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Abstract

This empirical study has two goals. First, to investigate the impact of a design heuristic on the maintainability of object-oriented

designs, namely the �god class� problem. In other words, we wish to better understand to what extent a specific design heuristic

contributes to the quality of designs developed. The second goal is to investigate the relationship between that OO design heuristic

and metrics. Namely, are we able to capture a specific design heuristic by applying a suitable subset of design metrics? The results of

this study show that: (a) the investigated design heuristic significantly affects the performance of the participants; (b) it also affects

the evolution of design structures; and (c) there is a considerable relationship between that design heuristic and metrics so that it

could be feasible to conduct an assessment by using appropriate metrics.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Software systems, after initial release, are subject to

continuous evolution and modification in order to re-
spond to changes in the real world. Thus, we want them

to be easy to understand, enhance or correct; if they are,

we say that our software is maintainable (Fenton and

Pfleeger, 1997). To achieve those goals it is essential that

software be based on robust design. A good design al-

lows us to easily plug-in new functionality in terms of

new classes and new methods without a need to re-

implement the results of the previous iteration cycles.
More specifically, it is crucial that we identify sound

classes (Booch, 1995), as well as their dependencies,

which reveal the implication of change––a change in one

class will potentially change dependent classes. Clearly,

we want dependencies that make the system easy to

maintain and change (Jacobson and Christerson, 1995).

The maintenance phase is considered the most costly

part of the system lifecycle (Hatton, 1998; Meyer, 1997).

In order to apply it successfully, two things are required:

the ability to make enhancements and changes easily––

maintainability––and in-depth understanding of the
software�s structure and behaviour––understandability

(Wilde et al., 1993).

A wide variety of heuristics 1 have been proposed in

the literature in order to improve the structural quality

of OO designs (Booch, 1995; Jacobson and Christerson,

1995; Riel, 1996; Firesmith, 1995; Lorenz and Kidd,

1994). Such heuristics are aimed at providing ways and

techniques for developers to make proper decisions.
Design heuristics strive to enhance design quality, thus

affecting the highly desirable quality factor in OO soft-

ware engineering of maintainability. Maintainability is a

high-level quality factor that is indirectly evaluated in

this study by the following means: a debriefing ques-

tionnaire, the measured performance effort, i.e. the time

*Corresponding author. Tel./fax: +30-310-791295.
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1 The computer science field has traditionally defined heuristics as

rules of thumb. However, the dictionary does not support this

definition (instead, it says heuristics are trial and error approaches).

In this paper we use the term with the computer science meaning.
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spent to perform the modification task, and the deliv-

ered solutions.

Both before and during the maintenance phase,

software measurement can be extremely valuable. Dur-

ing the maintenance process, measurements could be a

guide, so that we can evaluate the impact of a change, or
assess the relative merits of several proposed changes

or approaches (Fenton and Pfleeger, 1997). One of the

most influencing factors of software systems quality, in

which metrics can play an important role, is the struc-

ture of software design (Abreu and Melo, 1996). De-

tecting potential problematic modules and dependencies

at this early stage of system lifecycle, before the under-

lying design decisions are ‘‘ossified’’ into code, is one of
the main objectives of design metrics (Abreu and

Carapuca, 1994). The OO literature abounds with pro-

posed metrics aimed at providing ways of assessing the

quality of various design aspects. Such an assessment of

design quality is objective, and the measurement can be

automated. But how do we know which metrics actually

capture important design aspects, as for example pro-

vided by heuristics? Despite numerous theories and
claims on what constitutes good OO design and best

solutions on specific situations, only empirical studies of

actual systems structure and quality can provide tangi-

ble answers. So far (to the best of our knowledge), one

empirical study directly related to object-oriented design

heuristics has been performed (Kirsopp et al., 1999). The

lack of empirical studies into this area was our major

motivation for this study.
The work presented in this paper is an observational

study, where the impact of a single design heuristic on

quality of object-oriented designs, as well as its effect

on maintainability, is empirically investigated. Further-

more, by applying a number of metrics proposed in the

literature that are considered most related to structural

design aspects, we investigate whether it is feasible to

determine where that design heuristic is violated. In
doing so, it will make it possible to identify a suitable

subset of design metrics, which could detect cases where

the specific design heuristic is breached at an early stage

of the design phase.

The rest of the paper is structured as follows. In the

next section a description of OO heuristics is given as

well as their relationships to measurement. The follow-

ing section describes the design and the performance of
the observational study. An analysis of the results is

then presented in Section 4. In Section 5 threats to va-

lidity are discussed. In the final section, a number of

implications are drawn from this work and future work

is discussed.

2. OO design heuristics

Since the topic of OO design heuristics is broad and

there is lack of precise definition, we consider it useful to

quote the most interesting statements found in the lit-

erature. Booch states (Booch, 1995): ‘‘As any discipline

matures, experience accumulates, drawn from both

successful and unsuccessful ventures. Typically, this

experience gets passed on through books, articles, clas-

ses and mentoring. However, as more and more details
accumulate, or as these lessons become more complex, it

becomes difficult for new folks to absorb this wisdom as

they approach the discipline for the first time. Indeed,

�old hands� in any discipline, be in farming or painting or

even programming, will collapse many of their lessons

learned into simple rules of thumb that serve to guide

their actions. A rule of thumb is intentionally imprecise,

but it at least puts you close to what is exactly right’’.
Other authors describe them as: guidelines to help de-

velopers make proper decisions; identified and encap-

sulated experience; imprecise and informal guide to

good and bad practices; provision of knowledge and

judgement. However, it is widely admitted that they are

not hard and fast rules, since a heuristic violation in

itself may not represent a problem, perhaps due to dif-

ferences in context.
There is a plethora of OO design heuristics in the

literature (Booch, 1995; Firesmith, 1995; Jacobson and

Christerson, 1995; Lorenz and Kidd, 1994; Riel, 1996)

related to a multitude of software aspects. As mentioned

above, they are aimed at enhancing software quality.

However, when violating them there is a risk of leading

to complex and monolithic design structures. In this

study we are focusing on a single but important design
heuristic. According to Riel (1996), there is one very

distinct area where the OO paradigm can drive designs

in a dangerous direction. This is called the �god class

problem� and deals with poorly distributed system in-

telligence. It is caused by a common error among pro-

cess-oriented developers in the process of moving to the

OO paradigm. These developers attempt to capture the

central control mechanism, so prevalent in the process-
oriented paradigm, within their OO design. The result is

the creation of a �god� object that performs most of the

work.

The design heuristic investigated in this study is

proposed by Riel (1996) which we consider works to-

ward the avoidance of such classes. This is described as

follows:

‘‘Do not create god classes/objects in your system.

Be very suspicious of a class whose name contains

Driver, Manager, System, or Subsystem’’ (Riel,

1996).

Our motivation for the selection of the above heu-

ristic is the following: (a) it captures both structural and

modular design aspects; (b) it is frequently violated as it
is an easy trap for designers with a �procedural� mindset

(Riel, 1996); and (c) it includes some control mechanism.
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Nevertheless, building control objects is encouraged by

some authors (Jacobson and Christerson, 1995; Riel,

1996). According to the object classification stated by

Jacobson and Christerson (1995), we should use three

kinds of objects: interface, control, and entity objects.

Control objects take care of the most complex behav-
iour. However, in cases where control objects try to do

too much of the work themselves, instead of putting the

responsibilities where they belong, they become more

complex and harder to maintain. Therefore, the major

objective of this study is to investigate to what extent

such classes/objects affect the maintainability of design.

In order to assess the benefits provided by the inves-

tigated heuristic, as well as its impact on the quality
factor––maintainability––in which this study is most

interested in, quantitative analysis is also required. As

mentioned above, metrics are the primary means of as-

sessing specific design aspects; they are easy to automate;

and they are specific and descriptive (Lorenz and Kidd,

1994). Whitmire argues that, objective criteria depend

upon data gathered through measurement (Whitmire,

1997). He sustains that a valid measurement context can
be built from any of the following three points of view:

strategic, tactical and technical. These points of view

form one basis of a framework for measurement. The

other basis for the framework is a set of four basic ob-

jects for which measurement data can be collected: pro-

cesses, products, resources, and projects. Furthermore,

each class of object has two types of attributes: internal

and external (Fenton and Pfleeger, 1997).
Into this measurement framework, this study is most

closely related to a technical point of view, and to ob-

jects of processes and products. From processes the in-

ternal attributes are measured: time and number and

duration of incidents of a specific type of activity. From

the products the external attributes are measured:

maintainability and understandability, as well as the in-

ternal attributes: size (number of new and modified
classes, methods, attributes, and associations), coupling

and cohesion.

Subsequently, it is expected that applying mainly

product metrics as strongly related to design aspects, a

suitable set of design metrics capturing a specific design

heuristic could be determined. This is, however, a sec-

ondary objective of our study.

3. Design of the empirical study

3.1. The task

The application used for the study was the tariff se-

lector system (TSS). This is a small but realistic appli-

cation, implementing a mobile phone TSS to aid
prospective buyers of telephones, in determining which

tariff best matches their needs. We produced two iden-

tically performing versions of the system, called Design

A and B. They were designed using the OMT method

(Rumbaugh et al., 1991), an analysis/design method,

and the Unified Modelling Language (UML) notation

(Booch et al., 1999). They were implemented using the

Java 1.2 programming language and have a GUI built
using the standard AWT components. Although par-

ticipants only worked with design documents, it was

considered that the implementation of the two versions

of the system was necessary for three reasons: (a) to help

participants to thoroughly understand its functionality

through executing the program, prior to any modifica-

tion; (b) to make feasible measurement evaluation of the

systems (the initial and the produced versions), apart
from design metrics, even from metrics applied on code;

and (c) to ensure that the two designs were indeed

functionally equivalent.

Design A consists of 18 classes while Design B of 16.

Design A is considered to be the �heuristic compliant�
one, due to its decentralized structure. It was designed

and implemented according to the above-mentioned

design heuristic. Design B, considered as the �heuristic
non-compliant� one, was designed and implemented vi-

olating this heuristic. The basic concept was to build a

class playing a central role into the system, as described

above. The two versions differed in that, in Design B one

class captured the central functionality of the system,

while in Design A the same functionality was split into

three classes, each capturing a coherent functionality.

One of these three classes still implemented control
functionality, however being consistent with a few re-

lated heuristics, namely; (i) ‘‘A class services should be

related to each other and to the class in an intuitively

satisfying way’’ (Coplien, 1992); (ii) ‘‘Avoid having a

large, central object which controls most of the func-

tionality’’ (Riel, 1994). Extra care was taken for both

systems, except the �god� class in Design B, to be con-

sistent with some other properties for well-designed
classes, namely: coupling, cohesion, sufficiency, com-

pleteness, and primitiveness (Booch, 1994).

The participants first had a session running the ap-

plication, intended to give them a thorough under-

standing of its functionality. Then they were given a set

of documents (Table 1) describing the system. The re-

quired modification task (Appendix A) was to add new

functionality mostly affecting the part of the system
under investigation. Thus, a new modified class diagram

was expected from each participant. The whole main-

tenance process was videotaped, intended to record

every activity performed by each participant.

3.2. Study participants

Four participants were used to perform mainte-
nance tasks on two system designs, A and B. In the rest

of the paper we call them as A1, A2, B1 and B2 for
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convenience, according to the system they worked with.

Two were given the version compliant to design heuristic

(Design A). The first subject �A1� was a research fellow

having a Ph.D. degree in OO Technology but with little

practical experience on OO design documents. The other

subject �A2� was a Senior Lecturer, also having little
practical experience on OO design documents. The other

two were given the non-compliant version (Design B),

which violates the design heuristic under investigation.

Subject �B1� was a Ph.D. candidate having sufficient

practical experience. The other one �B2� was a research

fellow, teaching OO methodologies. Nevertheless, ex-

perience level is a subjective factor. It is also worthwhile

to note that �A2� and �B1� are mobile phone users, thus
more familiar with the whole functionality of the �TSS�,
used for this study.

3.3. The method

The method used here is the observational study.

Kirwan and Ainsworth (1992) state that, the objective of

observational techniques is to obtain data by directly
observing the activity or behaviour under study. They

may be used to record the full overt sequence of actions.

The experimenter may subsequently choose to extract

whatever information is of interest, usually from an

audio–visual recording. Thus, observation methods can

be particularly useful for recording physical task se-

quences. Some advantages of such methods are the

following:

• Detailed physical task performance data can be re-

corded.

• They are ideal for pilot studies, as they can reveal po-

tential behaviour patterns and influences, which may

not have been predicted, and can be subsequently

analysed in more detail.

• They can be used to identify and develop explana-
tions of individual differences in task performance.

• They provide objective information, which can be

compared with information collected by another ob-

server, or by another method.

These characteristics of the method, in particular the

convenience to observe and document in detail by vid-

eotaping every activity of each participant, from the
whole maintenance session, were the major motivators

for using it. More specifically, by documenting the du-

ration (action time) and visiting frequency on each

available design document (Fig. 1a and b), it is hoped to

better understand the participants� behaviour, namely to

identify possible behaviour patterns, in addition to when

and where they face difficulties working on the different
designs.

3.4. Data collection

Four different elements made up the data collected

for this study. The description and assessment of each

one is as following:

1. Performance effort: This mainly refers to time spent

and how it was spent, on each design document, and

refers to two kinds of data:

i(i) Time, distinguished in total time, activity time, and
action time. Action time refers to the time spent in

a single document visit (an action) and is shown in

Fig. 1a and b. Activity time is the cumulative time

spent in visiting a specific document and is shown

in the relative columns of Table 2 and in Fig. 2.

Total time is the time spent by each participant dur-

ing the study and is reported in Table 2.

(ii) Design document analysis, which concerns the man-
ner time was spent. It captures the number of visits

(actions) the participants performed to each avail-

able design document, their order, their frequency,

and their pattern. It is distinguished in action fre-

quency, activity sequence, and activity interrelation

(Table 2, Fig. 1a and b).

All data was extracted from the video recording and is
objective in nature.

2. Delivered class diagrams: These refer to four re-

ports with the delivered solutions, each produced by one

participant, as required by the modification task. They

were evaluated for their completeness, correctness, and

consistency (Table 3).

3. Metrics and measurement values: In order to

perform a thorough assessment of all six designs (two
original A and B, and four produced by the partici-

pants), a number of OO metrics were needed along

with a tool to extract measurement values according to

these metrics. For this purpose, three well-known

suites of metrics were used, proposed in the literature

(Abreu and Melo, 1996; Chidamber and Kemerer,

1994; Lorenz and Kidd, 1994). Measurements were

collected using a measurement tool named MOT, de-
veloped at Bournemouth University. Thus, six sets of

metrics values were extracted, one from each design.

These values provide a means to evaluating the quality

of the total six designs, since they capture specific

quality properties, as well as to make comparisons

between them in order to draw some conclusions.

Table 1

Documents provided to the participants

(a) Specifications

(b) Use case diagram

(c) Event flow diagram

(d) Class diagram

(e) Sequence diagram

(f) Modification task

130 I. Deligiannis et al. / The Journal of Systems and Software 65 (2003) 127–139



Comparisons were performed in three directions: (i)

between the two original designs (A against B); (ii)
between each original design and the two new ones

produced from that (e.g. A against A1 and A2; B

against B1 and B2), and (iii) between the four pro-

duced designs (e.g. A1 and A2 against B1 and B2).

Also, so as to further evaluate the designs, the six

designs were implemented as code.

From the three suites of metrics applied, it was de-

cided to present (Tables 4 and 5) only those metrics

whose values differ between the two original designs (A

and B), while the others were discarded as not indicating
any difference. This was done because it was considered

that their differences are due to their sensitivity to the

design strategies that were used in this study. Note, that

some of the metrics are applicable to code and not on

raw designs (Lack of cohesion in methods (LCOM) and

Response set for a class (RFC) in Table 4).

Three kinds of assessment were provided by

the metrics values. The first two refer to the original

Fig. 1. (a) Detailed document visiting diagram of group A participants (action duration, sequence and interrelation of activities); times in seconds.

Activity list––Sp: specifications, E: event flow diagram, U: use case diagram, Se: sequene diagram, C: class diagram, M: modification task document,

W: write on class diagram. (b) Detailed document visiting diagram of group B participants (action duration, sequence and interrelation of activities);

times in seconds.
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versions (Design A and B) and the third refers to the

produced versions:

(i) Thresholds: Since Design A was constructed under

the guidance of heuristics, its metrics values were
considered as thresholds so that necessary compari-

sons with the other versions could be performed.

(ii) Heuristic violation: To justify and specify in which

part of Design B the heuristic violations took place,

it was first needed to specify a set of metrics. Such

metrics were chosen from the three metrics suites

discussed above. Only those metrics with values

considerably different from their thresholds have

been considered (Table 5).

(iii) Maintainability: This quality characteristic can be
assessed by comparing each measurement to its cor-

responding threshold, providing two pieces of in-

formation: (a) evaluation of any improvement or

deterioration of maintainability; (b) justification

of additional effort for the modification task.

4. Debriefing questionnaire: This captures the partic-

ipants� personal opinions regarding architectural aspects
of the systems, as well as the modification task (Ap-

pendix B and Table 6) and is subjective in nature. The

debriefing questionnaire was designed to collect both

information, not covered by the reports, and informa-

tion to add corroboration to the report data. It includes

sections on attitudinal information regarding the back-

ground experience, understandability, and maintain-

Table 2

Frequency and performance times per activity (document)

Document Version compliant to design heuristics (group A) Version non-compliant to design heuristics (group B)

Participant A1 Participant A2 Participant B1 Participant B2

Freq. Activity time Freq. Activity time Freq. Activity time Freq. Activity time

Specifications 3 01:21 4 1:45 1 02:45 1 02:27

Use case diagram – – 1 0:06 1 00:14 1 00:22

Event flow diagram 3 02:21 1 0:06 1 00:46 4 00:37

Class diagram 25 05:44 11 2:20 30 10:04 34 10:45

Modification task 28 02:48 12 2:38 19 02:23 15 03:21

Sequence diagram – – 2 1:55 7 02:26 22 05:47

Writing on Class D 18 03:08 9 2:24 16 03:15 15 02:59

Totals 77 15:22 40 11:14 75 21:53 92 26:18

Fig. 2. Total performance time per participant.

Table 3

Evaluation data from the modified class diagrams according to Laitenberger�s checklists

Criteria How to detect A1 A2 B1 B2

1. Cons. Is each name unique? Y Y Y Y

2. Cons. Are all names consistent? Y Y Y Y

3. Corr. Are all names correct? Y Y Y Y

4. Compl. Have all classes been ade-

quately defined and described?

Y Y N Y

One attribute and one method

have not been defined at all

Attributes and methods that should

normally belong to a new class have

been defined into an existing class

5. Compl. Does each class attribute have

an associated type?

Y Y Y Y

6. Cons. Are all data types primitives? Y Y Y Y

7. Corr. Is the cardinality and arity of

each association correct?

N Missed Y Y

8. Cons. Are the design class diagrams

consistent?

Y Y Y Y

Cons.––consistency, corr.––correctness, compl.––completeness.
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ability (Table 6). This information was based on the

ordinal scale 1––low to 5 or 10––high, depending on the

question, which is usually used in similar questionnaires
(Briand et al., 2001). We did so wishing a fine granu-

larity level for some questions.

4. Results

The results presented in this section are grouped into
four sub-sections. Section 4.1 is an analysis and discus-

sion of how the participants performed the task. Section

Table 5

Metrics sets extracted from the �control class� of each version (original and delivered by the participants)

Metric Version

Design A Design B

Original A1 A2 Original B1 B2

Number of attributes defined 5 5 5 8 8 8

Number of methods available 11 11 11 17 17 18

Number of visible methods (Mv) 9 9 9 15 15 16

CBO 14 14 14 16 16 18

COF 0.1287 0.1199 0.117 0.1048 0.1042 0.0956

LCOM 0.0 0.0 0.0 54.0 54.0 71.0

RFC 21 21 21 53 53 60

WMC 11 11 11 17 17 18

Class Coupling 48 48 48 63 63 69

NOIM 11 11 11 17 17 18

NOPIM 9 9 9 15 15 16

Table 4

Metrics distinguishing heuristic violation

Name Description Reference

The next three metrics are all described in Abreu et al. (1995). They are used as Intermediate calculations for producing Abrue�s main 6 metrics.

Number of attributes de-

fined

The number of attributes defined within a class. This does not include inherited

attributes.

Abreu et al. (1995)

Number of methods avail-

able

The number of methods that can be called on a class. This includes inherited methods. Abreu et al. (1995)

Number of visible methods A count of all public methods in a class. Public methods are the methods that can be

executed in response to a message received by an object of that class.

Abreu et al. (1995)

CBO (coupling between ob-

ject classes)

A class is considered coupled to another, if methods of one class use methods or

attributes of the other, or vice versa. CBO for class is then defined as the number of other

classes to which it is coupled. This includes inheritance-based coupling (coupling between

classes related via inheritance).

Chidamber and

Kemerer (1994)

COF A ratio of actual coupling between system classes and maximum potential coupling. Abreu and Melo (1996)

LCOM The number of pairs of methods in the class using no attributes in common, minus the

number of pairs of methods that do.

Chidamber and

Kemerer (1994)

RFC Response set of class is considered the set of methods M of the class, and the set of

methods directly or indirectly invoked by methods in M. RFC is the number of methods

in the response set of the class.

Chidamber and

Kemerer (1994)

WMC (weighted methods

per class)

WMC is a �size� metric which weights a method count with its complexity. Complexity is

deliberately not defined more specifically here in order to allow for the most general

application of this metric. Therefore, some traditional static complexity metric may be

appropriate.

Chidamber and

Kemerer (1994)

Class Coupling Coupling between classes relates to the interrelationships that bind the two together. Is it

measured by:

Lorenz and Kidd

(1994)

� The number of other classes collaborated with, and

� The amount of collaboration with other classes.

NOIM (number of instance

methods)

Number of non-static methods defined in a class. It counts all the public, protected, and

private methods defined for a class� instances.
Lorenz and Kidd

(1994)

NOPIM (number of public

instance methods)

Same as NOIM but only counts public methods. Lorenz and Kidd

(1994)
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4.2 covers an analysis of their delivered solutions to the

task. In Section 4.3 an analysis is performed to highlight

any relationship between the investigated design heu-

ristic and metrics. Finally, data concerning the partici-

pants� attitudinal opinion as well as their background

experience is presented.

4.1. Analysis of performance effort

For convenience, the participants were divided into
two groups A and B performing on the corresponding

design. In Fig. 1a and b, the data clearly shows how

the participants behave, trying first to understand the

functionality of the whole system and then, to accom-

modate the required new functionality. Here, the dura-

tion, the sequence, and the frequency of visiting each

document are of most importance.

Concerning the total time spent, performing the task,
there is a considerable difference between the two groups

(Table 2 and Fig. 2). Namely, group B spent consider-

ably more time in total than group A. Examining the

activity time spent focusing on documents, the �class
diagram� and �sequence diagram� show the greatest dif-

ference, about 100% for the heuristic non-compliant

versions. These times were significantly different be-

tween the two groups. Thus, it is believed that this is due
to extra difficulty the group B faced performing on the

heuristic non-compliant version.

The frequency of document visiting (Freq. columns in

Table 2) seems of particular interest as it does show

which documents are most visited (studied), as well as

the way they are visited (Fig. 1a and b). The �class dia-
gram�, �modification task�, �sequence diagram� and the

activity �writing on class diagram� show the highest
scores. Although the numbers do not differ significantly,

the �sequence diagram� is the most studied by group B.

We might infer from this that group B, due to facing

extra difficulty, attempted to gain extra information

from the �sequence diagram� where the interaction be-

tween objects was precisely recorded. This can also be

confirmed by their answers on question 9 of the ques-

tionnaire, where they clearly state that coupling between
objects caused the most difficulty to them.

From the detailed document visiting diagrams (Fig. 1a

and b), two additional activities could be distinguished,

namely ordered document visiting and alternate document

visiting. Concerning ordered document visiting, it refers

to the sequence of the alternate visits on the available

design documents, the participants performed for a rel-

atively long time (1–2 min per each document), as shown
from the leftmost (initial) parts of the diagrams (e.g. see

B1 participant�s activity from 0 to 600). Striving to form a

complete mental picture of the system�s functionality, in
order to accommodate the new functionality, they picked

up related concepts illustrated on the various available

design documents. From the sequence each participantT
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visited the design documents, it was assessed that some

knowledge about possible interrelationship between the

design documents, due to the pertinent information they

provide, was gained.

Regarding the second activity (alternate document

visiting), which refers to the frequency a few specific
pairs of design documents were visited alternately, as

shown from the rightmost (final) parts of the diagrams

(e.g. see B1 participant�s activity from 600 to 1000), the

participants visited the documents alternately for a rel-

atively short time (from some seconds to half a minute

per each document).

From the above observations, it was considered that

a number of sub-phases might be distinguished during
the maintenance session. The possibility to perform such

type of analysis demonstrates the advantages of the

observational method. The identified maintenance pha-

ses are the following:

(a) Knowledge of the system: Trying to gain a thorough

understanding of the system, they mostly visited

the documents of specifications, event flow diagram
and class diagram. However, they approached them

differently, as it can be seen in Fig. 1a and 1b.

Namely, �A1� mostly studied the event flow diagram

interchangeably with the specifications. �A2� mostly

studied the class diagram interchangeably with the

specifications. �B1� mostly studied the class diagram,

and �B2� studied all the diagrams. This sub-phase was

considered to be finished at the first visit to the mod-
ification document (e.g. time 460 in B1-participant�s
diagram).

(b) Exploratory: The exact location of placing the new

functionality could be the main characteristic in this

case. The participants mostly focused on the class

diagram and the modification task documents and

less on the sequence diagram. This sub-phase was

considered to be finished at the first �write� action
on the class diagram (e.g. time 630 in B1-partici-

pant�s diagram).

(c) Accommodating: Having consolidated their knowl-

edge of the system and identified where to accommo-

date the new functionality, the participants mostly

focused on the class diagram and the modification

task. The dominant characteristic here is the long

write actions that took place (e.g. approximately
up to time 1250 in B1-participant�s diagram).

(d) Checking: The final sub-phase was to confirm that the

modification was completed. However, a few sparse

and short write actions also took place (e.g. from time

1250 to the end in B1-participant�s diagram).

4.2. Analysis of delivered solutions

Examining each participant�s delivered class diagram,

it was considered they should be approached from two

different points of view, namely the way the class dia-

grams evolved and the quality they provided.

Concerning diagram evolution, it was noted that the

class diagrams evolved and developed in a similar way

to the base designs. Namely, each one extended the

functionality in the way the original design was built.
Those performing on the heuristic compliant version

produced a decentralized solution consisting of two

classes, while the other two produced a centralized so-

lution in one class (Table 6). A likely explanation for

this is that the participants were affected by the structure

of the design they were given, so that they were forced to

continue in that style. Our subjective opinion stemming

from the implementation we afterwards performed was
that the heuristic non-compliant versions were also

harder to implement than the heuristic compliant ones.

We can therefore infer that, while the heuristic compli-

ant version evolves smoothly, the heuristic non-com-

pliant one manifests a more rapid deterioration.

According to Laitenberger et al. (2000) there are three

basic criteria for evaluating the quality of UML-design

diagrams: Correctness, completeness and consistency.
Each one of these criteria can be operationalized as

follows:

1. Correctness: A diagram or a set of diagrams is correct

if it is judged to be equivalent to some reference stan-

dard that is assumed to be an infallible source of

truth.

2. Completeness: A diagram or a set of diagrams is com-
plete if no required elements are missing.

3. Consistency: A diagram or a set of diagrams is consis-

tent if there are no contradictions among its elements.

Based on these criteria, Laitenberger developed a

checklist providing a means for systematic design

evaluation. From their checklist, a number of elements

was used that best conform to the delivered solutions,
in our case. The results of this analysis are presented in

Table 3. Considering the completeness of the delivered

solutions, there is a difference between the two versions

towards the heuristic compliant version. Namely, �B1�
missed an attribute and a method, while �B2� put a

number of attributes and methods into an existing class

instead of creating a new, resulting in a non-intuitive

implementation. Considering the correctness, we ob-
serve that �A2� missed the cardinality of the new rela-

tionships.

4.3. Analysis of metrics

To make meaningful metrics-based comparisons,

both similarities and dissimilarities of the product being

compared must be known. In this study, two classes
were actually distinguished and compared, the controller

classes, as described above, because of two reasons: (a)
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they capture the central functionality of the system, and

(b) their measurement values differ considerably due to

the design strategies followed (Table 5).

Observing each version separately, it was noted that

the vast majority of the measurement values of the

designs generated from Design A do not show any
change. Only the coupling factor (COF) metric shows

some deviation for the produced designs from their

original. As mentioned above, the original values of

Design A were also considered as thresholds. Since the

rest of the values do not differ it was concluded that the

design quality has not been affected. Examining Design

B, it can be seen that its original version values differ

significantly from its counterpart Design A. This is due
to the violations taken place, as discussed above. The

modified design values also differ with each other. This

indicates that there is a lack of homogeneity between

their solutions. Although participant �B1� design shows

similar values with its original, �B2� design differ sig-

nificantly. Such a deviation suggests a clear deteriora-

tion of the design quality. At this point a special note is

made that if such deterioration occurs when every de-
sign change takes place, the resulting design will be-

come increasingly unmanageable after a sequence of

modifications.

Another interesting finding is that some metrics do

not always adequately capture the context they are in-

tended for. In our case, the LCOM metric related to

cohesion of a class, shows a clear difference between the

two classes. Nevertheless, it does give high values to
another trivial class dealing with �get� and �set� func-
tionality. It is our belief that it might be useful in

combination with other metrics. This is in agreement

with Berard�s argument (Berard, 1996), that a single

software engineering metric in isolation is seldom useful.

Instead, the most useful set of metrics for some partic-

ular product may be gathered from multiple metrics,

known ahead of time. Our findings therefore, are in
agreement to this statement. They also support our in-

vestigation question that design heuristics might be

captured by a predefined set of metrics. However, those

metrics should provide well-established and empirically

evaluated thresholds.

4.4. Analysis of debriefing questionnaire

The questionnaire (Appendix B) provided the op-

portunity for the participants to express their subjective

views about the structure and quality of the system and

the ease of performing the required modification. The

results are illustrated in Table 6. The quality factor un-

derstandability (questions 4–8), was captured and eval-

uated by the following points:

(a) Understanding what was required (question 4). This

is considered as a precondition to perform well

and is related to their experience in practice. How-

ever, from their answers it was inferred that familiar-

ity with the application domain plays an important

role. The participants using mobile phones (question

15), understood slightly better what was required

than the others.
(b) Estimating, in terms of understandability, the quality

of the design documents (question 5). This was in-

tended to capture to what extent the quality of the

design documents, of each original design, affected

their understandability. There is a difference be-

tween the groups in that the A1 and A2 found it

more understandable.

(c) Understanding the overall design documents (question

7). There is no clear indication from this point.

Group A�s opinions are in agreement, while group

B�s considerably differ indicating some confusion.

It is worthwhile to mention that B1, although he

found it very understandable, did not perform ade-

quately since the modification was incomplete (refer

to the completeness row in Table 3).

(d) What was least understandable about the design docu-

ments (question 8). This was intended to specify

what kind of system information caused most diffi-

culty. From both groups, group B gives a quite clear

indication. Participant �B1� considered that there

was not a good distribution of data across objects,

which identifies a cohesion problem, while the other,

�B2� precisely identified the problem.

The other important factor maintainability (questions

9–12), was captured by the following points:

(e) What caused the most difficulty to perform the modi-

fication task (question 9). From their responses there

was agreement between them in that coupling caused

the most difficulty. Coupling is a factor closely re-

lated to the design structure.
(f) To what extent the quality of the design documents af-

fected their ability to make modifications to the sys-

tem (question 11). From their responses we see that

group B was affected slightly more.

(g) The overall difficulty of the task (question 12). Com-

paring the two groups it is apparent that there is a

considerable difference. Namely, group A found the

task quite easy, while group B found it quite difficult.

From the last four points (point d to g), it can be

inferred that design quality is closely related to the dif-

ficulty of modification. Examining what factor causes

most difficulty, both in understanding and performing

modifications to the system, most participants agree that

it is coupling between classes (question 9). Coupling

relations increase complexity, reduce encapsulation and
potential reuse, and limit understandability and main-

tainability (Abreu et al., 1995).
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5. Threats to validity

This section discusses the study�s various threats to

validity and the way we attempted to alleviate them.

Considering the construct validity, i.e. the degree to

which various factors accurately measure the concepts
they purport to measure, the following possible threats

have been identified: (a) Understandability and main-

tainability are difficult concepts to measure, because they

are based on the subjective estimation and experience of

the participants. (b) The design heuristic under investi-

gation, and the violation in Design B, are also difficult to

measure. However, it is believed that the metrics selected

capture a wide range of design aspects and the values
between Design A and B show a considerable difference,

indicating different design strategies. These values may

be used to identify the conformity of a design aspect to a

design heuristic. (c) Concerning the metric of �public
methods�, (�Number of visible methods� in Table 5),

which in the heuristic compliant version (Design A)

shows 9 methods, there is a disagreement between two

authors each proposing a different threshold for this
metric. Namely, Coad (1991) is suggesting, ‘‘Each class

typically has no more than seven public services’’, while

Lorenz and Kidd (1994) are suggesting, ‘‘The average

number of public methods (services) for a class should be

lower than 12 methods’’. Although our metric value is

consistent with the second threshold, slightly exceeding

the first one, this case stresses the necessity for a more

systematic empirical investigation of design heuristics.
Regarding the external validity, i.e. the degree to

which the results of the research can be generalized to

the population under study and other research settings,

the following possible threats have been identified: (a)

this study took place in a university environment and

not in the work place. (b) the size of the system used in

this study is relatively small. Although the project was a

real project, its size, 16 and 18 classes is not an industrial
scale piece of software. However, the task was essen-

tially a design extension, i.e. to add a new functionality

to a system that occurs in practice in small systems too,

and according to OO theory, maintenance should re-

quire the modification of small parts of an OO design.

Possibly, the size of the system rendered some metrics

less useful than might have been the case in a larger

system. (c) The participants may not be representative of
OO software professionals. Their background and ex-

perience in this area also differ. However, they are

software engineers teaching and researching at a Uni-

versity. Particularly, two of them, �A1� and �B2�, spec-
ialised in OO technology. (d) We also only studied four

individuals. A few limitations to the usage of a small

number of participants are that: the method is time and

resource consuming, and in studying a great number of
participants there is a risk of dissemination of the study

taking place.

In general terms, it would be difficult to try to predict

whether, and in what way, these threats may have af-

fected the results. While the external threats limit gen-

eralisation of this research they do not limit the results

being used as the basis of future studies. Also, this is not

to say that the results cannot be useful in an industrial
context. Observational studies as this one allow the in-

vestigation of a larger number of hypotheses at a lower

cost than field studies, which can then be tested in more

realistic industrial settings with a better chance of dis-

covering important and interesting findings.

6. Conclusions and future work

This study has investigated the effects of a single de-

sign heuristic on system design documents, with respect

to understandability and maintainability, two essential

components of software quality. The study has com-

pared two designs, Design A, which was developed ac-

cording to design heuristics in general, and Design B,

violating the �god class�, in a particular but functionally
important part of it. Since the difference between them

was restricted to a specific part of the design, it is be-

lieved that any difference of the results might be due to

different design strategies applied.

The results show that design heuristics can affect

maintainability. This is supported by qualitative evi-

dence by two means provided by: (a) the participants in

the form of information from their debriefing ques-
tionnaires; they expressed the views that Design A was

easier to understand and modify, and (b) the delivered

solutions evaluated by the authors. It is also supported

by quantitative evidence provided by: (a) measurement

values, and (b) the performance effort, measured by the

time spent, that were significantly positive toward De-

sign A.

Focusing on what factors have mostly affected the
performance of the participants, we identified the fol-

lowing three. First the coupling between classes, con-

sidered to be most significant, since it was mentioned

by most of the participants. Tight coupling leads to

monolithic systems that are hard to learn, maintain and

reuse. On the other hand, loose coupling increases the

probability that a class can be reused, learned, modified

and extended more easily. Second was the cohesion,
mentioned as distribution of data across objects and

declarations. Third, mentioned only by one participant,

was syntax and naming conventions. In our case, Design

B suffers from high coupling and low cohesion as mea-

surement values show too.

Our findings provide a number of indications that

OO design structures are sensitive to bad or good design

techniques. It would seem that the continuous evolution
of a design structure depends on whether certain design

heuristics and principles are followed by the developers.
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That is, a design initially structured under the guidance

of heuristics has a greater probability of continuing to

evolve in a similar resilient and flexible manner, thus

rendering it maintainable. If design heuristics are vio-

lated even once, there is an increased probability of

maintenance changes leading to poorer designs, thus
rendering it harder to maintain as it evolves over time.

Such a design also minimises opportunities for reuse, an

important feature in OO technology. Regarding the re-

lationships between heuristics and metrics, there is also a

strong indication that the specific design heuristic we

investigated could be captured by a suitable set of

metrics as that shown in Table 5.

6.1. Future work

We would emphasize the point that this research is

regarded as exploratory and we are in the process of

building upon it. Further research, planned as a result of

this observational study, includes a further investigation

into the impact of design heuristics on maintainability as

well their relationship to metrics on an experimental
basis. Our review of experimental research into OO

technology (Deligiannis et al., 2002) highlights the

need for more empirical work to evaluate and refine the

burgeoning number of heuristics as well as other factors.

Thus, our next goal is to design and conduct a formal

experiment where these research questions could be

more accurately addressed.
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Appendix A. Modification task

A.1. Asking for a tariff order

In order to tempt the user to buy a tariff, after the

system has displayed the best option and asking for

�Print� or �Cancel�, a window will be displayed if the

�Print� option is selected, offering the customer a 10%

reduction if an order is placed immediately.

First, the user is asked to whether he/she wishes to

take advantage of the special offer.

If he/she clicks the �Yes� button then will be prompted
to enter address, telephone number, and credit card

account holder, number of expiry date details. The only

validation will be for non-empty fields.

This data, as well as the tariff�s name, will be logged

into the log file.

Nr Factor Question

Experience

1 none––1, little––2, average––3,

substantial––4, professional––5

In software engineering practice

2 In design documents in general

3 In object-oriented design documents

Understanding

4 1––not, 2––poorly, 3––fairly,
4––well, 5––highly

Estimate how well you understood what was required of you

5 1––barely understandable, 10––

easily understandable.

Estimate, in terms of understandability, the quality of the

design documents you had

6 In your opinion, what caused you the most difficulty to

understand the design documents?

7 1––very little, 10––complete. Estimate your overall understanding of the design documents

8 What did you understand least about the design documents

and why?

Maintaining

9 In your opinion, what caused you the most difficulty to

perform the modification task on the design documents?
10 In % Estimate the correctness of your solutions to the modification

tasks

11 1––barely modifiable, 10––eas-

ily modifiable

Estimate, in terms of modifiability, the quality of the design

documents you had

Appendix B. Debriefing questionnaire

138 I. Deligiannis et al. / The Journal of Systems and Software 65 (2003) 127–139



References

Abreu, F., Carapuca, R., 1994. Candidate metrics for object-oriented

software within a taxonomy framework. Journal of Systems and

Software 26, 87–96.

Abreu, F., Goulao, M., Esteves, R., 1995. Toward the design quality

evaluation of object-oriented software systems. In: Proc. 5th

International Conference on Software Quality, Austin, TX, USA.

Abreu, F., Melo, W., 1996. Evaluating the impact of object-oriented

design on software quality. In: Proc. IEEE 3rd Intl. Metrics Symp

Mar.

Berard, E., Metrics for object-oriented engineering. Available from

<http://www.toa.com/pub/moose.htm>.

Booch, G., 1994. Object-Oriented Analysis and Design with Applica-

tions. Addison-Wesley Publishing Company.

Booch, G., 1995. Rules of thumb. ROAD 2 (4), 2–3.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling

Language User Guide. ACM Press, Reading, MA: Addison-

Wesley.

Briand, L., Bunse, C., Daly, J., 2001. A controlled experiment for

evaluating quality guidelines on the maintainability of object-

oriented designs. IEEE Transactions on Software Engineering 27

(6), 513–530.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suit for object

oriented design. IEEE Transactions on Software Engineering 20

(6), 476–493.

Coad, P., 1991. OOD Criteria, Part1–3. Journal of Objet-Oriented

Programming 4 (2–4).

Coplien, J.O., 1992. Advanced C++: Programming Styles and Idioms.

Addison-Wesley.

Deligiannis, I., Shepperd, M., Webster, S., Roumeliotis, M., 2002. A

review of experimental investigations into object-oriented tech-

nology. Empirical Software Engineering, 7 (3), 193–231.

Fenton, N., Pfleeger, S.L., 1997. Software Metrics––A Rigorous and

Practical Approach, second ed. International Thompson Computer

Press.

Firesmith, D., 1995. Inheritance guidelines. JOOP May, 67–72.

Jacobson, I., Christerson, M., 1995. A confused world of OOA and

OOD. JOOP September, 15–20.

Hatton, L., 1998. Does OO Sync with how we think? IEEE Software

May/June, 46–54.

Kirsopp, C., Shepperd, M., Webster, S., 1999. An empirical study into

the use of measurement to support OO design evaluation. In: IEEE

6th Intl. Metrics Symp. Boca Raton, FL.

Kirwan, B., Ainsworth, L.K., 1992. In: A Guide to Task Analysis.

Tailor & Fransis.

Laitenberger, O., Atkinson, C., Schlich, M., El Emam, K., 2000. An

experimental comparison of reading techniques for defect detection

in UML design documents. Journal of Systems and Software 53,

183–204.

Lorenz, M., Kidd, J., 1994. Object-Oriented Software Metrics. Prentice

Hall, Englewood Cliffs, NJ.

Meyer, B., 1997. Object-Oriented Software Construction. Prentice Hall

PTR, Upper Saddle River, NJ.

Riel, A., 1994. Tutorial 38 handout: Object-Oriented design through

heuristics. OOPSLA.�94, Portland, Oregon.

Riel, A., 1996. Object-Oriented Design Heuristics. Addison-Wesley

Publishing Company Inc.

Rumbaugh, M., Blaha, M., Premerhani, W., Eddy, F., Lorensen, W.,

1991. Object-oriented modeling and design. Prentice Hall, Engle-

wood Cliffs, NJ.

Whitmire, S., 1997. Object oriented design measurement. John Wiley

& sons.

Wilde, N., Mathews, P., Ross, H., 1993. Maintaining Object-Oriented

Software. IEEE Software January, 75–80.

Ignatios Deligiannis is a Lecturer at Technological Education Institute
of Thessaloniki, Greece, since 1990, and a research associate at the
University of Macedonia and the Aristotle University, Greece. He is
also member of ESERG (Empirical Software Engineering Research
Group at Bournemouth University, UK). His main interests are ob-
ject-oriented software assessment, and in particular design heuristics
and measurement. He received his B.Sc. in computer science from the
University of Lund, Sweden, in 1979, and then worked for several
years in software development at Siemens Telecommunications in-
dustry.

Martin Shepperd is a Professor of Software Engineering at Bourne-
mouth University. He received a Ph.D. in computer science form the
Open University in 1991. He has published more then 60 referred
papers and three books in the field of empirical software engineering.
He is also an editor of the journal Information and Software Tech-
nology. His research interests include software metrics and empirical
software engineering.

Manos Roumeliotis received the Diploma in electrical engineering
from the Aristotle University of Thessaloniki, Greece in 1981, and
the MS and Ph.D. degrees in computer engineering from Virginia
Polytechnic Institute and State University, Virginia, USA, in 1983
and 1986, respectively. At VPI & SU he taught as a visiting Assis-
tant Professor in 1986. From 1986 to 1989 he was an Assistant
Professor in the Department of Electrical and Computer Engineering
at West Virginia University. Currently he is an Assistant Professor in
the Department of Applied Informatics at the University of Mace-
donia, Thessaloniki, Greece. His research interests include digital
logic simulation and testing, computer architecture and parallel
processing, and computer network optimization. He is a member of
the IEEE Computer Society�s Technical Committee on Computer
Architecture.

Ioannis Stamelos is a Lecturer of computer science at the Aristotle
University of Thessaloniki, Department of Informatics, since 1997. He
received a degree in Electrical Engineering from the Polytechnic School
of Thessaloniki (1983) and the Ph.D. degree in computer science from
the Aristotle University of Thessaloniki (1988). He has worked for 10
years as a researcher in the telecommunications software industry in
Italy and Greece. His research interests include software evaluation
and management, software cost estimation and software measurement.
He is author of 30 scientific papers. He is a member of the IEEE
Computer Society.

Nr Factor Question

12 1––very easy, 10––very difficult Estimate the overall difficulty of the tasks you have been

asked to perform

Miscellaneous

13 1––too small, 5––too large How do you judge the size of the design documents you had?

14 Having performed the tasks, would you do anything different

next time around?

15 Yes/no Have ever owned a mobile phone?
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