
A Review of Experimental Investigations

into Object-Oriented Technology

IGNATIOS S. DELIGIANNIS igndel@it.teithe.gr

Technological Educational Institute of Thessalonici, Greece

MARTIN SHEPPERD mshepper@bmth.ac.uk

Empirical Software Engineering Research Group, Design, Engineering and Computing, Bournemouth Uni-

versity Royal London House, Christchurch Road Bournemouth BH1 3LT, UK

STEVE WEBSTER steve.webster1@btinternet.com

Semaphore Europe Ltd, UK

MANOS ROUMELIOTIS manos@uom.gr

University of Macedonia, Greece

Abstract. In recent years there has been a growing interest in empirically investigating object-oriented

technology (OOT). Much of this empirical work has been experimental in nature. This paper reviews the

published output of such experiments—18 in total—with the twin aims of, first, assessing what has been

learnt about OOT and, second, what has been learnt about conducting experimental work. We note that

much work has focused upon evaluation of the inheritance mechanism. Whilst such experiments are of

some interest, we observe that this may be of less significance to the OOT community than experimenters

seem to believe. Instead, OOT workers place more emphasis upon other mechanisms such as composition,

components, frameworks, architectural styles and design patterns. This leads us to conclude that the

empirical researchers need to ensure that their work keeps pace with technological developments in the

fields they aim to investigate.

Keywords: Experiment, object-oriented technology, software architecture.

1. Background to the Review

Over the past decade the adoption of object-oriented technology (OOT) has greatly
increased to the extent that it could now be regarded as the dominant software
technology, certainly for non-legacy systems. It has been argued that software de-
velopment has become too complex for structured methodologies to handle. An
example of such a viewpoint is Riel (1996) who, amongst others, has suggested that
the object-oriented (OO) paradigm, with its decentralised control flow, bi-direction-
ally related data and behaviour, implicit case analysis (i.e., polymorphism), and in-
formation-hiding mechanisms offers a good opportunity for controlling complexity.
Presently, however, questions about the extent to which OOT has fulfilled its

promises are answered more by intuitive feelings and anecdotal evidence, than
by empirical and quantitative evidence (Basili and Burgess, 1995). Intuition may

Empirical Software Engineering, 7, 193–231, 2002.

� 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.



provide a starting point, but it needs to be backed up with empirical evidence.
Without proper grounding, intuition can always be challenged. For this reason, over
recent years, there has been a growing interest in empirical evaluation. Unfortu-
nately, good examples of solid experimentation in computer science are compara-
tively rare (Tichy, 1998; Zelkowitz, 1998).
For the purposes of this review we consider an experiment to be a controlled

empirical investigation into some phenomenon with a clearly stated hypothesis and
random allocation of subjects to different treatments. A key motivator for using a
formal experiment, rather than a case study, is that the results of an experiment can
be more easily generalised than those of a case study. Another is that it provides the
investigator with a much greater degree of control than is usually possible with case
studies. The disadvantages tend to be in the size of artefacts and the laboratory type
setting.
There is a formal terminology for describing the components of an experiment.

Object of study is the entity that is studied in the experiment. They can be products,
processes, resources, models, metrics or theories. Treatments are the different ac-
tivities, methods or tools we wish to compare or evaluate. When we are comparing
using a treatment with not using it, a control must be established, which provides a
benchmark. A trial is an individual test run, where only one treatment is used.
Experimental subjects are the people applying the treatment, for example using an
OO programming language to solve a particular problem. The response or dependent
variables are those factors that are expected to change or differ as a result of applying
the treatment, for example, time taken or accuracy. By contrast, state or independent
variables are those variables that may influence the application of a treatment and
thus indirectly the result of the experiment. The number of, and relationships among,
subjects, objects and variables must be carefully described in the experimental plan.
Criteria for measuring and judging effects need to be defined, as well as methods for
obtaining the measures. Finally, two important concepts are involved in the exper-
imental design: experimental units which are the experimental objects to which a
single treatment is applied, and experimental error which is the failure of two iden-
tically treated experimental units to yield identical results.
Fenton and Pfleeger (1997) suggest six steps of carrying out a formal experiment.

(1) Conception—deciding what we wish to learn more about, and define the goals of
the experiment. From this, we must state clearly and precisely the objective of the
study.

(2) Design—to translate the objective into a formal hypothesis. The goal for the
research needs to be re-expressed as a hypothesis that we want to test. The
hypothesis is a tentative theory or supposition that we think explains the be-
haviour we want to explore. Frequently, there are two hypotheses but may be
more than two. The null hypothesis assumes that there is no difference between
the treatments (that is, between competing methods, tools, techniques, environ-
ments, or other conditions whose effects we are measuring) with respect to the

DELIGIANNIS ET AL.194



dependent variable(s). The alternative hypothesis posits that there is a significant
difference between the treatments. ‘Testing the hypothesis’ means determining
whether the data is convincing enough to reject the null hypothesis, to accept the
alternative one as true.

(3) Preparation—to make ready the subjects and the environment. If possible, a pilot
study of the experiment should be conducted.

(4) Execution.

(5) Analysis—this phase consists of two parts. First, all the measurements taken
must be reviewed in order to ensure that they are valid and useful. Second, there
follows the analysis of the sets of data according to usual statistical principles.

(6) Dissemination and Decision-making—to document the experimental materials
and conclusions in a way that will allow others to replicate and confirm the
conclusions in a similar setting. The experimental results may be used in three
ways. First, by using them to support decisions about how to develop or
maintain software in the future. Secondly, to allow others to suggest potential
improvements to their development environments. Thirdly, to perform similar
experiments with variations in experimental subjects or state variables.

Over the last decade various researchers have conducted a range of experiments
and empirical studies attempting to evaluate the practical benefits, drawbacks and
other aspects of OOT. We have identified 27 such experiments,1 however, we consider
that only 18 of them belong to the category of controlled experiments in which we are
most interested (see Table 1). The review is potentially of value for two reasons. First,
it provides a good foundation for the design of further experiments. Secondly, the
review enhances our understanding of the benefits (or otherwise) of OO technology.
The remainder of the paper is organised as follows. First—since it is evident that

many experiments have focused upon class inheritance—we summarise recent de-
velopments in OO architecture. Next we describe and review published experimental
work in the field of OOT. Finally, the paper concludes by discussing the current state
of play in empirical evaluation and identifies potentially fruitful avenues for further
investigation.

2. Recent Developments and Issues in OO Architecture
2

We now briefly consider the current state of play in OO architecture. Software design
is considered to be the skeleton of a software system, thus its quality significantly
impacts the quality of the final products. Many people argue that the secret of good
OO design is to end up with a class model that does not distort the conceptual reality
of the domain. Success in this, as it is argued, helps lead to maintainable systems,
because such models tend to be comparatively easy to understand, and therefore
comparatively easy to modify sensibly (Pooley and Stevens, 1999).

REVIEW OF EXPERIMENTAL INVESTIGATIONS 195



Class inheritance and object composition are mechanisms for extending a design.
They are also the most common techniques for reusing functionality in OO systems.
However their use must be carefully applied since they can be dangerous when used
incorrectly (Riel, 1996). It is essential to view a system from two perspectives, seeing
it as a ‘kind-of’ hierarchy as well as a ‘part-of’ hierarchy (Lieberherr et al., 1991). The
challenge lies in applying these mechanisms to build flexible and reusable software. A
number of design heuristics and design patterns have been proposed over recent
years that help to achieve this aim.

Inheritance is a class-based relationship best used to capture the ‘kind-of’ rela-
tionship between classes. Its main purposes are twofold: it acts as a mechanism for
expressing commonality between two classes (generalisation), and it is used to
specify that one class is a special type of another (specialisation). Effectively it is just

Table 1. Summary of published experimental research into OOT.

Investigators Included? Area of Investigation Reason for Exclusion

Abreu and Melo (1996) N Metrics evaluation Not a controlled

experiment

Agarwal et al. (1996) Y OO versus procedural technology

Agarwal and Sinha (1996) Y OO versus procedural mindset

Agarwal et al. (1999) Y OO versus procedural technology

Basili et al. (1996) N Metrics evaluation Not a controlled

experiment

Briand et al. (1997) Y OO versus procedural technology

Briand et al. (2001) Y OO design principles

Cartwright (1998) Y Inheritance

Chatel and Detienne (1994) N A case study

Corritore and Wiedenbeck

(2000)

Y OO versus procedural technology

Cunis (1997) N A case study

Daly et al. (1996) Y Inheritance

Harrison et al. (2000) Y Inheritance

Henry and Humphrey (1990) Y OO versus procedural technology

Laitenberger et al. (2000) Y Inspection techniques

Lee and O’Keefe (1996) Y OO versus procedural technology

Lewis et al. (1991) Y OO versus procedural technology

Moynihan (1996) Y OO versus functional technology

Pant et al. (1996) N Uses a single subject

Prechelt et al. (2001) Y Design patterns

Prechelt et al. (2001) Y Design patterns

Ramakrishnan and Menzies

(1996)

N Experiment

unfinished

Shoval and Frumermann

(1994)

N Doesn’t focus on the

OO paradigm

Unger and Prechelt (1998) Y Inheritance

Wiedenbeck et al. (1999) Y OO versus procedural technology

Wiedenbeck and Ramalingam

(1999)

N No explicit

hypothesis

Yida et al. (1998) N A case study

DELIGIANNIS ET AL.196



a mechanism for extending an application’s functionality by reusing functionality in
parent classes. Generally speaking, reuse (white-box) is the major motivation for
inheritance (Amstrong and Mitchell, 1994).
It is often argued that inheritance should be utilised to model commonality and

specialisation (Lieberherr and Riel, 1989; Capretz and Lee, 1993; Firesmith, 1995).
Inheritance can also be used for subtyping, when substitutability is guaranteed
(Amstrong and Mitchell, 1994) or when kind-of roles, transactions and devices are
being modelled (Coad and Mayfield, 1997).
Inheritance is defined statically at compile time for most ‘‘popular’’ languages, and

is straightforward to implement. Since it explicitly captures commonality it can
facilitate modification. It is usually clearly shown in the architectural model and in
the code structure (Amstrong and Mitchell, 1994; Coad and Mayfield, 1997). It
reduces redundancy (Amstrong and Mitchell, 1994) and permits proper polymorphic
substitution (Firesmith, 1995; Gamma et al., 1995).
Unfortunately, there are also disadvantages with inheritance. First the hierarchy

becomes a compromise between classification and implementation purposes which
can lead to classification problems (e.g., a square is a rectangle, however, we do not
wish it inherit all the properties of a rectangle such as needing both length and width
instance variables) (Seidewitz, 1996). The implementation inherited from parent
classes cannot be changed at run-time. Also, parent classes often define at least part of
their subclasses’ physical containment violating encapsulation (Lieberherr and Riel,
1989; Coad and Mayfield, 1997). There is a strong coupling between superclass and
subclass so that through a change to the superclass it is possible to force changes to
the subclass. Implementation dependencies between parent and child classes limit
flexibility and ultimately reusability. This is sometimes referred to as the rigidity
problem (Seidewitz, 1996) or fragile base class problem (Pooley and Stevens, 1999).
Another problem is the weak accommodation of objects that change subclass over
time (‘transmute problem’) (Coad and Mayfield, 1997), for example a part-time
employee accepts a full-time post. And finally, there is the yo-yo problem (self-ref-
erence) caused by the up-and-down traversals in order to gain a full comprehension of
any operation. At any point in this traversal, the implementation may self-referen-
tially invoke another operation. But the implementation of this other operation will
likely be found in a subclass back down the hierarchy (Seidewitz, 1996). One proposed
solution to the yo-yo problem is to use a delegation hierarchy instead of inheritance
(Aksit and Bergmans, 1992). Nevertheless, inheritance can easily be misused, re-
sulting in poor class structures and architectures that are difficult to extend, maintain,
reuse, and understand (Rumbaugh, 1993; Firesmith, 1995).

Object composition is an alternative to class inheritance. Composition and ag-
gregation are two kinds of whole-part associations. They form object-based rela-
tionships needed to model complex hierarchies of objects. It is often necessary for a
part class in a whole-part association to be the composite class in another. So whole-
part associations can induce multi-level object composition hierarchies (part-of hi-
erarchies) (Civelo, 1993). Here, new functionality is obtained by assembling or
composing objects to get more complex functionality. The composed objects are

REVIEW OF EXPERIMENTAL INVESTIGATIONS 197



required to have well-defined interfaces. This style of reuse is called black-box reuse.
In composition the whole strongly owns its parts (e.g., an Engine is part of a Car),
implying that the lifetime of the ‘part’ is controlled by the ‘whole’. This control may
be direct or transitive. In aggregation the coupling is looser (e.g., a Module is a part
of a DegreeCourse).
Comparing inheritance with composition we find that inheritance is only useful in

limited contexts, whilst, composition is useful in almost every context (Coad and
Mayfield, 1997). Most authors favour composition over class inheritance stressing
some of the following benefits.

– It encourages black-box reuse (since it produces black-box implementations which
are much easier to maintain than the white box implementations commonly as-
sociated with misused inheritance (Lieberherr and Riel, 1989)).

– It forces objects to respect each other’s interfaces, and because objects are only
accessible via their interfaces, encapsulation is not broken.

– Classes implementing interfaces are kept small and focused on one task resulting in
better design of class hierarchies (Gamma et al., 1995).

– They can be defined dynamically at run-time through objects acquiring references
to other objects.

– It allows having multiple instances of the used class, which isn’t possible with
inheritance.

– Object composition is also applied extensively in design patterns (Gamma et al.,
1995).

There are, however, disadvantages. Aggregation most frequently occurs in design
problems where parts of the same type are logically interchangeable (e.g., a biblio-
graphy need not be assigned to a single document but may apply across multiple
documents) (Blaha, 1993). Composition can be a transitive relationship. Therefore,
the number of composition levels that can be reliably propagated is based on
whether the kind of composition relationship is the same, otherwise the application
of propagation at each level must be examined for validity. This is sometimes re-
ferred to as the transitivity problem (Odell, 1994).

Design patterns provide a means for capturing knowledge about problems and
successful solutions in software development making it easier to reuse successful
designs. Expressing proven techniques as design patterns makes them more acces-
sible to developers of new systems. Design patterns help you choose design alter-
natives that make a system reusable and avoid alternatives that compromise
reusability. They can even improve the documentation and maintenance of existing
systems by furnishing an explicit specification of class or object interactions and their
underlying intent. Put simply, design patterns can help a designer get a design
‘‘right’’ faster, thus reducing the effort required to produce systems that are more

DELIGIANNIS ET AL.198



resilient, more effective and more flexible (Gamma et al., 1995). The required
functionality of the software system is realised as patterns of interactions between
objects (Capretz and Lee, 1993). The use of patterns is essentially a form of reuse of
well-established good ideas.
It is claimed that design patterns (Gamma et al., 1995; Coad, 1992) provide a

number of advantages. First, they provide a common vocabulary for designers to use
to communicate, document, and explore design alternatives. This improves com-
munication both among designers and from designers to maintainers. Second, they
offer solutions, ‘‘best practices’’, to common problems. Third, they capture the ex-
perience of expert designers. Fourth, patterns help novices to learn by example to
behave more like experts. Lastly, describing a system in terms of the design patterns
that it uses may make it a lot easier to understand. On the other hand there are also
possible disadvantages. For example, it is argued that the pattern is often more
powerful and complicated than might be necessary making understanding and
change potentially more difficult. Moreover, this complexity may be hard to antic-
ipate at the time of making the decision to use a pattern. This leads us to conclude
that whilst patterns are potentially very important there is still much that we do not
understand about their use in practice. This could be a topic that empirical re-
searchers wish to further address.
A more recent and promising reuse model aiming at reusing large components and

high-level designs is that of frameworks. Based on OOT, they are defined as ‘‘semi-
completed applications that can be specialized to produce custom applications’’
(Johnson and Foote, 1988). Usually, a framework is made of a hierarchy of several
related classes. Framework based development involves mainly two activities: de-
velopment of the framework itself and development of an application based on the
framework. Developing a framework is a more demanding process than building an
application. The framework designer should have a deep knowledge of the appli-
cation domain and has to foresee future requirements and domain evolutions. Do-
main analysis techniques, focused on modelling the scope of the domain, and
commonalities and variability of applications, have been developed to guide the
definition of framework requirements (Coplien et al., 1998). It has been observed
that successful frameworks have been extracted from legacy systems, by abstracting
the knowledge of principal software designers. Currently, there are only few exam-
ples of quantitative evidence to support project managers in decisions about
framework-based development (Mattsson, 1999; Morisio et al., 1999).

3. Past Experimental Work

We now turn to the experimental work related to OOT.
Table 1 summarises the 27 published experiments that we have identified. Nine are

excluded from subsequent analysis and the remaining 18 are grouped into five cat-
egories:

REVIEW OF EXPERIMENTAL INVESTIGATIONS 199



Comparing OO with structured technology.
Exploration of OO design principles.
Exploration of class inheritance.
Exploration of design patterns.
Exploration of inspection techniques.
To aid comparison of the reviewed experiments, we present them using a frame-

work suggested by Wohlin et al. (2000).

3.1. OO versus Structured Techniques

Agarwal et al.’s (1999) motivation was that the learning curve, associated with the
OO methodology, as with any new technology, might be fairly steep. When com-
pared with structured techniques, which have dominated software development for
over two decades, the OO approach represents a fundamental shift in focus. For
organisations with a significant staff of information systems analysts and designers, a
potential hurdle in incorporating the OO methodology is the procedural or process-
oriented (PO) mindset of the analysts and designers. It is claimed that systems
professionals experienced in PO modelling can be characterised as having a ‘pro-
cedural mindset’. The objects studied are OO and PO analysis and design method-
ologies for the purpose of investigating the effects of prior PO modelling experience
with respect to problem solving performance in OO modelling from the point of view of
the researcher. The context concerns an experiment run using subjects performing on
two tasks (fictional systems): The PO task was an ‘‘Accounts Payable System’’, and
the OO task that was an ‘‘Employee Benefits System’’.

Hypotheses. The performance is compared with experienced and inexperienced
modellers at two levels of task granularity: (i) the task level (OO and PO) and (ii) the
subtask level (structure3 and behaviour). H0: There is no difference in the quality of
solutions generated by experienced PO modellers and inexperienced modellers. H1:
Experienced PO modellers generate higher quality solutions than inexperienced
modellers for the H1a: PO task, H1b: behaviour subtask. H2: There is no significant
difference in the quality of solutions generated by experienced PO modellers and
inexperienced modellers. H2a: for the OO task. H2b: for the structure subtask.

Variables. The independent variables were type of experience (PO, inexperienced),
and task type (OO or PO). The dependent variable was performance of subjects for
each task and subtask, measured by three variables: structure, behaviour, and
structure-behaviour.

Participants. Twenty-two experienced systems analysts and designers, all with
more than 2 years of experience in PO analysis and design, and 24 graduate and
undergraduate business students with limited prior knowledge of PO modelling but
no experience in on-the-job application of these concepts, were participating. Neither
group had prior experience in OO analysis and design.

Experiment design. A 2� 2 factorial design was used, with the two factors being
the experience level of the subjects and the nature of the task. The subjects were

DELIGIANNIS ET AL.200



divided into two groups. One group consisted of 22 experienced systems analysts and
designers. The other group consisted of 24 students. Both groups were provided
identical training sessions (two 3 h sessions) on OO analysis and design using the
Coad and Yourdon methodology (Coad and Yourdon, 1991a). They were given two
experimental tasks and were required to develop OO models for both tasks. Task 1
was an application inherently PO (behaviour) in nature, while task 2 was inherently
OO (structure). The order of task presentation was counterbalanced in order to
eliminate any confounding learning effects.

Results and interpretation. An ANOVA test was used to determine the interaction
effects of experience and task characteristics on problem solving performance. Sig-
nificance level was set at a ¼ 0.01. Results for task-related hypotheses indicate a non-
significant trend toward supporting H1a (p ¼ 0.057). H2a was not supported; the
experienced group performed significantly better than the inexperienced on the OO
task. Considering the subtask related hypotheses, where the analysis was broken
down to look at the behaviour and structure subtasks, they found that the experi-
enced group performed significantly better for behaviour but not for structure.
Therefore, H1b and H2b are supported.

Critique. Our observations are focused first on the lack of training (6 h in total)
which could be considered rather minimal. Specifically, in the first attempt the
subjects had difficulty distinguishing between objects and attributes. Second, misuse
of inheritance occurred where a few methods of the parent classes were hidden
Gamma et al. (1995). This is also referred as the ‘NOP problem’ by Riel (1996), that
is overriding an inherited method with an empty one in the child class. Third,
concerns the authors’ assertion that ‘‘although sequencing of processes is an integral
construct of the PO modelling paradigm and is represented explicitly through di-
rected data flows, there is no straightforward way of implementing such control in
the OO modelling paradigm’’. We consider that it could be captured by a sequence
or interaction diagram. Therefore, the experiment might be regarded as biased to-
wards the PO paradigm.

Agarwal et al. (1996). The objects of this study are systems analysis and design
using OO and PO methodologies, for the purpose of exploring whether the OO
methodology offers better ‘‘cognitive fit’’ (the match of nature of the task and the
way it is represented) over the PO, in the domain of OO and PO analysis and design,
with respect to the effectiveness and efficacy in problem-solving performance, from
the point of view of the researcher. The context concerns an experiment run using
students as subjects performing on two types of systems analysis and design tasks
—OO and PO, using two types of modeling methodologies—OO and PO. A task is
classified as inherently structural (OO) if its description highlights data and structural
relationships, and inherently behavioral (PO) if its emphasis is on processes and
sequencing. The study examines the effects of the interrelationship between task and
tool at two levels of granularity: (1) the task level (OO and PO) and (2) the subtask
level (structure and behaviour). The methodology used for OO training was adapted
from the one suggested by Coad and Yourdon (1991a, b), while that used for PO
training was adapted from DeMacro (1978). Two experimental tasks—narrative

REVIEW OF EXPERIMENTAL INVESTIGATIONS 201



descriptions of business information-processing problems—were utilized. Task 1,
that was PO in nature, was an ‘‘Account Payable System’’ described in a little over
300 words, while Task 2, that was OO in nature, was an ‘‘Employee Benefits System’’
described in approximately 400 words.

Hypotheses. H0: There is no difference in quality solutions between users per-
forming on PO or OO tasks, using PO or OO methodologies. H1a: For the PO task,
users of the PO methodology generate higher-quality solutions of the OO method-
ology. H1b: For the behavior subtask, users of the PO methodology generate higher-
quality solutions of the OO methodology. H2a: For the OO task, users of the OO
methodology generate higher-quality solutions of the PO methodology. H2b: For the
structure subtask, users of the OO methodology generate higher-quality solutions of
the PO methodology.

Variables. Independent variableswere the analysis and designmethodology (OO and
PO). Dependent variable was the performance of subjects measured as the overall
quality and Jaccard’s similarity coefficient (Anderberg, 1973; Everrit andDunn, 1983).

Participants. Forty-three business students enrolled in an information systems
course at a university were used. They had limited prior knowledge of both OO and
PO modeling and no experience in on-the-job application of these concepts.

Experiment design. A 2� 2 factorial design with problem-solving task and prob-
lem-solving methodology was used for the experiment. One group, consisted of 24
subjects, used the OO methodology, while the second group, consisted of 19 subjects,
used the PO tool. The order of task presentation was counterbalanced. A maximum
time limit of one and a half hours was allotted for each problem. The overall quality
of a solution was assessed using two metrics: a subjective score between 0 and 10
assigned by two independent evaluators, and Jaccard’s similarity coefficient, which
provided a more objective assessment.

Results and interpretation. Two two-way analysis of variance (ANOVA) proce-
dures—with task and methodologies as the two treatments—were run to examine the
task level effects. If the overall ANOVA was significant, t-tests were used to test the
specific propositions. Results indicate that the interaction effects between task and
tool were significant for the overall quality (p ¼ 0.012) and weakly significant for
Jaccard’s similarity coefficient (p ¼ 0.087), while at the subtask level, interaction ef-
fects were significant for both the PO (p ¼ 0.018) and the OO task (p ¼ 0.001). The
results of the follow up t-tests show that subjects who used the PO methodology
performed significantly better on overall quality (p ¼ 0.000), as well as on Jaccard’s
similarity coefficient (p ¼ 0.044). However, there was no difference in performance
using the two tools for the OO task for either dependent variable (p ¼ 0.270 for
overall quality; p ¼ 0.652 for Jaccard’s similarity coefficient). Thus, alternative hy-
pothesis H1a was supported by the data while H2a was not supported. T-tests for the
subtask-level ANOVA produced similar results. For the behavior subtask, subjects
performed better using the PO methodology across both tasks (p ¼ 0.000 for the PO
task, and p ¼ 0.003 for the OO task). For the structure subtask, however, there was no
significance in performance (p ¼ 0.390 for the PO task, and p ¼ 0.171 for the OO
task. Thus, H1b was supported while H2b was not supported.

DELIGIANNIS ET AL.202



Critique. Our critique is focused on three points. First, we consider the fact that OO
techniques adopted do not graphically depict the control or sequencing of processes
through a notation such as a sequence diagram, or do not implicitly enforce a se-
quence as the process model, as working against the OO methodology. Second, we
have some concerns over the OO model presented by the authors as a correct rep-
resentation, where the classes ‘‘Asst_Prof’’, ‘‘Assoc_Prof’’, and ‘‘Full_Prof’’ are
subclasses of the ‘‘Faculty’’ class. This may be an example of misused inheritance
since it apparently violates the substitutability principle, mentioned previously. Third,
considering the difference in performance on the relationships for the OO subjects, it
suggests a strong indication of the role of graphical representation.

Agarwal et al.’s (1999) motivation was two conflicting viewpoints: One suggested
by OO proponents, that in addition to the previously described advantages of the
OO paradigm, it also lends itself naturally to the way humans think. The other
supported by evidence from research in cognitive psychology and human factors
suggesting that human problem solving is innately procedural. The objects studied
are the OO and PO models, for the purpose of investigating whether problem repre-
sentation is a determinant of performance with respect to comprehension for the point
of view of the researcher. The context concerns two experiments using students as
subjects performing on two business application systems (a payroll system—‘ABC’,
and a motor vehicle registration system—‘Texas case’), represented both as an OO
model (Object model and atomic and meta-models) (Coad and Yourdon, 1991a),
and a PO model (DFD, and data dictionary) (DeMacro, 1978).

Hypotheses. H0: There is no difference in understanding structure4-oriented as-
pects and PO aspects of an application represented using an OO model and a PO
model. H1: It is easier to understand structure-oriented aspects of an application
represented using an OO model rather than a PO model. H2: It is easier to under-
stand PO aspects of an application represented using a PO model rather than an OO
model. H3: It is easier to understand both structure-oriented and PO aspects of an
application together using an OO model or than a PO model.

Variables. The independent variables were the type of models (OO or PO) and type
of comprehension question (OO or PO or hybrid). The dependent variable was the
‘accuracy of comprehension’.

Participants. Seventy-one undergraduate students, majoring in information sys-
tems with some prior experience with PO modelling but without OO experience,
participated.

Experimental design. Two experiments were carried out using the two cases de-
scribed above. The second was a replication of the first with a different set of subjects
and a different task to ensure that the results were not biased by any task-specific
characteristics. For both experiments, the subjects were randomly assigned to one of
two groups: one group received the OO model while the other received the PO
model. A total of eight questions were developed for each task. The comprehension
questions were classified as structural, behavioural or a combination of both. The
quality of comprehension was measured through subject’s responses to questions

REVIEW OF EXPERIMENTAL INVESTIGATIONS 203



designed along these dimensions. In the first experiment, 18 subjects received the OO
model and 18 others received the PO model for the ABC case. In the second ex-
periment, 18 subjects received the OO model and 17 received the PO model for the
Texas case.

Results and interpretation. For the analysis of the collected data t-tests were used.
Significance level was set at a ¼ 0.05. Overall, the results suggested little difference, in
terms of comprehension accuracy, between the representations for structural or PO
models, however, for the more complex combined comprehension tasks the students
with the PO notation performed significantly better. The authors speculated that
only the combined questions were sufficiently demanding to reveal any differences
between procedural and OO notations. Hypotheses testing indicate that H1, H2, and
H3 were not supported. However, in H3 PO model led to significantly better levels of
comprehension.

Critique. Our observations concern the solution provided by the authors. They
apply a class inheritance hierarchy (‘Employee’ and its subclasses) in a case where
other authors argue that composition (‘role modelling’) would be better for this type
of problem (Coad and Mayfield, 1997; Venners, 1998). Misuse of inheritance oc-
curred in a subclass (GA) where a few methods of the parent classes were hidden
(Gamma et al., 1995). This is described in the first experiment. We also note, as the
authors did themselves, that other OO notations such as UML may better support
comprehension tasks that have combined structural and behavioural aspects. Fi-
nally, we observe the existence of some related empirical evidence to authors’ mo-
tivation of the ways in which humans ‘‘naturally’’ think is provided by Hatton’s
(1998) case study.

Briand et al.’s (1997) motivation in this study was to explore whether OO tech-
niques offer significant advantages over structured techniques given the fact that
much of the debate was based upon opinion and anecdote rather than empirical
evidence. Additionally, the empirical research prior to this experiment provided
scant support for OOT. The objects studied are design techniques (OO and struc-
tured) for the purpose of investigating their impact on developers’ ability with respect
to understandability and modifiability from the point of view of the researcher. The
context concerns an experiment run using students as subjects performing on design
documents.

Hypotheses. H0: There is no difference between design documents, in terms of ease
of understandability and modifiability, developed by the use of OO or structured
techniques regardless of the application of various ‘good’ or ‘bad’ design principles.
The alternative hypotheses were then stated as: It is easier to understand and modify
H1: ‘good’ OO design than ‘good’ structured design, H2: ‘good’ OO design than ‘bad’
OO design, H3: ‘good’ structured design than ‘bad’ OO design, H4: ‘good’ structured
design than ‘bad’ structured design, H5: ‘bad’ structured design than ‘bad’ OO de-
sign.

Variables. The two independent variables were the design technique used (OO or
structured) and the design principles applied (‘good’ or ‘bad’). The two dependent

DELIGIANNIS ET AL.204



variables were understandability (accuracy of comprehension), captured via means of
asking questions about the components of the system designs, and modifiability
(proportion of correct change locations identified and number of locations/time
taken), captured by means of subjects performing impact analyses on the design
documents (but not making the changes identified).

Participants. Thirteen student subjects with limited experience were used.
Experiment design. Four different design documents were provided to subjects.

Two were OO and two were structured. The OO designs were designed using the
OMT methodology Rumbaugh et al. (1991). For the structured designs, MIL/MDL
based on DeRemer and Kron (1994) was used. The applicable design principles used
included guidelines on coupling, cohesion, clarity of design, generalisation/speciali-
sation, and keeping objects and classes simple, identified by Coad and Yourdon
(1991a, b). For each paradigm one document was considered ‘good’ and one ‘bad’
according to the design principles listed above. Subjects were randomly assigned to
one of four groups. A 2� 2 factorial design in two blocks of size two was employed
(counterbalancing). This has received some adverse comment since the meaning of
good and bad design differs between the structured and OO paradigms. It is there-
fore arguable that the experimental design is hierarchical as opposed to factorial.

Results and interpretation. For the analysis of the collected data an ANOVA test
was used. The significance level was set at a ¼ 0.1. Hypotheses testing indicate that:
H1 is not supported, H2 is supported, H3 is supported (modifiability, not under-
standability), H4 is not supported, and H5 is supported (understandability, not
modifiability). Results from this experiment strongly suggest that the quality prin-
ciples embodied in the ‘‘good’’ design collectively have a beneficial effect on the
maintainability of OO design documents. However, there is no strong evidence re-
garding the alleged higher maintainability of OO over structured design documents.
Furthermore, their results suggest that OO design documents are more sensitive to
poor design practices than structured design documents. In addition, the authors
draw three further conclusions. First, proper training and climbing the OOT learning
curve should be a crucial activity if significant maintenance benefits are to be
achieved. Two, adhering to quality OO design principles is important if the promised
OO benefits are to be realised. Three, abuse of OO architectural guidelines add
significantly to cognitive complexity. Consequently, it may be even more important
to follow stringent quality standards when using OO design techniques.

Critique. Our observations regarding this study are that it examines very inter-
esting aspects of software design, although the number of participants used was
small with a possible effect on results. The fact that the design principles examined
are not operationally defined and their application requires a certain degree of
subjective interpretation indicating the need for further research in this direction.

Corritore and Wiedenbeck (2000): The object of this study is to analyze how com-
prehension-related activities evolve in successive maintenance episodes on the same
program, and how the information gathering and comprehension of OO and pro-
cedural programmers differ, for the purpose of investigation, with respect to the scope

REVIEW OF EXPERIMENTAL INVESTIGATIONS 205



and direction of comprehension, from the point of view of the researcher. The scope of
comprehension activities refers to the breadth of familiarity with the program, gained
by the programmer during comprehension activities, defined as the proportion of files
accessed. The direction of activities concerns whether the strategic approach to pro-
gram comprehension is top-down, bottom-up, or a mixture of the two. The higher-
level abstraction refers to the domain level (documentation files) and the low-level
abstraction refers to the program model (implementation files). Accessing the more
abstract documentation and header files was interpreted as reflecting the use of
top-down process and accessing the less abstract implementation files was seen as
reflecting a bottom-up strategy. The context concerns an experiment run using pro-
fessionals as subjects performing on the documentation and code of two functionally
equivalent versions of a database program for a small airline, written in OO Cþþ and
procedural C. The Cþþ version of the program made extensive use of the OO fea-
tures of inheritance, composition, encapsulation, and polymorphism. Both programs
were similar in length, Cþþ 822 lines versus C 783 lines. The program and all sup-
plementary materials were presented on-line in a graphical Unix environment. The
most notable difference was that, naturally, there were no inheritance hierarchy charts
for the procedural paradigm.

Hypotheses. H0: There is no difference between OO and procedural experts in the
direction and the scope of comprehension activities, in program understanding during
maintenance. H1: OO experts show a more top-down direction of comprehension
activities than procedural experts. H2: OO experts have a narrower scope of com-
prehension activities than procedural experts.

Variables. Independent variables were programming paradigm (OO or procedural,
represented by the Cþþ respectively C language), file type (documentation, header
or implementation), and activity (program study, modification 1 and 2). The de-
pendent variable was the mean proportion of files accessed.

Subjects. Thirty professional programmers participated. Fifteen were OO Cþþ
and 15 were procedural C programmers. All but two had post-baccalaureate degrees.
Twenty-seven held their highest degree in computer science or engineering. On av-
erage, they had been programming for 11.6 years with a range of 2.5–20 years.

Experiment design. The study was conducted as a multi-test within object study.
Each participant was run individually in 2-h sessions that were held seven to 10 days
apart. In the first session (program study) the participant studied the program for
30 min, followed by a short modification task. Data were not collected from it. Two
modification tasks (modification 1, and 2) had to be performed during the second
session. The order of presentation of the modifications was counterbalanced.
Blocking and balancing were the design principles.

Results and interpretation. The statistical hypotheses were tested using Analysis of
Variance. Follow-up analysis was carried out using ANOVA and Tukey’s HSD.
Significance level was at a ¼ 0.10. Considering H1, during the study phase, the OO
participants accessed significantly more documentation files than procedural par-
ticipants, indicating a top-down direction of comprehension activities (p < 0.05). In
modification 1, across both paradigms, participants accessed more implementation

DELIGIANNIS ET AL.206



files than documentation files (p < 0.05). In modification 2, the direction of com-
prehension activities for both paradigms was bottom-up (p < 0.05). Therefore, H1

was not supported. Considering H2, the ANOVA indicated a significant main effect
of paradigm. Namely, OO participants accessed significantly fewer files than pro-
cedural participants, indicating a narrower scope of comprehension activities for OO
participants (p < 0.05). Therefore, H2 was supported.

Critique. We consider the experiment to be a well-designed one. In particularly, the
use of professionals is its major advantage. However, an important point is the lack
of a specific design method and notation. Also, concerning the documentation of the
programs, the authors statement that ‘‘the most notable difference between the two
paradigms were that the procedural paradigm was not using inheritance hierarchy
charts’’. We don’t consider this reflects reality and comes in disagreement with their
previous reference to the extensive use of OO features.

Henry and Humphrey’s (1990): motivation was that due to a lack of scientific
evidence there was only an intuitive feeling, between software engineers and man-
agers, regarding the accuracy of claims that systems developed with OO languages
were more maintainable than those programmed with procedural languages. The
objects studied are OO and procedural languages for the purpose of investigation with
respect to maintainability from the point of view of the researcher. The context con-
cerns an experiment run using students as subjects performing on two systems de-
veloped by two languages representing two different paradigms.

Hypotheses. H0: There is no difference in ease to maintain systems implemented
with an OO language than those using a structured language. ‘Ease to maintain’, in
this context, was measured by the time programmers took to perform a maintenance
task, and by the number of changes to the code the task required. It also meant
programmer perception of the ease of change. The alternative hypotheses were then
stated as: It is easier to maintain OO programs than structured programs; H1: OO
programmers take less time to perform a maintenance task, H2: OO maintenance
requires fewer changes to the code, H3: OO programmers perceive the changes as
conceptually easier, and H4: OO programmers make fewer errors during the main-
tenance task.

Variables. There were four independent variables: subject (the student identifier),
group (A or B), programming language, and the modification task. The dependent
variables were maintenance times, error counts, change counts, and programmers’
subjective impression.

Participants. Twenty students participated.
Experiment design. The experiment was a within subjects test, using a counterbal-

ancing procedure, where the subjects were requested to perform enhancement
maintenance tasks. Two modification tasks were simulated requests from users to
make functional changes to the system. The tasks were conducted over an 11 weeks
period on two functionally identical programs, which were based on a ‘laundry-list’
handler system. Both systems used 15 files (modules) each, comprising a total of
approximately 4000 lines of code for each system. The first one was designed with

REVIEW OF EXPERIMENTAL INVESTIGATIONS 207



structured design techniques using a procedural language C, and the other designed
with OO design techniques using an OO language (Objective C). Subjects actually
performed each task twice. Finally, the subjects completed a post-experimental
questionnaire.

Results and interpretation. This experiment supports the hypothesis that subjects
produce more maintainable code with an OO language than with a PO language. For
source code variables, Objective-C produces code that requires fewer modules and
sections to be edited, fewer lines of code to be changed and added. The authors state
that this leads to the conclusion that Objective-C produces fewer changes that they
are more localised than procedural C. Additionally, C is never better than Objective-
C for any variable in this study.

Critique. We consider that there is concern, however, that there may be learning
effects due to the ordering of the two tasks. The Objective-C language is superset of
the C language. There is also a question regarding the counting of maintenance time,
since no constraints were imposed—other than the 11 weeks period—and so relies
entirely upon the accuracy of subjects reporting minutes of thinking time and so
forth. We also note that inexperienced subjects were used and design documentation
was not provided.

Lee and O’Keefe (1996): The objects studied are the OO and the structured rule-
based systems, for the purpose of evaluating and comparing the knowledge represen-
tation (KR) techniques with respect to the maintainability from the point of view of
the researcher. The context concerns an experiment run in a PC lab, using students as
subjects performing on two versions of a system dealing with the ‘animal classifi-
cation problem’. They were asked to modify the knowledge-based (KB) schema of
the two versions based on new pieces of animal knowledge using the NASA devel-
opment tool CLIPS version 5.0.

Hypotheses. H0: There is no statistical difference in KR maintenance functions
between modularized production systems and OO systems. H1: It will be more
effective to maintain an OO system than a modularized production system (repre-
sentation effect > structural effect). ‘‘Effective to maintain’’, in this context
means that programmers take less time to perform a maintenance task with more
confidence in their outcomes, and/or the implementation of the changes is more
accurate.

Variables. The independent variables are the knowledge representation (KR) tech-
niques and the programming paradigm (OO or structured rule-based). Dependent
variables are: time taken to implement a change, the accuracy of the modification,
and confidence in the correctness of the work.

Participants. Twenty graduate students were used. During a course they received
5 weeks (15 h in class and 10 h in laboratory) of KB systems development training
(including KR, inferencing, development methodologies, modularization of rules,
and CLIPS.

Experiment design. Subjects were randomly assigned to two groups. The within-
subjects procedure was used with counterbalancing. The experiment lasted 90 min.

DELIGIANNIS ET AL.208



After the maintenance tasks were complete, a post-experimental questionnaire was
administered to gather information about the following: (1) the maintainers’ confi-
dence in their maintenance functions, (2) perceptions of the relative complexity of
the system tasks, and (3) the usefulness of documentation.

Results and interpretation. The paired comparisons t-test was used, since the ex-
perimental design is the ‘‘subject as his/her own control’’ design. Significance was set
at a ¼ 0.05. Three subjects failed to finish the maintenance tasks and so withdrew
from the experimental, since they could not understand the systems. Thus, the total
sample size was reduced of 20–17. The results indicate: (1) that for maintenance time,
OO subjects performed significantly faster than the rule-based ones (p < 0.01); (2)
the implementation of new knowledge was on average better for the rule-based
system than the OO system, but the difference was not statistically significant. One
possible explanation, stated by the authors, is that default reasoning through
property inheritance makes it more difficult to verify the OO KB than the rule-based
KB, where the logical structure is more transparent. (3) The participants’ reports on:
(a) their confidence in the correctness of their modification, indicate no statistical
significance, (b) their perceived complexity, indicates with statistical significance,
that the rule-based system was perceived as more complex than the OO system
(p < 0.01), (c) regarding the usefulness of documentation they ranked the OO
system, due to its embedded structure, as significantly more useful than the rule-
based one (p < 0.01).

Critique. First, we observe that the experiment deals with a small artefact. Also,
due to counterbalancing, possible learning effects could have biased the results.
However, regarding the OO paradigm, we would like to place emphasis on two
problems both originating from the inheritance mechanism: (a) the misplacement of
methods in the inheritance hierarchy, and (b) misclassification due to conceptual
misunderstanding.

Lewis et al. (1991): The objects of this study are the OO and the procedural
paradigms for the purpose of exploring whether the OO paradigm offers significant
advantages over the structured with respect to reuse of previously developed com-
ponents, for the point of view of the researcher. The context concerns an experiment
run using students as subjects developing a specified target system implementing a
‘fictional company’.

Hypotheses. H0: There is no difference in productivity due to reuse of software
components, between systems implemented using an OO language and those using a
procedural language. H1: The OO paradigm promotes higher productivity than the
procedural one. H2: Reuse promotes higher productivity than no reuse. H3: The OO
paradigm promotes higher productivity than the procedural paradigm when pro-
grammers do not reuse. H4: The OO paradigm promotes higher productivity than
the procedural paradigm when programmers reuse H5: The OO paradigm provide
incentives to reuse above those of the procedural one.

Variables. The independent variables were the programming language (Cþþ and
Pascal) and reuse. The dependent variable was productivity.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 209



Participants. Twenty-one senior-level software engineering students participated.
Experiment design. Two sets of potentially reusable components were designed

and implemented by independent programmers. One set was implemented in a
procedural based language, Pascal, and the other in an OO language Cþþ. Each
component was designed to have a specific level of applicability. The levels of reuse
were described as: (1) completely reusable, (2) reusable with slight revision (<25%),
(3) reusable with major revision (>25%), and (4) not applicable for reuse. All
completed projects were verified to meet a set of requirements concerning docu-
mentation, code quality, and functional correctness. The subjects were randomly
divided, but were statistically blocked across their computer science grade point
averages, into four groups. Half of them implemented the projects in Pascal, the
other half in Cþþ. Furthermore, part of each language group were not allowed to
reuse at all, while the others were encouraged to reuse. The ‘‘no reuse’’ groups serves
as control groups.

Results and interpretation. An ANOVA test was used. The significance level was
set at a ¼ 0.05. Productivity was defined as the inverse of the effort expended to
produce a specific software product. It was captured by the following number of
measures during system development and testing:

Runs—The number of runs made,
RTE—The number of run time system discovered,
Time—The time (in minutes) to fix all run time errors,
Edits—The number of edits performed, and
Syn—The number of syntax errors.

The Runs, RTE, and Time variables, given their significance to the development
process, are considered the main variables of interest. The other two are gathered for
completeness, but are given less emphasis. Hypotheses testing suggest the following.
H1, H4, and H5 are supported by the three main variables. H2 is strongly supported
by all variables. H3 is not supported. Therefore, the results indicate that the OO
paradigm is well suited to reuse.

Critique. This study investigates a factor of major significance—reuse—for soft-
ware development. However, it would have been of interest to know to what extent
there has been use of the central OO reuse mechanism, namely, inheritance.

Moynihan’s (1996) motivation was the claim that one of the major ‘selling-features’
of the OO approach is its use of a uniform set of concepts across the development
process, thus supporting verification, traceability, and reuse. The objects studied are
OO and functional-decomposition paradigms for the purpose of comparing them for
communicating system functionality to users with respect to effectiveness from the
point of view of the researcher. The context concerns a simple experiment run using
business managers as subjects performing analyses of a fictitious system.

Hypotheses. H0: There is no difference between the functional-decomposition
model and the OO model in effectiveness for communicating system functionality to

DELIGIANNIS ET AL.210



users. The alternative hypotheses were then stated as: A functional-decomposition
model provides more effectiveness than OO model for communicating system
functionality to users. H1a: In Task-performance: (i) identifying missing ‘seeds’ from
the analysis, (ii) commenting on the apparent omissions in the analysis, (iii) making
comments of a more strategic nature. H1b: Examining the style: (i) understanding
notation and concepts, (ii) helping in detecting incompleteness and internal incon-
sistency, (iii) provoking comments and questions, (iv) giving a holistic understanding
of the application domain, (v) evaluating implementation benefits and priorities, (vi)
visualizing an implementation of the system.

Variables. Independent variables were the type of model (OO or functional-
decomposition). Dependent variable was the effectiveness for communicating system
functionality to users.

Participants. Twenty (non-technical) executives attending a management devel-
opment programme participated as subjects. None were information systems spe-
cialists.

Experiment design. For model presentation the Object Model Notation (Rumb-
augh et al., 1991) was used for the OO model while Schema I (Martin, 1992) was
used for the functional-decomposition model. The subjects were presented with the
preliminary analysis of two versions (OO and functional-decomposition) of the same
system. Discrepancies from a natural language document had been deliberately in-
troduced. They were then asked to evaluate the models. The effectiveness was op-
erationalized in terms of subjects’ task-performance and in terms of subjects’ opinions
on the two ‘styles’ of analysis. The task-performance was measured by: (i) the
number of ‘seeds’ the subject mentioned as being missing from the analysis, and (ii)
the ‘quality’ of the subjects’ critique on the content of the analysis. The subjects’
opinions on the relative merits of the two styles of analysis were obtained by means
of a post-experimental questionnaire.

Results and interpretation. Fisher’s Exact Test at level a ¼ 0.05 was used. The
results indicated that for task performance there appeared to be no evidence that
the seed detection rate varied between the two notations. Likewise for eliciting
detailed comments. However, the functional decomposition was significantly better
for eliciting strategic level comments. Examining the style there was significant
evidence on the first, third, fourth and fifth attributes. While no significance effect
was found on the second and sixth attributes. Overall subjects stated that they
found the OO model harder to understand, gave less of a holistic understanding
and was less effective at helping them to evaluate likely implementation benefits and
priorities.

Critique. We note the lack of technical expertise of the subjects and also the
possibility of ordering effects arising from the presentation of both models to each
subject although the ordering was reversed for half the subjects.

Wiedenbeck et al.’s (1999) motivation was the educational implications deriving
from the switch from procedural to OO languages. Their particular emphasis was
on program comprehension skills since this forms the underpinnings for many

REVIEW OF EXPERIMENTAL INVESTIGATIONS 211



software engineering activities. The objects studied were the OO and procedural
paradigm for the purpose of investigating the mental representations formed by
novices in the two styles with respect to program comprehension from the point of
view of the researcher. The context concerns two experiments run using students
working with a program used in pedagogy. However, we exclude the first one from
our review since it deals with a very small and trivial program (less than 10 LOC).
The investigation was based on Pennington’s model (Pennington, 1987a, b) which
refers to the two levels of representation as the program model (textural represen-
tation) consisting of elementary operations and control flow information, and the
domain model (situation or mental model) consisting of data flow and program
function. Pennington argues that it is a key element of an expert programmer’s
plans, or ‘‘schemas’’, that represent their stereotypical knowledge of common
programming tasks.

Hypotheses. H0: There is no difference between styles of programming in affecting
the comprehension of novice programmers, to be rejected by the alternative hy-
potheses. H1: Different programming styles (OO or procedural) do affect the com-
prehension of novice programmers as regards the (a) language (OO or procedural),
(b) viewing (described below), and (c) question type (operations, control flow, data
flow, function).

Variables. The independent variables were the type of paradigm, programming
language (Cþþ or Pascal), study/question answering, and comprehension questions.
The dependent variable was program comprehension.

Participants. There were a total of 86 student subjects, with low but approximately
similar programming experience.

Experiment design. The subjects were provided with either a program written in
Cþþ (188 LOC) or Pascal (140 LOC). The programs used were a simplified im-
plementation of a well-known example used in pedagogy, ‘the game of life’ simu-
lation, where the original Cþþ program from which the OO version for this study
was derived can be found in a textbook by Pohl (1993). The subjects were required to
answer a set of 16 comprehension questions that targeted the four information
categories forming part of the mental presentation: elementary operations, control
flow, data flow and function. They participated in two study/query answering trials,
referred to as viewing 1 and viewing 2. In viewing 1 they first studied the program
listing for 15 min, after which the program was removed and they answered ques-
tions. In viewing 2 they were given an additional 15 min to answer the same question
set again, this time with the program available to them.

Results and interpretation. A three-way mixed-model ANOVA was used for the
analysis of data collected. The between-subjects factor was language (OO or proce-
dural). The within-subjects factors were viewing (1 or 2) and question type. Com-
prehension was measured by the percentage of correct answers. The ANOVA
showed that there was a significant main effect of: (a) language, with the procedural
group scoring higher than the OO group overall (p < 0.0005), (b) viewing, with
viewing 2 higher than viewing 1 scores (p < 0.0005), and (c) question type
(p < 0.0005). Therefore, considering comprehension the procedural subjects clearly

DELIGIANNIS ET AL.212



performed better than the OO subjects. Possible explanations from the authors of the
poor performance of OO subjects include the following. First, the information re-
garding function and control flow in an OO program was not highlighted by the
notation. Second, the distributed nature of control flow and function in an OO
program (i.e. a delocalised plan) made it more difficult for novices to form a mental
representation. Third, the OO subjects faced a learning curve. Fourth, Pascal was
designed as a teaching language, whilst Cþþ was not.

Critique. Our observations first concern the lack of explicitly stated hypotheses
forcing us to extract them from the presentation of the results. Second, the program
used, particularly the OO version, was a simplified implementation of a Cþþ pro-
gram published in a text book, which might have been read by the subjects and could
have led to bias towards to OO paradigm. Lastly, other documentation (e.g. data
and control flow diagrams) was not provided for the subjects.

3.2. OO Design Principles

Briand et al. (2001): This research builds upon the results of a previous experiment
(Briand et al., 1997) run by the same authors, which investigated the benefits of the
quality design principles by Coad and Yourdon (1991a, b) with respect to main-
tainability of OO and structured design documents. This study concentrates solely
on the investigation of the use of quality design principles and their influence on a
developer’s ability to understand and modify OO design documents. The context
concerns two experiments run using students as subjects performing on design
documents implementing two, but equivalent in complexity, systems.

Hypotheses. H0: There is no significant difference between ‘good’ and ‘bad’ OO
design documents in terms of ease of understanding and impact analysis. The al-
ternative hypotheses were then stated as H1: ‘Good’ OO design in significantly easier
to understand than ‘bad’ OO design, H2: It is easier to perform impact analysis
(locate changes) on a ‘good’ OO design than on a ‘bad’ OO design.

Variables. The two independent variables were the experimental run (run 1 and 2)
and the design principles. The dependent variables were the following six: (1) time
spent on understanding the system in order to complete the questionnaire, (2) cor-
rectness of the understanding questionnaire, (3) time spent identifying places for
modification, (4) completeness of the impact analysis, (5) correctness of the impact
analysis, and (6) modification rate—the number of correct places found per time unit.

Participants. Thirty three students with little experience enrolled in a semester long
class on Software Engineering participated.

Experiment design. Two OO design documents were used to test the hypotheses.
Each design documentation was approximately 30 pages including a general system
description and a requirements document. There were two versions of each docu-
ment: one was compliant to the design principles and another violated them. To
quantify the degradation applied to ‘bad’ design, counts of design artifacts and
relationships as well as standard design measures were used. The degradation

REVIEW OF EXPERIMENTAL INVESTIGATIONS 213



introduced, on average, more coupling and more (inappropriate) inheritance. The
application domains used were (i) good system—a temperature controlling system
and (ii) bad system—an automatic teller machine. For each system document there
were two sets of tasks to be performed, (i) to complete a questionnaire concerning
understanding and the structure of the design and (ii) to undertake two separate
impact analysis (mark all the places to be changed and enhancement of system
functionality). After completion of the tasks a debriefing questionnaire had to be
completed. A standard within-subjects 2� 2 factorial design was employed with
counterbalancing. The subjects were randomly assigned to two groups.

Results and interpretation. The Wilcoxon matched pairs test was applied. Signifi-
cance level was set at a ¼ 0.05. Results for H1—ease of understanding—indicate no
significance for the first variable while statistical significance was indicated for the
second variable (p ¼ 0.00). Considering H2—ease of impact analysis—there is sta-
tistical significance for the second (p ¼ 0.00) and fourth (p ¼ 0.02) variables, practical
significance for the third variable (p=0.07), and no significance for the first variable.

Critique. We consider the fact that 13 subjects for the bad design did not follow the
instructions, resulting in no separation between the time spending on understanding
and on the impact analysis, could have biased the results. Also, the fact that a few
questions examining the cohesion principle, due to lack of information at a high level
of design, require a certain degree of subjective interpretation, indicates the need for
further investigation in that direction. Lastly, we agree with the authors’ suggestion
for the necessity of investigation of each and every design principle independently,
which could lead to better understanding of tradeoffs and impacts between various
design aspects.

3.3. Inheritance Related Experiments

Cartwright’s (1998) experiment is a small replication of that of Daly’s et al. (1996),
based on the same research question concerning the impact of class inheritance.
However, she used only two versions of the bibliographic database program. Sub-
jects were requested to make the same maintenance change but on a three level
inheritance depth version and a ‘flat’ version.

Hypotheses. H0: Three levels of inheritance depth compared with no inheritance
have no impact upon the time to make a correct maintenance change, and respec-
tively the size of a correct maintenance change, to be rejected in favour of the
alternative hypotheses; Maintenance changes to a program with zero compared with
three levels of inheritance are significantly different in amount of H1: time to make a
maintenance change, H2: size of a maintenance change.

Variables. The independent variable was inheritance depth (zero and three levels).
The dependent variables were the time to make a maintenance change and the size of
maintenance change.

Participants. Ten students were used with a minimum of 6 months experience of
Cþþ.

DELIGIANNIS ET AL.214



Results and interpretation. To explore the hypotheses a two-tailed unpaired t test
was used. Significance level was set at a ¼ 0.05. Results indicate that three levels of
inheritance depth have a significant positive effect upon the time to make a change,
thus supporting H1 (p ¼ 0.0449) and a significant negative effect upon the size of a
change in Lines of Code supporting H2 (p ¼ 0.0007). Therefore, The responses from
the debriefing of the subjects left the impression that the inheritance-based structure
was harder to understand. Also, changes for the inheritance treatment were more
compact but took longer to perform.

Critique. We consider that a small artefact was used and the number of subjects
was very small. Additionally, the two least experienced subjects participated in the
inheritance treatment, which could have skewed the results because the number of
subjects was so low.

Daly et al.’s (1996) motivation arose from the results of their structured interviews
and questionnaires of OO maintenance staff. This suggested that inheritance depth
affected a programmer’s ability to understand OO software, and that between four
and six levels of inheritance depth was where difficulties began. The object studied is
the inheritance mechanism in the OO paradigm for the purpose of investigating the
impact of its depth with respect to maintainability for the point of view of the re-
searcher. The context concerns two experiments and an internal replication run using
students performing on Cþþ programs.

Hypotheses. H0: The use of zero, three and five levels of inheritance depth does not
affect the maintainability of OO programs, to be rejected in the favour of the al-
ternative hypotheses H1: The use of three levels of inheritance does affect the
maintainability of OO programs (stated for the internal replication too). H2: The use
of five levels of inheritance does affect the maintainability of OO programs—subjects
maintaining the inheritance program version will take longer than those maintaining
the ‘flat’ version.

Variables. The independent variable was the depth of the inheritance (zero, three
and five) hierarchy and the dependent variable was the time taken to complete the
maintenance task.

Participants. Thirty-one students and recent graduates, without OO experience,
participated.

Experiment design. To test the hypothesis a within subjects randomised block design
between two groups with counterbalancing procedure was used. In the first experi-
ment two programs were used, one implementing a university database system and
another implementing a library database system. Two versions of each system
of about 390 LOC in size for the ‘flat’ version and about 360 LOC for the inheri-
tance version (including comments) of three levels inheritance were used. In the
second experiment a larger version of the university system was used. Its inheritance
depth was five levels for the inheritance version of approximately 800 LOC dis-
tributed in 12 classes, while the ‘flat’ version had three fewer classes but was around
300 LOC longer. The tasks were extensions with a new class for every model using
Cþþ.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 215



Results and interpretation. Data collected was calculated using a Wilcoxon signed
ranks test. Significance level was set at a ¼ 0.05. Results indicate that a third of
the subjects failed to complete at least one of the tasks within the allotted time for the
first experiment. The null hypothesis was rejected in favour of the alternative for the
first experiment and the internal replication, and rejected for the second. The authors
assert that subjects’ relative performance deteriorated on the inheritance program
version with a deeper hierarchy because of the increased search problem which was
exacerbated by the fact that they were not provided with a conceptual model of the
domain nor supplied with a strategy (Wohlin et al., 2000) on which to base a se-
lection of superclass or copy template. While there was a considerable agreement on
choice of superclass in the first experiment and its replication, in the second exper-
iment there was a disagreement indicating a manifestation of conceptual entropy
(Dvorak, 1994). They also believe that the inheritance mechanism, due to delocali-
sation, affects program understanding, and hence the deterioration of maintenance
performance in deeper hierarchies.

Critique. Our opinion is that the authors failed to specify a purpose for their
database making it difficult for the subjects to properly understand the system
other than in a highly abstract fashion. The subjects may not be representative of
software professionals as they lacked experience. The software systems used were
simple both in size and structure. The tasks applied were simple and captured only a
part of the maintenance process namely, extension. In order to perform a complete
maintenance process other tasks like modifications and additions of data and/or
operation members might be applied. The lack of a conceptual model may also affect
the performance of developers seriously. The principle of substitutability was vio-
lated, where for example, ‘Director’ inherits from ‘Technician’. Coad and Mayfield
(1997) suggests a more flexible solution to this example by using composition. This
means the inheritance structures are somewhat flawed which makes the results of the
experiment more difficult to interpret. Yet another concern is the artificial flattening
of the inheritance hierarchy. If designers were trying to avoid inheritance it is most
unlikely that they would proceed in this fashion.

Harrison et al.’s (2000) experiment, which was another replication of Daly et al.’s
(1996), attempted to determine whether the depth of inheritance has an effect on the
modifiability and understandability of OO software.

Hypotheses. H0: The depth of inheritance does not affect the modifiability and
understandability of OO systems, to be rejected in favour of the alternative hy-
potheses. H1a: Three levels of inheritance depth does affect the modifiability of OO
systems. H1b: Five levels of inheritance depth does affect the modifiability of OO
systems. H2a: Three levels of inheritance depth does affect the understandability of
OO systems. H2b: Five levels of inheritance depth does affect the understandability of
OO systems.

Variables. The independent variable was type of system (zero, three and five levels
of inheritance). The dependent variables were understandability (accuracy of com-
prehension) and modifiability (proportion of correct change locations identified).

DELIGIANNIS ET AL.216



Participants. The participants were 48 students from the second year of a BSc
computer science course. All of them had an experience of at least 18 months de-
veloping Cþþ software although none on-the-job experience.

Experiment design. A 4� 12 between subjects design in four blocks of twelve was
employed. Two systems were used for the experiment. The ‘flat’ version of the first
system contained around 360 LOC while the inheritance-based version contained
around 390 LOC. The ‘flat’ version of the second system contained around 1200
LOC while the inheritance-based version contained around 900 LOC. Subjects were
provided with paper copies of the questionnaire and source code. The tasks were to
successfully identify the outputs, the affected classes, and the changes needed.

Results and interpretation. v2 testing was performed to analyse the data collected.
Results indicated that for the ‘flat’ versus three levels of inheritance, subjective un-
derstanding was found to be significantly improved for the ‘flat’ version at the 0.05
level. Likewise for modifiability, the ‘flat’ version was easier to modify at the 0.10
level. For the ‘flat’ versus five levels of inheritance, subjective understanding was not
found to be statistically significant. Both versions were therefore found to be equally
difficult to understand. For modifiability, the ‘flat’ version was found to be signifi-
cantly easier to modify than the five levels at the 0.10 level. The authors assert that
their analysis indicates that ‘flat’ structures are easier to modify while the size and
functionality of a system has a greater impact on its understandability than the
amount of inheritance used.

Critique. Our criticism is similar to that of Daly et al.’s (1996) experiment. The
tasks applied were simple and due to the lack of some design documentation a
certain degree of caution is wise before drawing conclusions.

Unger et al.’s (1998) experiment was based on that of Daly et al. (1996), but
changed certain parameters in order to increase external validity. They used three
versions of the same program within one experiment, i.e., ‘flat’, three and five levels
of inheritance depth. Students performed on a program that was an interactive
application for displaying two different kinds of stock exchange data in various
ways, written in Java instead of Cþþ.

Hypotheses. H0: Providing that sufficient information was made available about
inheritance tree, there is no difference in maintainability of programs with no (‘flat’),
three and five levels of inheritance, as measured by effort and quality of delivered
solutions, to be rejected in favour of the alternative hypotheses; H1: Programs with
more levels of inheritance will require less time for maintenance, H2: programs with
more levels of inheritance will result in a higher quality of maintenance.

Variables. The independent variable was the inheritance depth. The dependent
variables were the time required for each assignment (measured in minutes) and the
quality of the delivered solutions (measured subjectively by a graded scale of cor-
rectness).

Participants. Fifty-seven graduate and 58 undergraduate students with a consid-
erable experience in different languages, and in OO programming in particular, were
involved.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 217



Experiment design. A matched-between subjects design was used. The subjects
were randomly assigned to one of three groups ordered by expected performance.
The experiment was performed twice with small changes. The first time there were
57 graduate student participating and the second time, the replication, 58 under-
graduate student were participating. The maintenance tasks were: (a) addressing
the Y2K problem and (b) adding a new class. Actual polymorphism was not used
in any of the versions. The five-level version was the original version. The three-
level version was derived from the five-level version according to the OO design
principle of inheriting only interfaces, not implementations (Gamma et al., 1995 p.
18), consequently, subclasses were derived only from abstract classes, never from
concrete classes. The ‘flat’ version was constructed by duplicating methods and
instance variables from the five-level version. The authors claim that the three
versions are not arbitrary variants of one program, but present three different,
but sensible design styles. In our opinion this is not self evident for the ‘flat’
version. Documentation was provided using the OMT notation (Rumbaugh et al.,
1991). Subjects decided for themselves when they considered their solution to be
complete.

Results and interpretation. One-side, paired-wise statistical tests using Bootstrap
resampling percentiles were performed to analyse the data collected. The significance
level was set at a ¼ 0.1. Results indicate that deeper inheritance hierarchies did not
generally speed up maintenance, nor did they result in superior quality. Therefore
neither alternative hypothesis was accepted. The authors asserted that inheritance
depth in itself was not an important factor for maintenance effort. Probably the real
advantages of inheritance became visible only for tasks involving complicated
functionality modifications where less inheritance meant a higher degree of code
duplication and hence higher effort for changes and consistency checking.

Critique. We believe that the design documentation offered to the subjects, as well
as the larger sized programs created closer conditions to those experienced by pro-
fessionals. However our criticism is focused on two things. First, the quality of the
solutions was only measured by correctness. We would expect that suggested design
solutions should be examined too. The second problem is that the three-level in-
heritance program was obtained merely by collapsing the five-level version into three
levels. However, one would not set out to design a system in this fashion and the
redundancy due to duplication on methods is obvious. Conclusions drawn com-
paring the performance of the two experimental groups are also difficult because of
lack of real match between the two parts of the experiment.

3.4. Design Patterns

Prechelt et al’s (2001) motivation arose from the fact that due to given popularity of
design patterns (Gamma et al., 1995) and their claimed advantages, one could expect
that they will often be used in situations where their flexibility is not needed: The
pattern solves the problem but is more powerful than required. The objects are to

DELIGIANNIS ET AL.218



assess designs using patterns versus alternative designs for the purpose of investigation
with respect to differences in maintainability for the point of view of the researcher.
The context concerns an experiment run using professional software engineers as
subjects, based on four different programs with different design patterns. Two dif-
ferent baseline program versions are used: Version PAT applies design patterns
whereas version ALT employs a simpler solution that exhibits only the functionality
and flexibility actually required. Design patterns used were: ABSTRACT FACTO-
RY, COMPOSITE, DECORATOR, FAÇADE, OBSERVER, and VISITOR as
described in the Gamma et al. (1995) book.

Hypotheses. Hypotheses that are spelled out informally as expectations, take the
form: ‘‘a design pattern P does not improve performance of subjects doing a
maintenance exercise X on program A (containing P) when compared to subjects
doing the same exercise X on an alternative program A (not containing P)’’.

Variables. The independent variables are the programs and change tasks, the pro-
gram version, and the amount of pattern knowledge. The dependent variables are time
and correctness.

Participants. Twenty-nine professional software engineers were involved, having
on average 4.1 years work experience and an average Cþþ experience of 2.4 years.
Fifteen subjects already had some pattern knowledge.

Experiment design, results and interpretation. The subjects were assigned into four
groups using random block assignment. A pretest (PRE) was run first, followed by a
course teaching a number of design patterns. Then the posttest (POST) was run. The
subjects received all documents printed on paper and their solutions were delivered
in handwriting. For the data test analysis of variance (ANOVA) was used. For
further analysis distribution-free Bootstrap methods was also used. Correctness was
measured whether participant’s solutions fulfilled the requirements or not. Follow-
ing, each program’s definition, expectations and results are described.

Stock Ticker is a program for directing a continuous stream of stock trades from a
stock market to one or more displays that are also part of the program. Both
versions of it consist of seven classes. The PAT version has 343 lines (including
comments and blank lines) and contains an OBSERVER pattern. The ALT version
has 279 lines. Expectations: (E1) When subjects lack knowledge of the OBSERVER
pattern (in the pretest), they have to find out how the pattern works, thus PRE-PAT
subjects should require more time than PRE-ALT ones. (E2) Given sufficient pattern
knowledge, on the other hand, the PAT group may understand the program struc-
ture more quickly than the ALT group. Results support E1 (p < 0.001).

Boolean Formulae program contains a library for representing Boolean formulae
(AND, OR, XOR, and variables) and for printing the formulae. The PAT version
uses the COMPOSITE and the VISITOR patterns and consists of 11 classes span-
ning 470 lines. The ALT version consists of eight classes spanning 374 lines.
Expectations: (E1) In principle it should be easier to create a single new class similar
to another rather than adding a method to several classes. Since the VISITOR
pattern is quite difficult to understand, we expect it will take more time for the PAT
groups to find where to add the methods. (E2) Gaining pattern knowledge should

REVIEW OF EXPERIMENTAL INVESTIGATIONS 219



help both groups because even in the ALT program a COMPOSITE is present.
Results indicate that POST-ALT group is faster that the POST-PAT group, con-
firming a part of E1.

Communication Channels is a wrapper library program. The PAT version is de-
signed with a DECORATOR pattern in six classes spanning 365 lines. The ALT
version spanned 318 lines. Expectations: Two influences of the pattern on subjects’
behavior are expected. First, due to its multiple decorator classes, delocalized be-
havior should be slower than the localized one. Second, since the new functionality is
encapsulated in classes one need hardly care about mutual influences. Thus, it is
expected the second influence to be stronger than the first and hence the PAT version
to be preferable (E1), especially at higher levels of pattern knowledge (E2). The
different states and its operations having different result codes that are spread over
the different decorator classes. It is easier for the more localized ALT program with
respect to both work time (E3) and correctness (E4). The PAT group will take longer
(E5) and commit more errors (E6). Results support E1 (p < 0.001), the pattern-
solution is also superior in terms of correctness, E3, E5 (p < 0.001) and E6.

Graphics Library contains a library for processing simple types of graphical ob-
jects. The PAT version contains the ABSTRACT FACTORY and COMPOSITE
patterns and consists of 682 lines in 13 classes. The ALT version consists of 663 lines
in 11 classes. Expectations: The main difference in time required for the maintenance
task will be caused by program understanding. (E1) It is expected the simpler ALT
program to be easier to understand. (E2) Pattern knowledge will help both groups
because of the COMPOSITE structure in both programs. (E3) Since the structure of
both programs is quite similar in the region of interest, it is not expected to observe
significant differences between the ALT and the PAT groups. (E4) A difference
between PRE and POST is expected due to pattern knowledge. Results support E1
(p ¼ 0.10) and E3 (p ¼ 0.085).

Critique. We consider this study suggests a number of interesting lessons learned.
We agree with the authors’ emphasis that, ‘‘unless there is a clear reason to prefer
simpler solution, it is probably wise to choose the flexibility provided by the design
pattern solution, because unexpected new requirements often occur’’. However, we
consider there is a question of efficiency for subjects lacking knowledge of patterns
(in the pretest PAT groups).

Prechelt et al’s (2001)motivation is the claim that using design patterns programmer
productivity and software quality are improved. The object is design patterns comment
lines (PCL) for the purpose of investigation with respect to maintainability for the point
of view of the researcher. The context concerns two experiments run using students
from two university lab courses, the one referred to as UKA (University of Karls-
ruhe), and the second as WUSTL (Washingthon University St. Louis).

Hypotheses. H0: By adding PCL, there is no difference in performance time and
errors committed in pattern-relevant maintenance tasks. H1: By adding PCL, pat-
tern-relevant maintenance tasks are completed faster. H2: By adding PCL, fewer
errors are committed in pattern-relevant maintenance tasks.

DELIGIANNIS ET AL.220



Variables. The independent variable in both experiments was the presence or ab-
sence of design pattern comment lines (PCL). Dependent variables were performance
time, and number of errors quantified by assigning points and counting correct so-
lutions.

Participants. In both experiments computer science students were used. The 74
subjects of the UKA experiment were 64 graduate and 10 undergraduate students,
while in the WUSTL experiment the 22 subjects were undergraduate students. On
average, their previous programming experience was as following: the UKA sub-
jects had 7.5 years experience, 69% of them having some experience in OO pro-
gramming and 58% of them in GUIs. The WUSTL subjects had 5 years experience,
76% of them having some experience in OO programming and 50% of them in
GUIs.

Experiment design. In both experiments subjects performed on two different pro-
grams. Both programs were written in Java and Cþþ. Program ‘And/Or-tree’ was a
library for handling And/Or-trees of strings and a simple application of it. The Java
versions have 362 LOC (133 of these containing only comments) in seven classes. An
additional 18 lines of PCL were added for the PCL version. Its Cþþ versions have
498 LOC (included 178 lines of comments) in six classes. An additional 22 lines of
PCL were added for the PCL version. They use the COMPOSITE and the VISITOR
design patterns (Gamma et al., 1995). Program ‘Phonebook’, is a GUI (Graphical
User Interface) program processing tuples (name, first name, phone number). Its Java
versions have 565 LOC (197 of these containing only comments) in 11 classes. An
additional 14 lines of PCL were added for the PCL version. Its Cþþ versions have
448 LOC (145 of them containing comments) in 6 classes. An additional 10 lines of
PCL were added for the PCL version. They use OBSERVER and TEMPLATE
METHOD design patterns (Gamma et al., 1995). A counterbalanced experiment
design was used. For ‘And/Or-tree’ each subject received four subtasks, while for
‘Phonebook’ five subtasks were required. For each task (but not for each sub-
task) performance time was measured for each subject. For each subtask, the sub-
jects’ answers were graded. The number of completely correct solutions was also
recorded.

Results and interpretation. Significance level was set at a ¼ 0.10. The results for
‘And/Or-tree’ task indicate that the UKA subjects using PCL performed signifi-
cantly better in correct solutions (p ¼ 0.077) and time (p ¼ 0.094). Also, the WUSTL
subjects using PCL performed significantly better in time (p ¼ 0.046). The results
for ‘Phonebook’ task indicate that the UKA subjects performed significantly bet-
ter only in time (p ¼ 0.055). The WUSTL subjects for the same task had to be
discarded, because they were not sufficiently qualified for this task. Therefore, H1

was supported in both tasks, while H2 was supported only in the UKA ‘And/Or-tree’
task.

Critique. We consider that the programs were rather small in size. They were
also thoroughly commented, even without PCL. A learning effect is possible due
to counterbalancing. Finally, the graded point scales are rather subjective in
nature.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 221



3.5. Inspection Techniques

Laitenberger et al.’s (2000) basic motivation is the claim that inspections can lead
to the detection and correction of anywhere between 50 and 90% of the defects in a
software document. The objects studied are the Perspective-Based Reading technique
(PBR) and the Checklist-Based Reading (CBR) technique, for the purpose of inves-
tigation with respect to the subjects’ defect detection ability from the point of view of
the designer, tester and implementor. The context concerns an experiment run using
professionals as subjects performing on UML design diagrams (Pooley and Stevens,
1999) such as use-case, sequence, class and collaboration diagrams.

Hypotheses. H01: An inspection team is as effective, or more effective, using CBR
than using PBR. H02: An inspection team using PBR finds defects at the same or
higher cost per defect than a team using CBR for the defect detection phase of the
inspection. H03: An inspection team using PBR finds defects at the same or higher
cost per defect than a team using CBR for the meeting phase of the inspection. H04:
An inspection team using PBR finds defects at the same or higher cost per defect
than a team using CBR for all phases of the inspection.

Variables. The independent variables are Reading technique and Order of reading
(CBR ! PBR versus PBR ! CBR). The four dependent variables are team defect
detection effectiveness and cost per defect, with three different definitions, the defect
detection phase, the meeting phase, and the overall inspection.

Participants. Eighteen practitioners working in industry with various backgrounds
were involved. They had already written design documents (median 3 on a 5 point
scale). Moreover, they had some experience in developing design documents and
between 1 and 16 years of programming experience with a median of 2 years. None
of them had yet participated in an inspection.

Experiment design. Two different systems were used. A ‘web-based system’ that
allows users to perform a quiz using the web consisting of 21 pages of design docu-
mentation, including six collaboration diagrams and four class diagrams. The second
system is a ‘point of sales’ system with a design documentation of 18 pages including
six collaboration diagrams and three class diagrams. 21 and 19 defects were inserted
in each system respectively. Individual variability is controlled by assignment of
subjects to teams. The counterbalanced repeated measure design was used. The sub-
jects were randomly assigned to two groups. To provide more insight into an in-
spection meeting, they were randomly assigned to three-person inspection teams
each person reading a design document from one of three perspectives (designer,
tester or implementor). After the reading exercise a debriefing questionnaire was
completed by each subject.

Results and interpretation. For the analysis of the collected data match-paired t-test
were used. Significance level was set at a ¼ 0.05. The team results are considered the
unit of analysis. Results indicate the following: Considering defect detection effec-
tiveness, the PBR technique was significantly more effective than the CBR one
(mean: CBR: 0.43; PBR: 0.58; p ¼ 0.025), thus rejecting hypothesis H01. For the
defect detection phase the cost per defect was lower for the PBR technique than the

DELIGIANNIS ET AL.222



CBR (mean: CBR: 85 min/defect; PBR: 43 min/defect; p ¼ 0.001), also rejecting
hypothesis H02. Considering the meeting effort the cost per defect was lower for the
PBR technique than the CBR (mean: CBR:47 min/defect; PBR: 13 min/defect;
p ¼ 0.002), rejecting hypothesis H03. Finally, considering the effort for the overall
inspection the team with the PRB technique had a lower cost per defect ratio than the
team using CBR technique (mean: CBR: 132 min/defect; PBR: 56 min/defect;
p ¼ 0.001), thus rejecting hypothesis H04.

Critique. We consider there is a risk for the subjects to become confused per-
forming with two different reading techniques, especially since they lack prior in-
spection experience. However, we want to stress the significance of such techniques
that contribute to defect detection at an early stage of software lifecycle.

4. Discussion

Although no longer new, the OO paradigm is still of growing importance. For this
reason it is unsurprising that the empirical research community has started to turn its
attention to evaluating the technology and endeavouring to learn more about how it
may be most effectively deployed. From this analysis, better considered as corpus-
based, since the topic is continually evolving, emerge three sets of outcomes. First,
there are some comments regarding the actual conduct of these experiments, as well
as our observations regarding the conduct of experiments in general. Second, there
are the types of findings and patterns that result from these experiments. Third, there
are some suggestions for new directions and further work for the experimental
community.
First, we discuss the conduct of experiments. From this review a number of issues

emerge:

1. Students subjects are exclusively used, in all but four cases. It is likely that
professionals are either reluctant or unavailable to participate in such experi-
ments. However, the OO paradigm offers several mechanisms and tradeoffs
where decisions on best alternatives are usually fuzzy and mostly based on
expert judgement. In other words, cumulative knowledge is likely to play a very
important role in the design phase. Thus, it is questionable whether novice
designers performing, usually with limited time, are always the most appro-
priate subjects. However, Briand et al. (1997) argue that student based experi-
ments can provide useful results for several reasons. First, they can provide
confirmatory evidence for results from case or other studies (e.g. Daly et al.
(1996)). Second, they can identify interesting hypotheses that are worthy of
further investigation in more realistic settings.

2. The artefacts used are, in most cases, small and thus inadequate to capture the
functionality and intricate concepts of real problem domains where decisions
and tradeoffs are complex.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 223



3. Design model documentation that could give better understanding of the
problem domains was not made available except in a few experiments. This
does not seem representative of real OO development or maintenance.

4. Some experimental materials are flawed. There tends to be a naive view of
inheritance and architecture in general. In some cases it is unclear whether the
use of inheritance is the most suitable design strategy for the particular problem
at hand. Other materials are derived from textbooks or are generated in an
unrepresentative fashion, for instance by flattening inheritance hierarchies.

In this review we have expressed some reservations about details of some of the
experiments. Some are easier to address than others. A perennial concern is the use of
student subjects. However, from a pragmatic point of view this is a hard problem to
overcome. Access to professional staff is frequently limited or restricted on grounds of
cost. Experiments using students obviously have some value. Moreover, students are
not a homogeneous group, some have considerably more experience than others and
it may be that this can be further exploited. Nevertheless the recent study by Kirsopp
et al. (1999) does indicate significant differences in behaviour so some caution must be
exercised. A more avoidable problem has been the tendency not to provide design
documentation. This seems unnecessary. Another problem area has been the nature
of some of the artefacts and tasks many of which seem trivial—again, perhaps un-
avoidable—and contrived less so. Examples include the maintenance tasks for several
experiments that require highly artificial specialisations of extant class inheritance
hierarchies. The problem here is that this may reveal little about maintenance of OO
systems in practice. Therefore, concerning the ‘‘conduct of experiments’’ we believe
emphasis should be placed on two points. First, experimental settings should be as
realistic as possible applying to those in practice. Secondly, planning, operation, and
analysis of experiments should be according to the principles and good practice
proposed in the literature such as (Wohlin et al., 2000).
Second, we turn to the findings of these experiments. We have identified 18

published experiments that, individually and collectively, contribute to our under-
standing. They addressed five distinct types of hypothesis. The first group dealt with
comparisons between procedural or traditional technology and OOT. Out of these
experiments only two (Henry and Humphrey (1990) and Lewis et al. (1991)) found
any benefit of OOT over and above procedural technology. Other studies were
unable to discriminate between the competing technologies or found superior per-
formance for the procedural technology (Agarwal et al. (1999), Moynihan (1996),
and Wiedenbeck et al. (1999)). Briand et al. (1997) made the interesting observation
that they believed OOT to be more sensitive to design quality than procedural
technology. Many researchers have commented on the long learning curve for OOT.
It may well be that given the predominance of inexperienced student subjects this
pattern of results is unsurprising.
Some additional evidence for this lack of positive support for OOT can be found

in an important case study performed by Hatton (1998). He studied, over a 4 year

DELIGIANNIS ET AL.224



period, the change, configuration, and quality control history of two systems de-
veloped in OO Cþþ and procedural C. It was found that for Cþþ developers: (a) it
was much harder to trace faults; (b) development time was 25% higher and cor-
rections took significantly longer; (c) largely, due to the distorted and frequently
non-local relationships between cause and effect, the manifestation of a failure could
be a ‘‘long way away’’ from the fault that led to; (d) for all defects the average
correction time being 260% longer. However, Hatton expressed reservations about
how much the reported problems related specifically to OO and how much they
relate to Cþþ. We note, however, a recent survey pointing to the dominance of the
Java language in the near future (Computing, 1999).
A fundamental issue, examined by a single experiment (Lewis et al., 1991), is that

of reuse. The concept of reuse is nearly as old as software. Despite the claims that
OOT provides more reuse results than other paradigms, there is an absence of
supporting evidence in the literature. Rare exceptions are the Lewis et al. experiment
we have examined above, and Stark (1993). Stark addressed the impact of OOT at
the SEL6 including reuse. He found some empirical support for OOT promoting
reuse. Specifically, his findings from applying OOT on 11 projects in SEL indicated
an increase in code reuse from the baseline 20–30% to 75–80%. Costs were reduced
by a factor of 3, change and error rates were reduced by a factor of 10, and project
cycle time was cut roughly in half. On the negative side, there were difficulties
adapting the code and runtime performance. Despite the experimental and case
study results, some authors provide warnings regarding reuse. We believe more
empirical evidence could usefully contribute to this debate.
The second group of experiments, represented by a single study (Briand et al.,

1997), dealt with OO design principles. Its findings, consistent with a previous
experiment by the same authors (Briand et al., 2001), highlight the sensitivity of
OO systems to violations of good design practice. This points to a need for fur-
ther research and investment in the definition of design standards, heuristics and
principles.
The third group of experimental hypotheses examined specific OO mechanisms

and inheritance in particular. Here, whilst the results were not fully consistent, the
pattern is that deeper inheritance hierarchies tend to be associated with negative
factors such as hard to understand and harder to change. Such findings are in line
with more recent findings from the OO community who no longer see class inheri-
tance as a panacea and who now emphasise other mechanisms such as composi-
tion and aggregation except in a few specialised situations. We believe there is a
danger that this move by OOT specialists is not being mirrored by empirical re-
searchers.
The fourth group dealt with design patterns, represented by two experiments.

These seem to offer some credence to the notion that patterns are of value. However,
we believe it is difficult to draw too definite conclusions from just two experiments
that were based on relatively small artefacts. We further believe that the benefits of
design patterns could be more apparent in the long run, since the well-designed
solutions they provide might repeatedly be exploited.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 225



The fifth group examined inspection techniques. Although only a single experi-
ment was examined, its findings seem of certain significance since they provide some
evidence that such techniques could considerably contribute to software quality. Of
interest to us could be e.g. whether they provide some means in efficiently examining
design aspects, e.g. in assessing heuristics compliance.
Thirdly and finally, we consider areas for further research. From the foregoing

analysis, we have observed that not all OO design issues appear to have been con-
sidered by empirical researchers. This review has also highlighted a preoccupation
with a single OO mechanism, namely inheritance, which is considered of diminishing
importance by the OO community. Clearly it is necessary that empirical research keep
pace with technological developments. This finding is also supported by the fact that
the other equally significant mechanism—composition—and its contribution to de-
sign, evolution and reuse, has not been investigated at all. Its importance can be
extracted from some authors’ positions. Gamma et al. (1995) state, ‘‘our experience is
that designers overuse inheritance as a reuse technique, and designs are more reusable
(and simpler) by depending more on object composition. You’ll see object composi-
tion applied again and again in the design patterns’’. Additionally, some other authors
suggest that inheritance might be used in limited contexts in favour of composition, in
order to achieve more extensible and reusable designs (Kilian, 1991; Coad and
Mayfield, 1997; Ennals, 1998; Venners, 1998), which we consider suggests a challenge
for empirical research. Furthermore, other factors like existing heuristics, guidelines,
principles, and design patterns proposed by various authors are likely to be highly
significant (Rumbaugh, 1993; Firesmith, 1995; Reil, 1996; Coad and Mayfield, 1997).
Clearly we need more empirical work to evaluate and refine the burgeoning number of
heuristics. The work by Kirsopp et al. (1999) is a small step in this direction.

Acknowledgments

The authors wish to thank Tony Moynihan and Lutz Prechelt for their useful
comments on an earlier draft. They also acknowledge the detailed and helpful
comments of the anonymous referees.

Notes

1. Our search for published experiments included use of the ISI Scientific Citation Index, IEEE Digital

Library, ACMDigital Library, and Computer Science Bibliography Collection Advanced Search, on 30

May 2001, using search terms ‘object’ and ‘experiment’. This was augmented by technical reports and

other sources that we had been made aware of at the time.

2. G. Booch (1994) speaks of the class and object structure as its architecture (p. 15).

3. This experiment compares procedural and OOmindsets (prior experience and performance on a specific

technology) rather than procedural andOO artefacts, nevertheless, we choose to place it in the category of

experiments comparing OO with procedural technology as it most closely fits in that category.

4. By ‘structure’ the authors refer to OO aspects.

5. By ‘structure’ or ‘structural’ the authors refer to OO aspects.

6. Software Engineering Laboratory.

DELIGIANNIS ET AL.226



References

Abreu, F., and Melo, W. 1996. Evaluating the Impact of Object-Oriented Design on Software Quality.

Proceedings of the 3rd ISMS (Metrics’96).

Agarwal, R., and Sinha, A. 1996. The role of prior experience and task characteristics in object-oriented

modeling: An empirical study. International Journal of Human–Computer Studies 45(6): 639–667.

Agarwal, R., De, P., and Sinha, A. 1999. Comprehending object and process models: An empirical study.

IEEE Transactions of Software Engineering 25(4): 541–555.

Agarwal, A., Sinha, P., and Tanniru, M. 1996. Cognitive fit in requirements modelling: A study of object

process methodologies. Journal of Management Information Systems, 13(2): 137–162.

Aksit, M., and Bergmans, L. (1992). Obstacles in Object-Oriented Software Development, inOOPSLA’ 92.

Anderberg, M.R. 1973. Cluster Analysis for Applications. New York: Academic Press.

Amstrong, J., and Mitchell, R. 1994. Uses and abuses of inheritance. Software Engineering Journal Jan-

uary: 19–26.

Basili, V., and Burgess, A. 1995. Finding and experimental basis for software engineering, IEEE Software

92–93.

Basili, V., Briand, L., and Melo, W. 1996. A Validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 22(October): 751–761.

Blaha, M. 1993. Aggregation of parts of parts of parts. JOOP September: 14–20.

Briand, L., Bunse, C., and Daly, J. 2001. A controlled experiment for evaluating quality guidelines on the

maintainability of object-oriented designs. IEEE Transactions on Software Engineering 27(6): 513–530.

Briand, L. et al. 1997. An experimental comparison of the maintainability of object-oriented and structural

design documents. Empirical Software Engineering 2(3): 291–312.

Capretz, L., and Lee, P. 1993. Object-oriented design: guidelines and techniques. Information and Software

Technology 35(April): 195–206.

Cartwright, M. 1998. An empirical view of inheritance. Information and Software Technology 40(14): 795–

799.

Chatel, S., and Detienne, F. 1994. Expertise in Object-Oriented Programming, in ECCE 7, S. Augustin,

Germany.

Civelo, F. 1993. Roles for Composite Objects in Object-Oriented Analysis and Design, in OOPSLA’93.

Coad, P. 1992. Object-oriented patterns. Com. of the ACM 35(9): 152–159.

Coad, P., and Mayfield, M. 1997. Java-Inspired Design: Use Composition, Rather than Inheritance, in

American Programmer, 22–31.

Coad, P., and Yourdon, E. 1991. Object-Oriented Design. 1st Ed. Englewood Cliffs, NJ: Prentice-Hall.

Coad, P., and Yourdon, E. 1991. Object-Oriented Analysis. 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall.

Computing, Java on Course to dominate by 2002, in VNU business publications. 1999. p. 3.

Coplien, J., H. D., and W. D. 1998. Commonality and variability in software engineering. IEEE Software

December: 37–45.

Corritore, C., and Wiedenbeck, S. 2000. Direction an Scope of Comprehension-Related Activities by

Procedural and Object-Oriented Programmers: An Empirical Study, in 8th International Workshop on

Program Comprehension (IWPC’00).

Cunis, R. 1997. Improving Software Development the Object-Oriented Way, in SQE 97. Udine, Italy.

Daly, J. et al. 1996. Evaluating Inheritance Depth on the Maintainability of Object-Oriented Software.

Empirical Software Engineering 1(2): 109–132.

Daly, J. et al. 1996. The Effect of Inheritance on the Maintainability of Object-Oriented Software: An

Empirical Study. In: Proceedings of the International Conference on Software Maintenance. Wash-

ington: IEEE Computer Society Press.

DeMacro, T. 1978. Structured Analysis and System Specification. Englewood Cliffs, NJ: Prentice-Hall.

DeRemer, F., and Kron, H. 1976. Programming-in-the-large versus programming-in-the-small. IEEE

Transactions on Software Engineering, SE-2(2)(June): 80–86.

Dvorak, J. 1994. Conceptual Entropy and Its Effect on Class Hierarchies. IEEE Computer 27(6)(June): 59–

63.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 227



Ennals, R. 1998. Inheritance considered harmful. EXE, May: 22–30.

Everrit, B. S., and Dunn, G. 1983. Advanced Methods of Data Exploration and Modeling. London

Heinemann.

Fenton, N., and Pfleeger, S. L. 1997. Software Metrics, A rigorous & Practical Approach, 2nd Ed.

London: International Thompson Computer Press.

Firesmith, D. 1995. Inheritance guidelines. JOOP May: 67–72.

Gamma, E. et al. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. New York:

Addison-Wesley.

Harrison, R., Counsell, S., and Nithi, R. 2000. Experimental assessment of the effect of inheritance on the

maintainability of object-oriented systems. Journal of Systems Software 52(2–3): 173–179.

Hatton, L. 1998. Does OO Sync with How We Think? IEEE Software May/June: 46–54.

Henry, S., and Humphrey, M. 1990. A Controlled Experiment to Evaluate Maintainability of Object-

Oriented Software. IEEEConference on SoftwareMaintenance, IEEEComputer Society Press: 258–265.

Johnson, R., and Foote, B. 1988. Designing reusable classes. JOOP June/July: 22–30, 35.

Kilian, M. 1991. A Note of Type Composition Reusability. ACM SIGPLAN OOPS Messenger, 2(3): 24–

32.

Kirsopp, C., Shepperd, M., and Webster, S. 1999. A empirical study into the use of measurement to

support OO design evaluation. in IEEE 6th International. Metrics Symposium, November 5–6, 1999.

Boca Raton, Fl.

Laitenberger, O. et al. 2000. An experimental comparison of reading techniques for defect detection in

UML design documents. Journal of Systems Software 53: 183–204.

Lee, S., and O’Keefe, R. 1996. The effect of Knowledge Representation Schemes on Maintainability of

Knowledge-Based Systems. IEEE Transactions on Knowledge and Data Engineering 8(1): 173–178.

Lewis, J. et al. 1991. An Empirical Study of the Object-Oriented Paradigm and Software Reuse, OOPSLA

‘91 184–196.

Lieberherr, K., and Riel, A. 1989. Contributions to Teaching Object-Oriented Design and Programming,

in OOPSLA.

Lieberherr, K., Bergstein, P., and Silva-Lepe, I. 1991. From objects to classes: Algorithms for optimal

object-oriented design. Software Engineering Journal July: 205–228.

Martin, J. 1992. Strategic Data Modelling. New Jersey: Prentice-Hall.

Mattsson, M. 1999. Effort distribution in a six year industrial application framework project. In: IEEE

International Conference On Software Maintenance (ICSM99). Oxford, England.

Morisio, M. et al. 1999. Measuring functionality and productivity in web-based applications: A case study.

In: Sixth IEEE International Symposium on Software Metrics.

Moynihan, T. 1996. An Experimental Comparison of Object-Orientation and Functional-Decomposition

as Paradigms for Communicating System Functionality to Users. Journal of Systems Software 33(2):

163–169.

Odell, J. 1994. Six different kinds of composition. JOOP January: 10–15.

Pant, Y., Henderson-Sellers, B., and Verner, J. 1996. Generalization of object oriented components for

reuse: Measurements of effort and size change. JOOP 9(2): 19–31.

Pennington, N. 1987a. Comprehension strategies in programming. In: S.S.G.M., E. Olson, (eds): Em-

pirical Studies of Programmers: Second Workshop, Ablex, Norwood, NJ, Soloway. 100–113.

Pennington, N. 1987b. Stimulus structures and mental representation in expert comprehension of com-

puter programs. Cognitive Psychology 19: 295–341.

Pohl, I. 1993. Object-Oriented Programming Using Cþþ. Redwood City, CA: Benjamin/Cummings.

Prechelt, L. et al. 2001. A Controlled Experiment in Maintenance Comparing Design Patterns to Simpler

Solutions. IEEE Transactions on Software Engineering 27(12): 1134–1144.

Prechelt, L. et al. 2001. Two Controlled Experiments Assessing the Usefulness of Design Pattern Infor-

mation in Program Maintenance. IEEE Transactions on Software Engineering (accepted for publica-

tion).

Ramakrishnan, S., and Menzies, T. 1996. An ongoing OO software engineering measurement experiment,

in International Conference Software Engineering Education and Practice.

DELIGIANNIS ET AL.228



Riel, A. 1996. Object-Oriented Design Heuristics, New York, Addison-Wesley.

Rumbaugh, J. 1993. Disinherited! Examples of misuse of inheritance. JOOP Jan: 19–24.

Rumbaugh, J. et al. 1991. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall.

Seidewitz, E. 1996. Controlling inheritance. JOOP 8(January): 36–42.

Shoval, P., and Frumermann, I. 1994. OO and EER Conceptual Schemas: A Comparison of User

Comprehension. Journal of Database Management 5(4): 28–38.

Stark, M. 1993. Impacts of Object-Oriented Technologies: Seven Years of Software Engineering. Journal

Systems Software 23: 163–169.

Stevens, P., and Pooley, R. 1999. Using UML: Software Engineering with Objects and Components, O.T.

Series. Harlow, Essex, UK: Addison-Wesley.

Tichy, W. 1998. Should computer scientists experiment more? IEEE Computer May: 32–40.

Unger, B., and Prechelt, L. 1998. The impact of inheritance depth on maintenance tasks—Detailed

description and evaluation of two experimental replications. Technical Report, Karlsruhe University:

Karlsruhe, Germany.

Venners, B. 1998. Inheritance versus composition: Which one should you choose? in Java World.

Wiedenbeck, S., and Ramalingam, V. 1999. Novice comprehension of small programs written in the

procedural and object-oriented styles. International Journal of Human–Computer Studies 51: 71–87.

Wiedenbeck, S. et al. 1999. A comparison of the comprehension of object-oriented and procedural pro-

gramms by novice programmers. Interacting with Computers, 11: 255–282.

Wohlin, C., and Runeson, P. et al. 2000. Experimentation in Software Engineering—An introduction.

Norwell, MA. Kluwer Academic Publishers.

Yida, M., Sahraoui, H., and Lounis, H. 1998. Impact of complexity on reusability in OO systems, in

ECOOP’98. Berlin, Germany.

Zelkowitz, M., and Wallace, D. 1998. Experimental Models for Validating Technology. IEEE Computer

May: 23–31.

Ignatios Deligiannis is a Lecturer at Technological Education Institute of Thessaloniki, Greece, and PhD

candidate at the University of Macedonia, Greece. He is also member of ESERG (Empirical Software

Engineering Research Group at Bournemouth University, UK). His main interests are Object-Oriented

software assessment, and in particular design heuristics and measurement. He received his BSc in com-

puter science from the University of Lund, Sweden, in 1979, and then worked for several years in software

development at Siemens Telecommunications industry.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 229



Martin Shepperd received a PhD in computer science from the Open University, UK in 1991. He is

professor of software engineering at Bournemouth University, UK. He has published more than 70

refereed papers and three books in the area of empirical software engineering. He is editor of the Journal

Information and Software Technology and Associate Editor of IEEE Transactions on Software Engi-

neering.

Steve Webster is currently a self-employed consultant working in the area of object technology and design

processes. His current interest is in helping to make object and component processes work in large

government organisations. He is a committee member for the BCS OOPS OT series of conferences held

annually in the UK.

DELIGIANNIS ET AL.230



Manos Roumeliotis received the Diploma in electrical engineering from the Aristotle University of Thes-

saloniki, Greece in 1981, and the MS and PhD degrees in computer engineering from Virginia Polytechnic

Institute and State University, Virginia, USA, in 1983 and 1986, respectively. At VPI & SU he taught as a

visiting Assistant Professor in 1986. From 1986 through 1989 he was an Assistant Professor in the

Department of Electrical and Computer Engineering at West Virginia University. Currently he is an

Assistant Professor in the Department of Applied Informatics at the University of Macedonia, Thessa-

loniki, Greece. His research interests include digital logic simulation and testing, computer architecture

and parallel processing, and computer network optimization. He is a member of the IEEE Computer

Society’s Technical Committee on Computer Architecture.

REVIEW OF EXPERIMENTAL INVESTIGATIONS 231


