
The Journal of Systems and Software 72 (2004) 129–143

www.elsevier.com/locate/jss
A controlled experiment investigation of an object-oriented
design heuristic for maintainability

Ignatios Deligiannis a,*, Ioannis Stamelos b,*, Lefteris Angelis b, Manos Roumeliotis c,
Martin Shepperd d

a Department of Information Technology, Technological Education Institute, P.O. Box 14561 GR, T.K 54101, Thessaloniki, Greece
b Department of Informatics, Aristotle University of Thessaloniki Informatics, Aristotle University Campus, 54124, Thessaloniki, Greece

c Department of Applied Informatics, University of Macedonia, 54006 Egnatia 156, Thessaloniki, Greece
d Design, Engineering and Computing, Bournemouth University, Royal London House, Bournemouth, BH1 3LT, UK

Received 15 November 2002; received in revised form 5 June 2003; accepted 10 July 2003
Abstract

The study presented in this paper is a controlled experiment, aiming at investigating the impact of a design heuristic, dealing with

the �god class’ problem, on the maintainability of object-oriented designs. In other words, we wish to better understand to what

extent a specific design heuristic contributes to the quality of designs developed. The experiment has been conducted using

undergraduate students as subjects, performing on two system designs using the Coad & Yourdon method. The results of this study

provide evidence that the investigated design heuristic: (a) affects the evolution of design structures; and (b) considerably affects the

way participants apply the inheritance mechanism.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Object-oriented; Maintainability; Experiment; Design; Heuristics
1. Introduction

In the last decade or more, the object-oriented (OO)
paradigm has gained a broad acceptance within the

software community, the industry, and the software

development organizations of any size. Hence, OO

methodologies, languages and development environ-

ments, have been developed supporting this technology.

It has mainly been made popular by C++, and now even

more so by Java. Jones (1994) has noticed the rapid

growth of OO technology, since 1994. Even recently, a
survey carried out by Goodley (1999), has indicated the

continuing growth in the popularity of Java as an OO

development language.

Much of the literature asserts that substantial gains,

such as increased understandability, productivity, qual-
*Corresponding authors. Tel./fax: +30-2310-791295 (I. Deligian-

nis); Tel.: +302310998227; fax: +302310998419 (I. Stamelos).

E-mail addresses: igndel@it.teithe.gr (I. Deligiannis), stamelos@

csd.auth.gr (I. Stamelos), lef@csd.auth.gr (L. Angelis), manos@

uom.gr (M. Roumeliotis), mshepper@bmth.ac.uk (M. Shepperd).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00240-1
ity, ease of modification, reuse, should accrue from

using OO analysis, design, coding, and reusable com-

ponents. Nevertheless, these benefits are mostly based
on intuition and not on empirical evidence. Intuition

may provide a starting point, but it needs to be backed

up with empirical evidence. According to Basili and

Burgess (1995), experimentation has shown that intui-

tion about software in many cases is wrong. Jones (1994)

as well, has identified a lack of empirical evidence to

support the claims accredited to OO technology, like

improved productivity and quality, defect removal effi-
ciency, and even more so reusability.

For this reason, over recent years, there has been a

growing interest in empirical evaluation. In a review

(Deligiannis et al., 2002), examining how experimenta-

tion has been carried out in the OO technology, the

evidence does not support the claim that OO techniques

always provide the benefits accredited to them. A case

study performed by Hatton (1998) on corrective main-
tenance issues, indicated a number of concerns whether

OO technology has met its claims. Considering the

performance and strategies of programmers new to OO

mail to: igndel@it.teithe.gr


130 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
technology it was found that OO concepts were not easy

to learn and use quickly (Hillegersberg et al., 1995).

Clearly, more empirical research is needed to inves-

tigate these claims; examining in particular the efficacy

and effectiveness with which the various OO features are

applied. One particular area that warrants thorough
investigation is considered the impact of design heuris-

tics on one quality factor, namely maintainability. The

reasons leading us to this decision are: (a) the mainte-

nance phase is considered the most costly phase of

system life cycle (Meyer, 1997; Hatton, 1998). Subse-

quently, investigations aiming to reducing it should be

of increased interest for the empirical research commu-

nity; and (b) design heuristics, concentrating cumulative
knowledge mainly based on experience and practice

(Booch, 1995), might provide useful assistance to

achieve this goal.

The study presented in this paper is a controlled

experiment, carried out using students as participants,

which investigates the impact of a single design heuristic

on quality of OO designs, captured by two important

quality factors of design assessment, namely under-

standability, and maintainability. The paper is structured

as follows. Section 2 describes the details of the experi-

ment. Section 3 summarizes the data collected and

presents the data analysis results. Section 4 identifies

and discusses possible threats to the validity of the

study. Finally, Section 5, presents the conclusions and

future research targets. The structure of the paper fol-

lows the structure of a Briand et al.’s paper (2001).
2. Description of the experiment

This research builds upon the results of a previous

observational study (Deligiannis et al., 2003), which

investigated the impact of an OO design heuristic,

namely ‘‘god class problem’’ (it is described in Section
2.1), with respect to the maintainability. It was also

aiming at investigating the impact of a design heuristic

on the maintainability of OO designs, as well as the

relationship between that OO design heuristic and

metrics, i.e. whether we are able to capture a specific

design heuristic by applying a suitable subset of design

metrics. The results provided evidence that: (a) the

investigated design heuristic considerably affects the
performance of the participants; (b) it affects the evo-

lution of design structures; and (c) there is a consider-

able relationship between that design heuristic and

metrics so that it could be feasible to conduct an

assessment by using appropriate metrics.

2.1. ‘‘God class problem’’

The term �heuristic’ is widely used in almost every

field of science. We found two meanings of this term in
the literature, namely �rule of thumb’, and �trial and

error’. The term �rule of thumb’ refers to the accumu-

lated and distilled knowledge gained from the experi-

ence, while the term �trial and error’ refers to unselective

search that encompasses a high risk to fail (Glass, 2002).

The computer science field has traditionally defined
heuristics as rules of thumb. However, we consider that

both terms are interrelated in that knowledge and

experience could not been gained without prior �trial and
error’. From both meanings it is implied that heuristics

are not hard and fast rules, since a heuristic violation in

itself may not represent a problem, perhaps due to dif-

ferences in context.

There is a plethora of OO design heuristics proposed
in the literature (Lorenz and Kidd, 1994; Booch, 1995;

Firesmith, 1995; Jacobson and Christerson, 1995; Riel,

1996) related to a multitude of software aspects. Kir-

sopp and Shepperd (2001) distinguish them into syn-

tactic, semantic, and hybrid. To this list of categories we

would like to add a new one––structural––mainly based

on structural aspects of a system. There are two basic

kinds of structures (Coad and Yourdon, 1991; Rumb-
augh et al., 1991; Booch, 1994). Generalization–Spe-

cialization, in which some abstractions adopt and extend

the properties of others, thus forming inheritance hier-

archies, and Whole–Part structures, where one abstrac-

tion contains or is composed of other abstractions

(composition), or where one abstraction plays a master

role to another’s detail role (aggregation). To justify our

suggestion, we consider it would be helpful to mention a
typical example of a heuristic belonging to this category,

proposed by Riel (1996):

Objects which share lexical scope, i.e. those con-

tained in the same containing class, should not have

�uses’ relationships between them.

Actually this heuristic specifies the manner the
internal objects of a containment class should commu-

nicate to each other. The author suggests that they

should not directly communicate to each other, rather

the container class should manage their communication.

The reasoning behind is reusability.

Heuristics are aimed at enhancing software quality.

However, when they are violated there is a risk of pro-

ducing complex and monolithic design structures. In this
study, we are focusing on a single but important design

heuristic. According to Riel (1996), there is one very

distinct area where the OO paradigm can drive designs

in a dangerous direction. This is called the �god class

problem’ and deals with poorly distributed system in-

telligence. It is caused by a common error among pro-

cess-oriented developers in the process of moving to the

OO paradigm. These developers attempt to capture the
central control mechanism, so prevalent in the process-

oriented paradigm, within their OO design. The result is



I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 131
the creation of a �god’ object that performs most of the

work. Riel considers we should work toward the

avoidance of such classes. This is described as follows:

Do not create god classes/objects in your system.

Be very suspicious of a class whose name contains
Driver, Manager, System, or Subsystem.

We consider it belongs to the structural category,

since it mainly captures structural design properties like:

cohesion, internal and external coupling. According to

Allen and Khoshgoftaar (1999) cohesion is based on

intramodule coupling, normalized to the interval zero

and one. However, a ‘‘god class’’ might as well share the
other heuristic categories, mentioned above. A striking

example found in the literature, identifiable by its

extraordinary number of 172 methods, was examined in

a case study (Chaumun et al., 2002). Syntactic category

differs from the structural in that it mainly captures

syntactic aspects of a design, as seen in the following

examples:

Usually when a service requires more than three

parameters something is wrong (Coad, 1991).

Do not use protected data, it weakens data hiding.

Use protected access functions instead. All data in

the base class should be private (Riel, 1994).

Our motivation for the selection of the investigated

heuristic is the following: (a) it captures both structural
and modular design aspects; (b) it is frequently violated

as it is an easy trap for designers with a �procedural’
mindset (Riel, 1996); and (c) it includes some control

mechanism. Nevertheless, building control objects is

encouraged by some authors (Jacobson and Christerson,

1995; Riel, 1996). According to the object classification

stated by Jacobson and Christerson (1995), we should

use three kinds of objects: interface, control, and entity

objects. Control objects take care of the most complex

behaviour. However, in cases where control objects try

to do too much of the work themselves, instead of

putting the responsibilities where they belong, they be-

come more complex and harder to maintain.

2.2. The experiment

Since this study concerns a controlled experiment, we

consider emphasis should be placed on two points. First,

experimental settings should be as realistic as possible

applying to those in practice. Second, planning, opera-

tion, and analysis should be according to those pro-

posed in the literature (Wohlin et al., 2000).

The present study is considered to be a controlled

experiment. Key motivator for using formal experi-
mentation is that the results can be more easily gener-

alised than those of an observational or a case study. It
concentrates on investigation of the same design heu-

ristic, this time additionally capturing an OO feature,

the inheritance mechanism. Inheritance is a fundamental

feature in OO programming languages; it is supposed to

make systems easier to design and make software com-

ponents easier to reuse (Bieman and Xia Zhao, 1995).
The rationale behind the decision to include this feature

was that Bieman and Kang (1995), in a case study they

carried out, found significant relationship between

inheritance and cohesion. While, in the observational

study mentioned above, it was found that cohesion

significantly contributed to the �god class’ structure.

Our decision to concentrate on the �god class prob-

lem’ was based on the fact that a �god class’ mostly
suffering from low cohesion and high coupling, two

particularly important quality properties of a design

structure, could also be used in an inheritance hierarchy,

exploiting the benefits provided by this mechanism,

namely reusability and extensibility. Therefore, our

interest was to examine the impact of the specific heu-

ristic with respect to inheritance on maintainability of

OO designs. Clearly, this choice highlights the emphasis
we place on a class structure as well as its dependencies.

According to Booch (1995), it is crucial to identify

sound classes, as well as their dependencies, which reveal

the implication of change––a change in one class will

potentially change dependent classes. The importance of

dependencies on system maintenance and change is also

stressed by Jacobson and Christerson (1995).

The investigated hypotheses (Section 2.4) are stated
on the basis that a system designed according to design

heuristics is more understandable and maintainable,

than a system violating them. In this study, only one

heuristic is violated, applied in a specific part of the

design, rendering the results more controllable and

stronger. Briand et al. (2001) suggest the necessity of

investigation of each and every design principle inde-

pendently, which could lead to better understanding the
impact of each principle on various design aspects.

2.3. Assessment

Apart from their guidance role in development,

heuristics provide an additional means for design

assessment. According to Kirsopp and Shepperd (2001)

they can be used in two distinct ways: stand-alone and
comparative. In order to assess the benefits provided by

the investigated heuristic, as well as its impact on the

quality factors––understandability and maintainabil-

ity––in which this study is most interested, quantitative

and qualitative analysis are also required.

Whitmire (1997) argues that, objective criteria depend

upon data gathered through measurement. He states

that measurement is a powerful and useful design tool
and sustains that a valid measurement context can be

built from any of the following three points of view:



132 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
strategic, tactical and technical. These points of view

form one basis of a framework for measurement. The

other basis for the framework is a set of four basic ob-

jects for which measurement data can be collected:

processes, products, resources, and projects. Further-

more, each class of object has two types of attributes:
internal and external (Fenton and Pfleeger, 1997).

Within this measurement framework, this study is

most closely related to a technical point of view, and to

object products. For products the following external

attributes are measured: understandability and main-

tainability. Understandability is captured by a debriefing

questionnaire where the participants express their per-

sonal opinions regarding architectural aspects of the
systems, as well as the modification task (Fig. 3, Table 1)

and is subjective in nature. Maintainability assessment is

performed by the following means: (i) by assessing three

basic criteria for OO design quality assessment (product

internal attributes): completeness, correctness, consis-

tency; and (ii) by considering conformance to design

heuristics. All of them provide objective measurements.

The first three criteria, suggested by Laitenberger
et al. (2000), aim at assessing the quality of design dia-

grams. These provide a means for systematic design

evaluation. Each one of these, according to the authors,

can be operationalised as follows:

Completeness. A diagram or a set of diagrams is com-

plete if no required elements are missing.

Correctness. A diagram or a set of diagrams is correct
if it is judged to be equivalent to some

reference standard that is assumed to be

an infallible source of truth.

Consistency. A diagram or a set of diagrams is consis-

tent if there are no contradictions among

its elements.

Based on these criteria, Laitenberger et al. performed
an empirical investigation comparing two inspection

techniques, Checklist, and Perspective Based Reading

(PBR), finding PBR to be more effective in evaluating

design diagrams in defect detection. Hence, the PBR

technique was chosen for evaluating the above criteria in

the present experiment (Fig. 1). From the PBR tech-

nique, a number of elements were used, that best con-

form to the delivered solutions, in our case Appendix A.

2.4. Hypotheses

For hypotheses testing the design documents of two

functionally equivalent versions of a system, called

Tariff Selector System (TSS), have been used. Design A

was the heuristic compliant version, while Design B was

the heuristic non-compliant one (Fig. 2(a) and (b)). In
order to investigate the impact of the specific design

heuristic on the two quality factors, standard signifi-
cance testing was used, the null hypothesis being stated

as:

H0. There is no difference between the heuristic compli-

ant and the heuristic non-compliant OO design in

terms of understandability and maintainability.

The alternative hypotheses, i.e., what was expected to

occur, were then created as:

H1. The heuristic compliant OO design is significantly

easier to understand than the heuristic non-compli-

ant OO design.

H2. It is easier to maintain a heuristic compliant OO de-

sign than a heuristic non-compliant OO design.

H2a. Higher completeness can be achieved maintain-
ing a heuristic compliant OO design than a heu-

ristic non-compliant OO design.

H2b. Higher correctness can be achieved maintaining

a heuristic compliant OO design than a heuristic

non-compliant OO design.

H2c. Higher consistency can be achieved maintaining

a heuristic compliant OO design than a heuristic

non-compliant OO design.
H3. Further heuristic compliance can be achieved main-

taining a heuristic compliant OO design than a heu-

ristic non-compliant OO design.

The term �maintain’ mentioned above refers to the

proper use of the existent or new required design

members (e.g., class, attribute, method, association),

which are classified as: required (according to the
modification task), declared, missed, incorrect (e.g.

�uses’ or �message connection’ when �whole-part’ struc-
ture is required), and inconsistent (duplicated members

or deleted methods––i.e. inherited but not used), (see

also Sharble and Cohen, 1993).

2.5. Subjects

Twenty students were used as participants to perform

maintenance tasks on the two system designs A and B.

All were undergraduate students at the second year of

their studies of the Department of Informatics at the

Aristotle University, Thessaloniki, Greece, enrolled in

the class of OO Programming. During the class semes-

ter, the students were taught basic OO principles as

those suggested by Coad and Yourdon (1991). Each
lecture was supplemented by a practical session pro-

viding the opportunity to the students to make use of the

concepts they had learned.

At about the end of the semester, students were asked

to participate voluntarily in an experiment planned to

run at the end of the semester, making it clear that they

would gain an additional bonus to their final evalua-

tion, in order to motivate them. As a result 28 students
agreed to take part. Then they were asked to attend two



Table 1

Debriefing questionnaire

Questions Group A Group B

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 Experience (1¼poor–

5¼professional)

With design documents in general 2 1 2 1 1 2 4 3 1 1 2 1 1 1 1 2 3 1 3 2

2 With OO design documents 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 3 2 2 1

3 In programming languages 4 4 4 2 4 4 4 4 3 3 5 4 4 2 2 3 4 4 4 4

4 Understandability

(1¼ little–10¼ high)

How well you understood what was required of you 8 8 6 6 10 8 8 8 4 8 8 6 10 8 6 6 8 6 8 8

5 Estimate, in terms of understandability, the quality

of the design documents

8 7 5 7 8 7 9 7 7 7 8 3 6 9 5 5 7 7 8 8

6 Estimate your overall understanding of the design

documents

5 9 5 6 8 7 5 8 5 8 5 3 6 8 5 3 7 5 7 8

7 What caused you the most difficulty to understand

the design documents

(a) Nothing in particular · · · · · ·
(b) Cohesion in classes · · · · ·
(c) Coupling between classes · · · · · · · · ·

8 Performance

(1¼ low–10¼high)

Estimate the correctness of your solution to the

modification tasks

6 8 6 6 8 6 10 8 4 6 6 4 8 6 4 2 10 6 8 10

9 If you could not complete all the tasks, please

indicate why

(a) Ran out of time · · ·
(b) Did not fully understand the system

requirements

(c) Did not fully understand the design

documents

· · · ·

(d) Did not fully understand the modification

task

·

10 Estimate the overall difficulty of the tasks you have

been asked to perform

5 10 7 7 9 2 6 4 4 10 7 9 5 5 10 9 4 6 3 2

11 What caused the most difficulty to perform the

modification task on the design

(a) Nothing in particular · ·
(b) Cohesion in classes · · · · · ·
(c) Coupling between classes · · · · · · · · · · · ·

12 Estimate your difficulty to locate where to

accommodate the new functionality

4 2 8 3 7 3 5 5 5 6 2 9 7 5 8 5 4 5 4 3

13 Are you a mobile phone user (yes/no)? n n y y y y y y n y y y y y y n n y n y

I.
D
elig

ia
n
n
is
et

a
l.
/
T
h
e
J
o
u
rn
a
l
o
f
S
y
stem

s
a
n
d
S
o
ftw

a
re

7
2
(
2
0
0
4
)
1
2
9
–
1
4
3

1
3
3



Quality
Criteria Factors

… …

New Designs

Original
Design A

Original
Design B

Modifications

Required elements

A1

A10

B1

B10

PBR

E
V

A
L

U
A

T
IO

N

Incorrect

Missed

Inconsistent

Correctness

Completeness

Consistency

Debriefing Questionnaire

Heuristics

Fig. 1. The evaluation model.

134 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
additional lectures where some related concepts to the

experiment were taught. A few days before the experi-

ment took place, they were asked to undertake a small

test in order to evaluate their ability to participate in the

experiment. They were given a small system consisting

of a number of classes, with no relationships between

them. The students were asked to design the class rela-

tionships according to a written requirements text. We
were interested to check whether they could efficiently

perform on inheritance, aggregation, association and

cardinality issues. Finally, 20 of them were chosen to

participate, randomly assigned to two groups, A and B.

In the rest of the paper we call them as A1–A10 and B1–

B10 for convenience, according to the system they

worked with. Ten were given the version compliant to

the design heuristic (Design A). The other 10 were given
the non-compliant version (Design B), which vio-

lates the design heuristic under investigation. They had

no prior practical experience on design documents,

apart from what they had learned during the semester,

as shown on Table 1. It is also worthwhile to note that

most of the participants are mobile phone users, thus

quite familiar with the whole functionality of the �Tariff
Selector System’, used for this study (Table 1).

2.6. Experimental material

The application domain used for the system was a

Tariff Selector System (TSS); a small but realistic (i.e.

not fictitious) application, in the sense that it could be

easily implemented and used as a real application. The

system implemented a mobile phone tariff selector sys-
tem to aid prospective buyers of telephones, in deter-

mining which tariff best matches their needs. Each
system documentation was six pages long and included

the requirements documents and the class design dia-

grams. Design A consists of 18 classes while Design B of

17. Design A is considered to be the �heuristic compliant’

one (Fig. 2(a)), due to its decentralized structure. It was

designed according to the above-mentioned design

heuristic. Extra care was also taken, to be consistent

with some other properties for well-designed classes,
namely coupling, cohesion, sufficiency, completeness,

and primitiveness (Booch, 1994). Design B, considered

as the �heuristic non-compliant’ one, was designed

according to Design A but violating the design heuristic

under investigation (Fig. 2b). The basic concept was to

build a class playing a central role into the system, as

described above. Two independent professionals exam-

ined both designs and asserted their correctness and
consistency.

The only difference between the two designs was that

one class in Design B, the �god class’, captured the

central functionality of the system. That class consti-

tuted of two entire classes and a method from a third

class, all taken from Design A. In Design A the same

functionality was split into three classes, each capturing

a coherent functionality. One of these three classes still
implemented control functionality, however being con-

sistent with a few related heuristics, namely (i) ‘‘A class

services should be related to each other and to the class

in an intuitively satisfying way’’ (Coplien, 1992) and (ii)

‘‘Avoid having a large, central object which controls

most of the functionality’’ (Riel, 1994). It is worthwhile

to mention here, that in a previous study (Deligiannis

et al., 2003) it was shown that, by applying a subset of
three metrics suites (Chidamber and Kemerer, 1994;

Lorenz and Kidd, 1994; Abreu and Melo, 1996), it could



Fig. 2. (a) Design A (�heuristic compliant’) (b) Design B (�heuristic non-compliant’).

I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 135
be feasible to locate a part of a design where violation of

the heuristic under investigation has taken place.

2.7. Experimental tasks

There were two tasks to be performed by the partic-

ipants. First, they were given the documentation set in

order to apply a modification task (Fig. 3). This task

was designed to match as much as possible a mainte-

nance task in a real situation. The required modification

was to add new functionality mostly affecting the part of

the system under investigation.
Namely, a mobile user (customer) would be given the

ability to request, after his contract expired, a new �best
tariff’, based on calls he had done during the past year.

This would serve as a consultation to his decision, be-
fore signing a new contract, suggesting the most bene-

ficial company and tariff. Thus, a new modified class

diagram was expected from each participant, along with

additional information explaining their solution.

The total elements to be added were approximately

15 attributes, and 14 methods. A considerable part of

them were already present in their designs. Although not

explicitly mentioned, it was implied that applying



Modification task

Asking for a tariff order based on an expired contract’s performed calls

When a customer’s contract expired, after one year, he could request for a new best tariff
this time based on his performed calls during the past year. Thus, a new contract could be
signed according to his past mobile usage.

To fulfill such a request the system had first to request from the Mobile Phone
Company’s Billing system, the customer’s performed calls for the specific contract, and
then create a new ‘Call profile’ based on them from which the best tariff should be built.
Also, its cost as well as the cost of the performed calls should be provided, in order to
make feasible a comparison.

Fig. 3. The modification task.

136 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
inheritance these elements could be reused. Alterna-

tively, they could be implemented explicitly, possibly

causing duplication of their usage. Inheritance was a

reasonable choice since the previous functionality and

the new required differed in that the old one built a �user
profile’ by the user himself, while the new one built a
�call profile’ from the users’ performed calls.

The second task was to complete a debriefing ques-

tionnaire, which captured, (i) their personal details and

experience, (ii) their understanding of the system, (iii)

their understanding of the modification task, (v) the

structure of the design, and (vi) their motivation and

performance, e.g., how accurate and complete they

thought their solution was, what had caused them the
most difficulty (Table 1).

2.8. Procedures

A week before the experiment proper took place, the

volunteering participants were asked to perform a short

test in order to collect the most capable of them to

participate in the experiment. They were told that only a
number of them, the most correctly performing, would

participate in the experiment. The test questions were

related to various design concepts, e.g., inheritance,

aggregation, composition (Deligiannis et al., 2002), that

were applied within the experiment designs. Also, a dry

run was performed using two Ph.D. students, in order to

test the experimental settings before the experiment

proper took place.
The experiment was performed in a classroom, where

each participant had plenty of space to examine all the

available documentation. They were randomly placed in

the work places. Each participant received a documen-

tation set different than the one examined by the person

sitting next to him. This was performed to eliminate

plagiarism, although it was not a real concern.

The participants were told verbally that there were
different designs being worked upon, but they were not

told anything about the nature of the study, i.e., what

hypotheses were being tested. However, they were told
to complete their tasks correctly, exploiting efficiently

their time. They were given a maximum of one and a

half hours to complete all the tasks. They were also told

that any questions could be directed towards the two

experiment monitors. Nevertheless, questions were not

answered if thought to assist participants’ performance,
only explanations were provided to them, avoiding

affecting their performance. After completing their

tasks, they called one of the experiment monitors to

collect their documentation. This was necessary in order

to mark their performance time as well as avoiding any

further changing. Then they were given a debriefing

questionnaire to complete, expressing their subjective

opinion concerning a number of issues as described
above.
2.9. Design

We applied statistical analysis on the collected data to

interpret the results in order to draw meaningful con-

clusions from the experiment. The choice of the design

affects the data analysis and vice versa. In this study the
type of design applied is a completely randomized bal-

anced design (Wohlin et al., 2000). The independent

variable is the design heuristic under investigation. The

experiment context is characterized as multi-test within

object study (Wohlin et al., 2000, p. 43). An advantage of

using such a design is that it simplifies the statistical

analysis.
2.10. Dependent variables

For hypotheses testing a number of dependent vari-

ables should be examined as follows:

Understandability, is captured by a questionnaire

where the participants express their personal opinions

regarding design aspects and the modification task, and

is subjective in nature. It represents the degree of
understanding measured by the grades of participants’

answers to related questions.



I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 137
Maintainability, is assessed by three basic criteria for

OO design quality assessment: completeness, namely

whether they completed the functionality needed as re-

quired by the modification task; correctness, based on

the former criterion, namely the proportion of the

completed members that were also correct; and consis-

tency, based also on the completeness criterion, namely

the proportion of the completed design elements that

were consistent. In order to measure them, we first need

to define a few variables (a design element may be a

method, an attribute, an association, etc.)

Declared elmts ðDECLÞ ¼ new elmtsþ inherited elmts

þ reused elmts

Required elmts ðRELÞ ¼ DECLþ missed elmts ðMELÞ

Note, that required elements (REL) depend on re-

quirement definition of the modification task, not on
some expected solution.

Completeness is measured based on the number of

completed design elements, according to the require-

ments definition. They were: (a) the total number of

required elements REL; and (b) the missed elements

MEL to complete the tasks:

COMPLETENESS ¼ ð1� ðMEL=RELÞÞ � 100
¼ ðDECL=RELÞ � 100:

Correctness represents the correct usage of the above

described elements, on the basis of the completeness
achieved.

CORRECTNESS ¼ ð1� ðincorrect elmts=DECLÞÞ
� COMPLETENESS

¼ ððDECL� incorrect elmtsÞ=RELÞ
� 100

Consistency represents the consistent usage of the com-

pleted design elements. As INCONSISTENT elements
are considered the following: duplicated, redundant

(attributes), empty (methods), and inconsistently de-

clared. We also take into account the achieved COM-

PLETENESS:

INCONSISTENT ¼ duplicated elmts

þ redundant attributes

þ empty methods

þ inconsistently declared elmts

CONSISTENCY ¼ ð1� ðINCONSISTENT =DECLÞÞ
� COMPLETENESS

¼ ððDECL� INCONSISTENT Þ=RELÞ
� 100
Heuristic compliance. The delivered designs were in-

spected to decide whether they violated other heuristics.

A possible case where some violation could occur, was

the one that offered some inheritance opportunity.

Namely whether, if they did apply inheritance, they did

it so properly. A proper heuristic for such case is that
measured by DELETED METHODS:

Subclasses should not delete features. Subclasses

that delete features probably are not specializations

of their superclass(es) because they cannot do

something that their parent(s) can (Firesmith,

1995).

All but the dependent variable understandability

provide objective measures. Each one is operationalised

as following: Understandability is measured by the

questions 4–7 in the debriefing questionnaire. Main-

tainability is measured by the three quality criteria,

mentioned above. Their measurements are based on

examining the required and delivered design members

quantified according to the above formulas. Finally,
heuristic compliance is measured by the number of de-

leted members (unused attributes and methods). Such

members are considered those inherited while not

making sense in the new derived subclass.
3. Experimental results

3.1. Statistical analysis of the data

For the statistical analysis of the data we used vari-

ables related to the answers provided by the students in

the questionnaire and variables related to their perfor-

mance in the experiment. The statistical methods we

used to test the hypotheses were: the Student’s t-test for
independent samples and the non-parametric Mann–
Whitney (M–W) test in order to test significant dif-

ferences between the two groups (A and B) for each

individual variable. In order to examine differences be-

tween the two groups by considering many variables

simultaneously, we also used the multivariate method

known as discriminant analysis.

Regarding understandability, none of the above

methods showed significant difference between the two
groups. Thus there is no evidence for supporting H1

hypothesis. Regarding maintainability, the variables

MEL, INCONSISTENT, COMPLETENESS, CON-

SISTENCY and CORRECTNESS were tested individ-

ually using the t-test and the M–W test. Differences were

found by both tests for variable MEL (p < 0:1) and by

M–W test for variables INCONSISTENT (p < 0:05)
and CONSISTENCY (p < 0:1). At a signifi-
cance 0:1 < p < 0:2, there is some evidence of differ-

ence between the two groups for the variables



138 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
COMPLETENESS and CORRECTNESS by both tests

and for CONSISTENCY by the t-test. The differences of
all variables related to maintainability between the two

groups are shown by boxplots in the following Figs. 4–8.

The discriminant analysis (DA) was used in our study

in order to build a model of group membership based on
the variables characterizing maintainability. A discri-

minant function (DF) was generated based on a linear

combination of the five variables from the results of the

experiment where the membership is already known.

The DA is used not only to test the equality of the

two groups but also to search a way in which the two

groups can be distinguished. It is important to keep in

mind that DA considers all the variables simultaneously
and not individually. So, it is a statistical procedure that

describes and interprets the differences between the two
Fig. 4. Missed elements.

Fig. 5. Inconsistent elements.

Fig. 6. Completeness.

Fig. 7. Consistency.

Fig. 8. Correctness.



I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 139
groups in a much more positive approach than a test for

a null hypothesis (Krzanowski, 1993).

In our case the procedure resulted in a model de-

scribed by the following Fisher’s linear DF:

z ¼ 15:046 �MEL� 0:84 � INCONSISTENT þ 6:881

� COMPLETENESS � 0:209 � CONSISTENCY
� 1:454 � CORRECTNESS � 526:4

So for a participant student, if we know the values of the

five variables, we can compute the value (score) of the

classification function and classify him/her to Group A

if the score is <0 and to Group B if the score is >0.

The performance of the above DF can be judged by

the percentage of correct classifications of the students

in the sample. However, this percentage is optimistic
since the classified students are the same ones used to

build the model. In this regard, the cross-validation

method is used to decrease the bias. Each student is re-

moved from the data and a classification model is

computed from the rest. Then the removed student is

classified according to the model. The percentage of the

correct classifications by this method is reported too. In

our case, all the cases were classified correctly by both
methods (with and without cross-validation), i.e. the

percentage of the correct classifications is 100%.

Another measure of the model’s efficiency is the

canonical correlation which is 0.883 (very close to 1),

and shows high association between the scores of the

DF and the groups. Therefore, the analysis considering

the combination of the variables related to maintain-

ability, supports hypothesis H2. Regarding now
hypothesis H3, the related variable METHODS DE-

LETED was tested for differences between groups A and

B by t-test and M–W test. Both tests showed statistically

significant difference (p < 0:01 and <0.05), so H3 is

supported.
3.2. H1––ease of understanding

This was captured by the debriefing questionnaire,

which was designed to collect both information not

covered by the reports, and information to add cor-

roboration to the report data. It includes sections on

attitudinal information regarding the background

experience, understandability, and maintainability

(Table 1). This information was based on the ordinal

scale 1-low to 5 or 10-high, depending on the question,
which is usually used in similar questionnaires (Briand

et al., 2001). We did so, wishing a fine granularity level

for some questions. Although the statistical tests do not

show any significant difference for the variable under-

standability between the two groups, we consider some

detailed discussion on these subjective data would

highlight some aspects concerning the difficulty they

faced and what caused it.
First, regarding the allocated time, whether it was at

best sufficient for them to complete their tasks (question

9), two of the participants, one of each group, felt that

they ran out of time. This is an indication that the

allocated time was marginal. Second, regarding the

participants’ experience (question 2), we can imply from
their low scores that OO concepts are particularly hard

to learn and apply. Nevertheless it is clear that they feel

more comfortable with programming (question 3).

Third, regarding the understandability, it is distinguished

in four questions aiming to capture different aspects of

it. From question 4 ‘‘How well you understood what

was required of you’’, we see that both groups felt some

difficulty, although their scores are quite high. Regard-
ing the quality of the designs they had (questions 5 and

6), although the difference between the two groups is

relatively small (72% vs. 66%, and 66% vs. 57%) shows

that Design A had a better quality than Design B in

terms of understanding. Concerning what caused the

most difficulty to understand the design documents

(question 7) the answers are similarly split between the

two groups stating both cohesion and coupling. How-
ever, considering a related question concerning what

caused the most difficulty to perform the modification

task (question 11), there is a significant difference be-

tween the two groups. Namely, Group A considered it

was coupling between classes (8 answers vs. 4 of Group

B), while Group B considered it was cohesion (5 vs. 1 of

Group A). Notice that Group B answers highlight the

cohesion factor, mainly responsible for the �god class’
problem.

However, although the above data cannot be re-

garded as significant evidence, they do support the

direction of our hypotheses and can be considered fur-

ther support for the results of the quantitative analysis.

Nevertheless, we must conclude that H1 is not sup-

ported.

3.3. H2––ease of maintaining

The quality factor maintainability was captured in

this study by the three basic criteria, as described above:

completeness, correctness, and consistency.

Concerning completeness there is a considerable dif-

ference between the two groups. Namely, Group B

manifests greater number of missed members than
Group A. This mainly occurred in those cases inheri-

tance was not applied, as a consequence a number of

members that could be reused were not used at all.

Correctness does not indicate any significant differ-

ence between the two groups, although Group A man-

ifests higher correctness. It is based on the completed

members of the design, mainly on associations between

the classes. An example could be the use of a simple
association (‘‘uses’’) where composition with cardinality

would be more appropriate.



140 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
Consistency is easier to measure here, since it mainly

counts contradictions among the design members

(duplicated members, redundant attributes, empty

methods, inconsistent associations), as described above,

and it is an objective measure. Comparing the delivered

solutions of the two groups, Group A indicates higher
consistency than Group B. These results occur mainly

due to duplication.

Analysis of the data collection from question 12,

concerning the difficulty to accommodate the new

functionality, shows a small difference between the two

groups, i.e. Group B found it harder than Group A.

However, analysis considering the combination of the

variables related to maintainability, supports hypothesis
H2.
3.4. H4––heuristic compliance

We consider of particular importance the additional

evaluation of the delivered solutions by heuristics. This

is not because design measures do not provide objective

measurements, but considering from another perspec-

tive, as that of subtyping, we realize that there is a risk

the reuse results to prove colorable.

In our case the reuse measurements do not ade-

quately capture the reuse situation. Namely, Group A
participants performing on a decentralized design

inherited a smaller number of members than Group B,

which performing on the �god-class’ version had a larger

number of members in one class to inherit. This is not to

say that inheriting more design members lead to better

design. Group-B, by inheriting from the �god class’ was

forced to inherit a few class members not required

(redundant) in the new subclass. This suggests a poor
design practice that cannot be captured solely by strict

measurements. Such design choices, we consider can

effectively, as well as objectively, be captured by apply-

ing a number of proper design heuristics, such as the

heuristic about deleted methods, mentioned previously

in Section 3.4 and

Inheritance should only be used for subtyping (Bar-
David, 1992).

Both heuristics are of the stand-alone type.

Two kinds of violations were found while applying

heuristic assessment: the first one was the �deleted fea-

ture occurrence’, which was not violated at all by Group

A, while violated by Group B in five cases. The second

one was the �subtyping’ heuristic, which was violated by
Group A in one case, and by Group B in three cases.

However, it is worthwhile to notice that both violations

can also be captured objectively by the substitutability

principle, suggested by Amstrong and Mitchell (1994).

The data of the quantitative analysis provide significant
evidence toward Group A supporting the direction of

our hypotheses. Therefore, H3 is supported.

3.5. Analysis summary

The results show that design strategies play important
role in the design quality affecting, in different extent,

both participants’ understandability and maintainabil-

ity. In this study, Design A complying to the design

heuristic under investigation, hence providing a decen-

tralized structure, is slightly easier to understand than

Design B, where structure is more concentrated. Nev-

ertheless, it is considerably easier to maintain. Although,

decentralization affects the maintainability, due to �de-
localised plans’ (Wilde et al., 1993) it is shown here that

when compared to centralized design structures, it is

more effective in exploiting also inheritance due to

cohesive classes, therefore more maintainable.

Analyzing furthermore the data collection from the

debriefing questionnaire a number of additional impli-

cations could be drawn. Thus comparing the two de-

signs (Design A vs. B), the following issues are
stemming:

Higher design quality (question 5: 72% vs. 66%),

provides higher understandability (question 6: 66% vs.

57%), and lower difficulty to accommodate the new

functionality i.e. maintainability (question 12: 48% vs.

52%). Furthermore examining what factor caused the

most difficulty to perform the modification, Group A

alleged it was coupling (question 11: 8 vs. 4), apparently
due to its design’s decentralized structure, while Group

B alleged it was cohesion, mostly responsible to its de-

sign’s concentrated non-cohesive structure (question 11:

5 vs. 1). Notice that questions 7 and 11 included an

additional point to note if they considered any other

aspect, however, they indicated none.

Comparing the debriefing questionnaire data, to the

objective data drawn from participants’ delivered de-
signs, further determination of the collected objective

data could be provided, as follows:

Design A offered more inheritance reuse convenience

(70% uniformly vs. 50% non-uniformly). This indicates

encouragement for inheritance for Group A, but dis-

couragement for Group B. Group A also inherited fewer

members and in a uniform way, while Group B inherited

more members in different ways. A possible explanation
is that Design A, with its decentralized functionality and

its fewer members, offered more convenience to apply

inheritance than Design B, which presumably discour-

aged the participants, due to greater number of mem-

bers to inherit and to its centralized functionality.

Notice, that if one did not inherit the existent func-

tionality, he should then re-implement it causing a more

intense duplication problem in Design B, while if he
inherited the whole �god class’, he should introduce a

few redundant members.



I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 141
Comparing the completeness achieved, it is supported

with significant evidence that Group A achieved signif-

icantly higher completeness (Fig. 6) than Group B.

Significant evidence is also provided by the consistency

results (Fig. 7). However, no difference is shown from

correctness, since it is mainly limited to associations, as
described previously. Finally, we expected that mobile

phone users could perform better than the others,

however there was not any clear indication of it.
4. Threats to validity

This section discusses various threats to validity and
the way we attempted to alleviate them.

4.1. Construct validity

Considering the construct validity, i.e. the degree to

which various factors accurately measure the concepts

they purport to measure, the following possible threats

have been identified.
Understandability and maintainability are difficult

concepts to measure, because the former is based on the

subjective estimation and experience of the participants,

while the latter one, although based on objective mea-

sures does not capture all the dimensions of each con-

cept. In a single controlled experiment, however, it is

unlikely that all the different aspects of a concept can be

captured; hence the researcher must focus on represen-
tative as well as realistic conditions. In this study,

understandability is examined by four questions in

the debriefing questionnaire, while maintainability is

examined by three criteria (completeness, correctness,

and consistency).

The compliance and violation of the design heuristic

under investigation are also difficult to measure. How-

ever, in a previous observational study (Deligiannis
et al., 2003), it was shown that different design strategies,

as in this case, could be measured by a number of

appropriate metrics proposed in the literature. Those

metrics may be used to identify the conformity of a

design aspect to a design heuristic. In this study,

redundant members can be easily measured on a design

by a simple metric, while in the case of deleted methods

they can be additionally detected by some automated
tool, applied on code. However, our approach has been

based on work in the literature on OO design and

measurement (Bieman and Kang, 1995; Riel, 1996;

Whitmire, 1997).

4.2. Internal validity

Threats to internal validity are influences that can
affect the independent variable with respect to causality.

Thus they threat the conclusion about a possible causal
relationship between treatment and outcome. The fol-

lowing possible treats are identified.

Instrumentation. This is the effect caused by the dif-

ferences in the artifacts used for the experiment. The

threat to this study was the possibility of differences

between the two design structures of the system and the
modification task causing performance differences.

There is no concern for the modification task, since both

groups worked on the same task. Considering the dif-

ferent designs applied, as discussed previously, both

designs were performing identically. As for their struc-

ture, they were also identical, apart from a small part

they differed due to the conformance or not to the design

heuristic investigated. This is also confirmed from the
analysis of the debriefing questionnaire data. Specifi-

cally, no significant difference was found on the partic-

ipants’ opinion between the two groups, concerning the

quality of the design documents, as well as the difficulty

they faced with them. Also, two independent profes-

sionals who examined both designs asserted their func-

tionality.

Selection. This is the effect of natural variation in
human performance. Volunteer students were used,

considered more motivated and suited for the task than

the whole population. Hence the selected group is not

representative for the whole population. Our concern

was to select the most capable of the students from the

course, offering them a degree bonus for their partici-

pation. An additional reason for this kind of selection

was that we considered to exclude those not really
willing to participate, because they might not perform

properly.

4.3. External validity

Regarding the external validity, i.e. the degree to

which the results of the research can be generalized to

the population under study and other research settings,
the following possible threats have been identified:

This study took place in a university environment and

not in the work place.

The size of the system used in this study is relatively

small. Although the project was a real project, its size, 18

and 17 classes may not present an industrial scale piece

of software. However, the task was essentially a design

extension, i.e. to add a new functionality to a system
that occurs in practice in large systems too, and

according to OO theory, maintenance should require the

modification of small parts of an OO design.

The students used as participants may not be repre-

sentative of OO software professionals. On the other

hand, the OO paradigm offers several mechanisms and

tradeoffs where decisions on best alternatives are usually

fuzzy and mostly based on expert judgement. In other
words, cumulative knowledge is likely to play a very

important role in the design phase. Thus, it is



142 I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143
questionable whether novice designers, performing

under such circumstances and with limited time, are the

most appropriate subjects. However, Briand et al. (2001)

argue that student based experiments can provide useful

results for several reasons. First, they can provide con-

firmatory evidence for results from case or other studies.
Second, they can identify interesting hypotheses that are

worthy of further investigation in more realistic settings.

In general terms, it would be difficult to try to predict

whether, and in what way, these threats may have af-

fected the results. While the external threats limit gen-

eralisation of this research they do not limit the results

being used as the basis of future studies. Also, this is not

to say that the results cannot be useful in an industrial
context. Empirical studies as this one allow the investi-

gation of a larger number of hypotheses at a lower cost

than field studies, which can then be tested in more

realistic industrial settings with a better chance of dis-

covering important and interesting findings.
The designer scenario (correctness and completeness)

Classes

Are the classes defined into the design class diagram

(DCD) also specified into the requirements?

Are the class names correct?
Are the attributes names correct?

Are the method names correct?

Attributes

Is the number of the attributes correct?

Are the types of the attributes correct?

Methods

Is there correspondence of the methods between
requirements and DCD?

Associations

Are the binary associations correct?
Is the cardinality of the associations correct?

Is the arity of the associations correct?

Constraints

Are the constraints between requirements and DCD
correct?

Abstract concepts

Are the abstract concepts properly mapped?

Questions to answer

Is there everything you realized in the analysis

document that is reflected in the design document?
5. Conclusions

This study has investigated the effects of a single de-

sign heuristic on system design documents, with respect

to understandability and maintainability, two essential

components of software quality. The study has com-

pared two designs, Design A and B, which were devel-

oped according to design heuristics in general, apart

from a small but functionally important part of Design
B violating the �god class’ heuristic. Since the difference

between them was restricted to a specific part of the

design, it is believed that any difference of the results

might be due to different design strategies applied.

The results provide sufficient evidence that the spe-

cific design heuristic can affect the two quality factors.

This is supported by qualitative evidence by two means:

(a) in the form of information from the debriefing
questionnaire; there, participants expressed the views

that Design A was slightly easier to understand and

modify, and (b) from heuristic evaluation applied on the

delivered solutions. It is also supported by quantitative

evidence provided by: (a) simple measurement values

concerning design elements as well as the inheritance

use; and (b) quality criteria concerning completeness,

correctness and consistency of the delivered solutions.
All but understandability and correctness show signifi-

cant differences toward Design A.

Our findings indicate that, concerning maintainabil-

ity, OO design structures are sensitive to bad or good

design practices. It seems that the continuous evolution

of a design structure depends on whether certain design

heuristics and principles are followed by the developers.

That is, a design initially structured under the guidance
of heuristics has a greater probability of continuing to

evolve in a similar resilient and flexible manner, thus
rendering it maintainable and reusable. If design heu-

ristics are violated even once, there is an increased

probability of maintenance changes leading to poorer

designs, rendering it harder to maintain as design

evolves over time, which leads to increasing entropy

(Jacobson, 1996). Such a design also minimises oppor-
tunities for reuse, an important feature in OO technol-

ogy.

Further research can investigate: (a) the impact of

design heuristics on reusability; (b) the design quality

evaluation based on the wealth of existing number of

heuristics; (c) the automated detection of design heu-

ristic violations, thus guiding a designers’ choices on

critical design strategies; (c) the relationships between
design heuristics and metrics, since metrics could more

precisely and quickly lead the automated process.
Acknowledgements

We would like to thank the subjects for participating

in this experimental study and the reviewers for their
helpful comments on an earlier version of this paper.
Appendix A. PBR technique elements used



Are the initial conditions for starting up a system
operation clear and correct?

For every message that is defined in the requirements,

is there a corresponding message in the DCD?

Is the sequence of messages correct?

The implementor scenario (consistency and complete-

ness)

For each class, are the attributes types specified?

(consistency)
For each class, are the methods defined? (complete-

ness)

Questions to answer

Is there anything that prevents you from implement-

ing the system design?

I. Deligiannis et al. / The Journal of Systems and Software 72 (2004) 129–143 143
References

Abreu, F., Melo, W., 1996. Evaluating the impact of object-oriented

design on software quality. In: Proceedings of the 3rd ISMS

(Metrics’96), March.

Allen, E., Khoshgoftaar, T., 1999. Measuring coupling and cohesion:

an information theory approach. In: Sixth International Sympo-

sium on Software Metrics. IEEE Computer Society, Silver Spring,

MD.

Amstrong, J., Mitchell, R., 1994. Uses and abuses of inheritance.

Softw. Eng. J. (January), 19–26.

Bar-David, T., 1992. Practical consequences of formal definitions of

inheritance. J. Object Orient. Program. (July/August), 43–49.

Basili, V., Burgess, A., 1995. Finding and experimental basis for

software engineering. IEEE Softw. 12, 92–93.

Bieman, J., Kang, B.-K., 1995. Cohesion and reuse in an object-

oriented system. In: ACM Symposium Software Responsibility.

Bieman, J., Xia Zhao, J., 1995. Reuse Through Inheritance: A

Quantitative Study of C++ Software.

Booch, G., 1994. Object-Oriented Analysis and Design with Applica-

tions. Addison-Wesley, Reading, MA.

Booch, G., 1995. Rules of Thumb. ROAD 2 (4), 2–3.

Briand, L., Bunse, C., Daly, J., 2001. A controlled experiment for

evaluating quality guidelines on the maintainability of object-

oriented designs. IEEE Trans. Softw. Eng. 27 (6), 513–530.

Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F., 2002. A

change impact model for changeability assessment in object-

oriented software systems. Sci. Comput. Program. 45, 15–174.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object oriented

design. IEEE Trans. Softw. Eng. 20 (6), 476–493.

Coad, P., 1991. OOD criteria, part 1–3. J. Object Orient. Programm.

(Jun-Sep), 67–70.

Coad, P., Yourdon, E., 1991. Object-Oriented Analysis. Prentice-Hall,

Englewood Cliffs, NJ.

Coplien, J., 1992. Advanced C++. Addison-Wesley, Reading, MA.
Deligiannis, I., Shepperd, M., Webster, S., Roumeliotis, M., 2002. A

review of experimental investigations into object-oriented technol-

ogy. Empiric. Softw. Eng. J. 7 (3), 193–231.

Deligiannis, I., Shepperd, M., Stamelos, I., Roumeriotis, M., 2003. An

empirical investigation of object-oriented design heuristics for

maintainability. J. Syst. Softw. 65 (2), 127–139.

Fenton, N., Pfleeger, S.L., 1997. Software Metrics, A rigorous &

Practical Approach, second ed. International Thompson Computer

Press.

Firesmith, D., 1995. Inheritance guidelines. JOOP (May), 67–72.

Glass, R., 2002. In search of meaning (a tale of two words). IEEE

Softw. 19 (4), 136, 134–135.

Goodley, S., 1999. Java on course to dominate by 2002, Available from

<http://www.vnunet.com/News/87054>.

Hatton, L., 1998. Does OO sync with how we think? IEEE Softw.

(May/June), 46–54.

Hillegersberg, J., Kuman, K., Kuman, K.,Welke, R., 1995. An

empirical analysis of the performance and strategies of program-

mers new to object-oriented techniques. In: Psychology of Pro-

gramming Interest Group: 7th Workshop.

Jacobson, I., 1996. Object-Oriented Software Engineering: A use case

driven approach. Addison-Wesley, Englewood Cliffs, NJ.

Jacobson, I., Christerson, M., 1995. A confused world of OOA and

OOD. JOOP (Sep.), 15–20.

Jones, G., 1994. Gaps in the object-oriented paradigm. IEEE Comput.

(Jun.), 90–91.

Kirsopp, C., Shepperd, M., 2001. Using heuristics to assess object-

oriented design quality. In: 5th International Conference on

Empirical Assessment & Evaluation in Software Engineering,

Keele University, Staffordshire, UK.

Krzanowski, W.J., 1993. Principles of Multivariate Analysis. Oxford

University Press.

Laitenberger, O., Atkinson, C., Schlich, M., Emam, K., 2000. An

experimental comparison of reading techniques for defect detection

in UML design documents. J. Syst. Softw. 53, 183–204.

Lorenz, M., Kidd, J., 1994. Object-Oriented Software Metrics.

Prentice-Hall, Englewood Cliffs, NJ.

Meyer, B., 1997. Object-Oriented Software Construction. Prentice-

Hall PTR.

Riel, A., 1994. Introducing to object-oriented design heuristics. In:

OOPSLA’94, Portland, OR, USA.

Riel, A., 1996. Object-Oriented Design Heuristics.

Rumbaugh, M., Blaha, M., Premerhani, W., Eddy, F., Lorensen, W.,

1991. Object-Oriented Modeling and Design. Prentice-Hall, Engle-

wood Cliffs, NJ.

Sharble, R., Cohen, S., 1993. The object-oriented brewery: a compar-

ison of two object-oriented development methods. ACM Sigsoft.––

Softw. Eng. Notes 18 (2), 60–73.

Whitmire, S., 1997. Object Oriented Design Measurement. John Wiley

& Sons, New York.

Wilde, N., Mathews, P., Ross, H., 1993. Maintaining object-oriented

software. IEEE Softw. (January), 75–80.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen,

A., 2000. Experimentation in Software Engineering––An introduc-

tion. Kluwer Academic Publishers, Dordrecht.

http://www.vnunet.com/News/87054

	A controlled experiment investigation of an object-oriented design heuristic for maintainability
	Introduction
	Description of the experiment
	``God class problem''
	The experiment
	Assessment
	Hypotheses
	Subjects
	Experimental material
	Experimental tasks
	Procedures
	Design
	Dependent variables

	Experimental results
	Statistical analysis of the data
	H1--ease of understanding
	H2--ease of maintaining
	H4--heuristic compliance
	Analysis summary

	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusions
	Acknowledgements
	PBR technique elements used
	References


