1, 31 — 44

To link to this article: DOI: 10.1080/10637199408962524
URL: http://dx.doi.org/10.1080/10637199408962524

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly

forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713729127
http://dx.doi.org/10.1080/10637199408962524
http://www.informaworld.com/terms-and-conditions-of-access.pdf

FParallel Algorithms and Applications, Vol. 3, pp. 31-44 (©1954 Gordon and Breach Science Publishers S.A.
Reprints available directly from the publisher Printed in the United States of America
Photocopying permitted by license only

ARTIFICIAL NEURAL NETWORKS AND ITERATIVE
LINEAR ALGEBRA METHODS

K. G. MARGARITIS*, M. ADAMOPOULOS and K. GOULIANAS
Informatics Centre, University of Macedonia, Thessaloniki, Greece

D. J. EVANS
FParallel Algorithms Research Centre, Loughborough University of Technology, UK

(Received November 15, 1993)

This paper describes the usage of feed-forward artificial neural networks, for the implementation of a va-
riety of iterative methods of numerical linear algebra for solving linear systems of equations. Extensions
to matrix based iterative procedures are also presented and the application of those iterative methods
in neural network training algorithms is discussed. Finally, some experimented results are presented,
comparing the various methods discussed.

KEY WORDS: Artificial neural nets, matrix iterative methods, training algorithms.

C.R. CATEGORIES: G.1.3,1.26.

1. INTRODUCTION

Feedforward artificial neural networks have been studied extensively and have been
proved capable of solving a wide variety of problems [4, 7]. Most applications of
these networks use some type of training procedure in order to utilize associations
of input patterns to output patterns. This relations can be either autoassociative
or heteroassociative, i.e. they correlate a set of patterns either to themselves or to
another set of patterns. The individual interconnection weights that are produced
during the training process do not have a clear physical meaning and therefore the
choice of training procedures, the number of layers as well as neuron configurations
is quite arbitrary.

In this paper the development of simple feedforward neural networks with linear
neuron functions is studied. The emphasis is placed in the study of different training
procedures, i.e. weight adaptation methods, and the relation of those procedures to
well known iterative methods of numerical linear algebra. Thus, in contrast to the
majority of neural network applications, here the interest is focused onto the weight
adaptation procedure in the sense that the result of the network operation is coded
in the weights and not in the output vector. The effort is to establish direct relation

*Visiting Research Fellow, Parallel Algorithms Research Centre, Department of Computer Studies,
Loughborough University of Technology, UK.

31

32 K. G. MARGARITIS ET AL.

8 1 1 ’ hl
)
w

% 2 y5) 2 ’ bz
)
2p
w
02

a n P — b'
w

op :
Figure 1 Two-layer feedforward ANN.

between well known iterative methods in numerical linear algebra and neural net-
work structures that implement those methods. Thus, the interconnection weights
and their modification procedures may have some relatively well defined physical
meaning. Further to show the applicability of those.iterative methods in general
neural network training algorithms.

The term Neural Network (NN) is used herein as a shorthand for term Feedfor-
ward Artificial Neural Network. A generic NN is now described in some detail in
order to serve as the basis of the NNs to be developed. This generic NN is based
on two-layer feedforward artificial neural networks, such as Perceptron [5], Adaline
[10] and Back-Propagation NNs [6].

The generic NN (GENN) is a two-layer, heteroassociative pattern matcher. It
correlates pairs of pattern vectors a®), b®), k = 1,2,..., m where a®), b®) are (n x 1)
and (p x 1) vectors, respectively, It consists of two fully connected layers of n and
p neurons, where the first layer is essentially an input node layer (Figure 1).

The training procedure is as follows: Initially, the interconnection weights, w;j,
i=12...,n j=1,2,...,p take random values. Then one pattern vector a®*) is pre-
sented in the input layer and the corresponding outputs are calculated:

n
U = f (Z wi.,-'af"’—c,-), j=12..,p or u® =fa®TWc)

i=1
D

in matrix-vextor format, and with f() a neuron function and ¢; some input bias for
neuron j. The discrepancy between calculated and desired output, i.e. the difference
between u®) and b®) is calculated by means of the Delta Rule:

d¥ =0 b0, j=12..p o d® =u® _p®)

NEURAL TRAINING PROCEDURES 33

Figure 2 Inner Product Neural Network (IPNN).

The weight adaptation computation has the form:

AW(k)=w-a(k)d(k), i=1)27-.-,n) j=192,-..,p
l} 1]

(3)

wﬁ”l) = wg,‘) + Awg.‘) or AW®) = wa(k)d(k)T’ WD) — k) L Ay

This procedure is repeated for all m pattern pairs and for a number of iterations,
until the error between calculated and desired outputs is within acceptable limits.
The recall function, i.e. the pattern matching operation, is exactly as equation (1),
where the output is the pattern which is associated by the NN with the presented
input pattern.

This generic NN outlines the operation of the majority of the two-layer feedfor-
ward artificial neural networks, as, for example, the Perceptron, or the Adaline or
the Back-Propagation NNs. Differences between those NNs exist in several aspects,
e.g.: :

¢ the encoding method for the input and output patterns, as well as the intercon-
nection weights,

¢ the neuron function used,

¢ the choice of input bias,

e the mathematical tools used for optimizing the training (i.e. the weight adapta-
tion procedures).

The basic building block in the generic NN is the Inner Product NN (IPNN),
shown in Figure 2.
In linear algebra terms the operation performed, is expressed as:

yO=f@®x) o yH=f (i‘ﬂ(k) : ’—’i) 4
. i=1

with a training scheme d® = y®) _ b, Ax®) = d®)a® x*+D) = x®) 4 Ax®) where
a,x are column vectors with n elements and b is the target output. The IPNN con-
sists of n input nodes and a single output neuron. All inputs are connected to the

34 K. G. MARGARITIS ET AL.

single output neuron. The components of a vector a are used as inputs of the IPNN,
while the elements of vector x are the interconnection weights. If the neuron func-
tion is chosen to be the threshold logic function with threshold equal to 0 then the
relations in eq. (4) become linear. Of course the roles between vectors a and x are
interchangeable. A further simplification of the IPNN is to keep the interconnection
weights fixed, i.e. replace the training procedure with some pre-specified encoding
scheme (e.g. in Hamming NNs). Compared to the generic NN it can be seen as a
single output generic NN (i.e. p = 1) with linear or non-linear neuron function and
with or without training procedure.

2. ITERATIVE METHODS FOR LINEAR SYSTEMS

Iterative methods based on matrix vector multiplication have been extensively used
in numerical linear algebra for linear system solution. Using the generic NN de-
scribed in Section 1 some of those methods are now presented for solving a (n x n)
linear system of the form:

Ax =b. %)

2.1. Successive Over-Relaxation and Gauss Seidel Methods

Although the Successive Over-Relaxation method (SOR) is not the simplest iter-
ative method for solving linear systems, it can be realized by means of adding a
“simple training procedure onto the IPNN of Figure 2, based on a modification of
Delta Rule. The SOR method can be derived from the Gauss Seidel (GS) method
as follows. Given an initial approximation x(® to the solution vector x, the iterative
process for calculating the exact solution is given by the relation:

x**D = (1 - w)-x® +w. DI Lx**D + Ux* + b) , (6)

with A=D-M,M =L+U and D diagonal, L strictl)} lower and U strictly upper
triangular matrices. The SOR method can be seen as a relaxation procedure applied
on GS scheme, i.e.

x(k+1). = (1 — w) . x(k) 4+ w- x(k'H*) (7)

so that the new iterate x**1)” is a combination of the iterate x*+) computed by
the basic method, the GS in our case, and the previous iterate x*). In the case
where w = 1 SOR is reduced to simple GS; for 0 < w < 1 the method is sometimes -
called underrelaxation, while for 1 < w < 2 it is called overrelaxation. SOR can be
expressed point-wise as follows:

i-1 a
2 = (1 w)- 2 w-ag?! (b.- DI AAEDY au-x,‘-"’) ®
. j=1 .

j=i+l

in order to implement this iterative method, the IPNN of Figure 2 is considered,
with the following configuration and training procedure (see Figure 3).

NEURAL TRAINING PROCEDURES . 35

C
ﬂ/ci.i l xl
C. X
ole, — ()% — e
x.
cin/C“

Figure 3 SOR neural network for ith iteration

In the beginning of the calculation the interconnection weights are set equal to
the initial approximation vector elements x(®. Then, a series of matrix rows are
presented to the input nodes, in the sequence ¢ ,¢f,...,c7,...,cZ. The elements of
matrix C are defined such that C = D~1 4. The presentation of all n rows of matrix
C completes a SOR iteration step.

During the presentation of ¢/ the IPNN calculates the IP:

=1

. where the superscript i for the weight vector x® denotes the index of the weight
to be modified on this step. For each SOR iteration step i takes the values i =
1,2,...,n, with

x(otl) = x(o) and x(l'l) = x(l) = x(or""'l).

The IP result is then compared to g;, where vector g = D~!b. This comparison
leads to the application of a modified Delta Rule, only for the ith element of x(©.
Thus the modified training procedure has the form:

AxOD = (g —dije; and xOHD = xOD ¢ Ax0D) (10)

where e; is a (nx 1) vector with all zero elements, except of a unity element in
position i. Thus, in general there are n applications of the modified Delta Rule,
for i = 1,2,...,n for step k of the SOR method, with k = 0,1,2,.... This procedure,
expressed more generally for SOR iteration step k, takes the form:

a
cFxtkd) = dfk) or ECU . xf.k”) = di(k) 11
j=1

AxED = w(g; — d®ye; and x®i+D) = xtki) 4 Axkd) with xO = x@ and x+iD =
x(k+i) = x(en+i) for ko = 0,1,2,...,nand i = 1,2,...,n. :

12008

36 . K. G. MARGARITIS ET AL.

RESULT 2.1 The operation of the IPNN in Figure 2 as modified in Section 2.1 is
equivalent to the SOR iterative method. This NN is termed SORNN.

Proof 2.1
The value of x,(k’”l) at the beginning of step i + 1, or at the end of step i, will be:

xi(k,i+1) _ xl(k.i) + Axi(k,i) - x‘(k,i) +w(gi— dlgk))

a
= 1 4 w(g; - FxtD) = x*) 4o (g.- -3 cvxf-k")) '
j=1

Since the jth element of weight vector x*) changes only during step j, as denoted
by vector x*4) it can be said that

ki k,1 k
é°=#)=él

if j<i and
xi(kﬁ‘].,l) = x§k+1), if j Z i.

Thus the weight adaptation equation can be written as

i—1 a
k
D =3B 1 (gi =D e V=3 e Xf'k))

j=1 j=itl

i-1 n
=xi(k)+w~a‘-71 (b,‘—Za;j.xSkﬂ)— Z a;j~x§-k))
j=1

j=i+l

i-1 a
=1r(§")+w-a{,TI (b,-—z:aij-xgk“)—- Z a,-,-~x§-k))
j=1

j=i+1

which is equivalent to the point notation of the SOR method.
The SORNN can be used for implementing the GS method with the choice of
w=1 |

2.2. Jacobi and Jacobi Extrapolated Methods

Alternatively, a global training (weight adaptation) procedure can be followed. This
procedure is obtained by a comparison of the SOR and Jacobi-based methods: while
GS is sequential, in the sense that the ith element of the new vector iterate is calcu-
lated after element i — 1, the Jacobi method is global, since all elements of the new
vector are computed at once. This is expressed in the following equations

x®k+1) = (1-w)- x®) 4. D—I(Mx(k) +b) (12)

2008

NEURAL TRAINING PROCEDURES 37

with 4 = D — M. This is the Jacobi Extrapolated method, which leads to the basic
Jacobi method for w = 1. The paint notation is

i

a

= 1-0) X +weait | b -—Zaij . ng) . (13)
—
E

In terms of the NNs discussed in Section 1 the global training procedure can be
achieved by means of the n IPNNs, as in Figure 3 with the following configuration:
Initially, the interconnection weights of each one of the n IPNNs are set equal
to the initial approximation vector elements x(®, so that all IPNNs have identical
weight distribution. Then, the ith row of matrix C, i.e. c,T, is presented to the input
nodes of the ith IPNN, where matrix C is defined as C = D~1M. Thus, all rows
of C are presented simultancously to the NN. This presentation, followed by the
application of the weight adaptation procedure, completes a Jacobi iteration step.

During the kth step of the Jacobi method, the presentation of ¢/ in the ith [IPNN
calculates the IP:

a
IxtD=d or 3eyjafh=dl (14)
j=1

where the superscript i of the weight vector denotes the IPNN involved. The IP
result is then compared to g;, where vector is defined as g = D~'b. This compar-
ison leads to the application of a modified Delta Rule as follows. The ith [PNN
computes the error that corresponds to the ith element of the vector iterate.

AxED = w(g —dNe; o AXED = w(g; — dP)e; (15)

where e; is a (n x 1) vector with all zero elements, except of a unity element in
position i. Then, this error is used for updating the ith interconnection weight of all
IPNNs, such that

xi(k“”') = x‘(k'j) + Ax,(k’i) for j=12...,n. (16)
Therefore it can be said that the new weight vector, identical for all IPNNs is now
a
i=1

A new step of the Jacobi procedure can start with the application of the rows of
matrix C in the inputs of the n IPNNs.

REsULT 2.2 The.operat‘ion of the n IPNNs as described in Section 2.2 is equivalent
to the Jacobi Extrapolated iterative method. This NN is termed JENN.

38 K. G. MARGARITIS ET AL.

Proof 22 The value of xfkﬂj) at the beginning of step k + 1, or at the end of
step k, will be modified by the result of the ith IPNN:

x§k+1.i) - xi(k,i) N x,(“) = xlgk.i) +w(gi - d‘(k))

a
= x{ (g - [x®N) = x4 4 (g.- -2 Ciixﬁk})) |

j=1

Since the ith element of the weight vectors of all IPNNs, denoted by x,(k’j), j=

1,2,...,n undergoes the same modification for step k it can be said that x,(k'j) = xf").
Thus the weight adaptation equation can be written as

a a
{0 =20 10 (gi = cij- xﬁ-")) =x 4w gy (bi -4 "f‘k))
j=1

i=1

a
k - k
=(1—w)-xf)+w-ai,-1 b,-—E aij~x§-)
—

which is equivalent to the point notation of the Jacobi Extrapolated method.

The ith IPNN is responsible of producing the appropriate modification of the
weight of the ith interconnection of all n IPNNS, so that the new weights are simul-
taneously calculated by all IPNNs. The same JENN with the modified Delta Rule
can be used for implementing the basic Jacobi method with w = 1. |

3. MATRIX EQUATIONS AND TRAINING PROCEDURES

The methods that have been previously discussed for linear system solution can be
extended to cover the solution of matrix equations of the form AX = B, where
A, X and B are (n x n), (nx m) and (n x m) matrices. A matrix equation can be
seen as a set of m systems of linear equations with common coefficient matrix A.
Therefore it is possible to use m NNs (of the SORNN or JENN types) in order
to solve those equations. Notice that there is common input for all NNs involved,
since the coefficient matrix is the same for all systems. Thus, in the case of the
SORNN the configuration is exactly as the GENN of Figure 1 with the modified
Delta Rule training procedure. In the case of JENN the configuration involves m
GENNs working in parallel.

The weight adaptation computations are matrix expansion of the vector forms
in egs. (10)«11) for SORNN and egs. (15)+(17) for JORNN, and they should be
compared to the GENN training procedure in egs. (2)~(3). For SORNN the basic

NEURAL TRAINING PROCEDURES 39

relations are in matrix form

TxEH =T AxE) = @l —a®T)E; and
XU = xED p AxED with XO) = xO® and (18)

xUtid) = x®+i) = ylntd) =12 ...n and k=0,12,...

where the superscript i of the weight matrix denotes the row of the synaptic matrix
that is currently updated. The target output matrix is partitioned in row vectors g7
and E; is a compatible matrix with 1’s only in row i and all other elements equal to
0. Thus each full iteration k has n steps, each step updating one row of the weight
matrix X . Similarly for the JENN the weight adaptation scheme is

cx®=p®, AX® =y G-D¥®) and

(19)
X® = x® 4 Ax®, k=12....

A special case of the matrix equation problem is the solution of the system AX =
I for A,X (nx n) matrices and I the (n x n) identity matrix. Then, the solution is
X = A7, Thus, it is possible to use n NNs of the previously discussed types in
order to invert a matrix 4. Alternatively the serial use of one NN is possible, where
the resulting matrix is produced column by column in a series of n steps.

Following the same line of thinking the NNs developed therein can be used for
the solution of general matrix equations of the form

AX =B (20)

where 4, X and B are matrices of size (m x n), (n x p), (m x p) respectively. This
can be achieved by solving the equivalent Normal Equations systems [1]

ATAX = A"B. (21)
Of special interest is the solution of the system
ATAX = AT1 (22)

so that the solution (n x m) matrix X is equal to (47 4)"1A” and satisfies the
Moore~Penrose conditions of the Generalized Inverse of the (m x n) matrix 4, 4*
[1, 3]. Thus, equations (20) and (21), which are equivalent, have the general solution

X =A"B. (23)

The importance of this result in neural computing has been underlined in many
occasions [10, 3, 8, 7]. As explained in the discussion of the GENN, the operation
of such NN is outlined in terms of pattern matching. A set of pattern vectors a®,
k =1,2,...,m, is associated to another set b®), k =1,2,...,m, a pattern matching
function usually_termed_as heteroassociation, or, alternatively, a set of vectors may
be associated to itself (autoassociation)."Each input pattern vector a*) is encoded in
n vector elements, while the-output pattern vector b%) is be encodéd in p elements.

40 K. G. MARGARITIS ET AL.

The NN operation can be expressed in matrix terms as follows: Given an (m x n)
input pattern matrix A = [a®,a®,...,a™, an (m x p) output matrix B = A4 =
[bD,b@, .. b™]T and an (n x p) weight matrix W that corresponds to the NN
interconnection topology chosen. The training procedure, is an iterative method of
modifying the weight matrix so that the discrepancy between actual and desired out-
put is minimized

minimize(u® —b®) or minimize(@®TW —b®T), k=12... m.

The recall, i.e. pattern matching, operation is the calculation of an output pattern
for a given input. .

It has been noticed that the training procedure is equivalent to the solution of
equation (20) for W = X, through the calculation of the generalized inverse of
A A : :

W =A"B, for heteroassociation
W=A%4, for autoassociation.

The recall procedure corresponds to the calculation

u®T = q®T or u®T = a®)T 4+ B for heteroassociation

(24)

u®T = a®T 4* 4 for autoassociation.

Further, notice that the least squares computation of the generalized inverse has
been achieved through the solution of the Normal Equations system that corre-
sponds to the general matrix equation system. Thus, it is concluded that iterative
methods discussed herein can be applied as training procedures for NNs as follows:
Given the pattern matrices A and B, defined as in equations (20) to (23), the Nor-
mal Equations system is calculated. Then the generalized inverse matrix is calculated
by means of one NN of the SORNN or JENN types. Finally, the pattern matching
operation is performed as in equatjon (24).

3.1. Experimental Results for Linear Systems

In the following sections the SORNN and JENN procedures are compared to JPNN
of Figure 2 for a number of systems of various sizes.

A number of linear systems of equations of various sizes (n = 5, n = 10, n = 20)
and with randomly chosen elements are solved by means of the three methods pre-
sented. The first experiment investigates the effect of w on the speed of convergence
for each method, with w taking values between 0 and 2.

Three diagrams (Figures 4-6) are plotted for SORNN, JENN, and GENN for the
three groups of systems, showing the number of iterations required, as w varies

NEURAL TRAINING PROCEDURES 41

between 0 and 2:

100000

SORNN
----- JENN
10000 ¢ GENN
1000
100 1
10¢
l " " " +
0.01 006 04 085 089 096 1.12 13 1.8
' Figure 4 Diagram 1 (5 x 5 system, random values).
1000000 SORNN
100000 t S B R IENN
10000 4 GENN
1000
100 1
10+ [
1 + —— -
0.1 05085097 1 1.211.251.41.731.99
Figure 5 Diagram 2 (System 10 x 10, random values).
10000000 SORNN
1000000~ JENN
100000 W GENN
10000 3
10001 V= ‘
100
10
-1

0.] 06 08230831 1.11 1.1221.13 1.5 19
Figure 6 Diagram 3 (System 20 x 20 system, random values).

There exists an optimal w, for which each one of the above networks requires
‘the minimum number of iterations in order to converge. SORNN reaches a solution
for any value of w between 0 and 2, while JENN and GENN fail to converge for
values of w greater than an upper limit wp.,. Note that as problem size increases,

42 K. G. MARGARITIS ET AL.

wmax decreases for JENN, while it increases for GENN. As w approaches the upper
or lower limit, the number of iterations increases dramatically.

For all systems examined, it can be said that SORNN converges faster than the
other NNs. JENN behaves better than GENN when w is not close to the upper
limit, GENN is more robust than JENN but the minima achieved are very poor
compared to those of JENN in terms of the number of iterations.

Another experiment has been conducted, where for a fixed value of w, ie. w =
0.4, a number of randomly chosen linear systems of size n = 5 are solved by means
of the three NNs. The results are plotted on Figure 7 in increasing order of itera-
tions for SORNN:

Figure 7 Diagram 4 (77 systems, 5 x 5, w = 0.4).

Again, SORNN is consistently better than JENN and GENN, (as it is expected
from Figure 4), with a minor exception of a system, for which JENN converges
faster than SORNN.

3.2. Experimental Results for Matrix Equations

Similar experiments have been conducted for the Matrix Equation system. The re-
sults are shown in Figures 8 and 9:

100000 7
SORNN
tocooy f A |----- TBNN
1000 GENN
100
10

14 v ' +
o1 03 07 08 09 1.15 118 1.3 1.7 1.99

Figure 8 Diagram 5 (system 5 x 5 with random values).

NEURAL TRAINING PROCEDURES 43

Figure 9 Diagram 6 (50 systems, 5 x 5, w = 0.7).

In the first diagram the behavior of the three NNs is plotted over different values
of w. In the second diagram the convergence of the three methods for a fixed value
of w is presented. :

The results are identical to those obtained in the case of the linear systems of
equations. :

4. CONCLUSIONS

This paper describes the implementation of iterative methods for solving linear sys-
tems of equations by means of feed-forward artificial neural networks. Initially a
generic neural network is described and then simple networks are derived for re-
alizing basic matrix operations. Further the basic networks are combined and the
Delta Rule for network training is modified in order to lead to the realization of
iterative methods for solving systems of linear equations. Finally extensions to ma-
trix based iterative procedures are presented, and the application of the iterative
methods in general feed-forward artificial neural network training algorithms.

Further investigations include the comparison of the behaviour of the iterative
methods to that of classical training procedures, such as the Delta Rule of the
generic NN, using nonlinear neuron function, as well as multi-layer NNs. Con-
versely, it would be of interest the investigation of the numerical behaviour of the
neural network training procedures if applied in model numerical problems nor-
mally being solved with traditional iterative methods.

Another recent concept is the development of multi-layer feed-forward neural
networks, termed as Structured Networks, which are envisaged as a tool for the mi-
gration of massively parallel algorithms onto neural network architectures [11-13].
Following this method it would be of importance the investigation of the possi-
ble general migration of algorithms developed for fine-grain or massively parallel
architectures (e.g. systolic, optical, cellular, connetionist) and their neural network
implementations, and vice versa, i.e. the migration of neural network algorithms to
other parallel architectures.

44 K. G. MARGARITIS ET AL.

References

[1] G. Dahlquist and A. Biorg, Numerical methods, Prentice Hall, 1974.
[2] L. Hageman and D. Young, Applied iterative methods, Academic Press, 1981.
[3] T. Kohonen, Self-organization and associative memory, Springer-Verlag, 1984.
(4} A. J. Maren, C. T. Harston and R. M. Pap, Handbook of neural computing applications, Academic
. Press, 1990.
[5] E Rosenblatt, Principles of neurodynamics, Spartan Books, 1962
[6] D. Rumelhart and J. McClelland, Parallel distributed processing: Explorations in the microstructure
of cognition, MIT Press, 1986. '
[71 P. K. Simpson, Artificial Neural Systems, Pergamon Press, 1990.
[8] G. Stone, An analysis of the Delta Rule and the learning of statistical applications, in Parallel Dis-
tributed Processing, MIT Press, 1986.
[9) R. S. Varga, Matrix iterative analysis, Prentice Hall, 1962.
[10] B. Widrow, Learning phenomena in layered neural networks, Proc. of IEEE Ist Int. Conf. on Neural
Networks, 1987.
[11) L. X. Wang and J. M. Mendel, Structured trainable networks for matrix albebra, Proc. Int Joint
Conf. on Neural Networks, 1990.
[12] L. X. Wang and J. M. Mendel, Three dimensional structured networks for matrix equation solving,
IEEE Trans. Comput. 40, 12 (1991).
[13] L. X. Wang and J. M. Mendel, Parallel structured networks for solving a wide variety of matrix
algebra problems, J. of Parallel and Distributed Computing 14 (1992).
[14] D. M. Young, Iterative solution of large linear systems, Academic Press, 1971.

