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ABSTRACT
The identification of latent patterns in big scholarly
data that concern the performance of researchers is a
significant task because it can potentially impact scien-
tific careers since they are based in funding and promo-
tion. This article investigates the temporal evolution
of a scientist’s impact. Instead of taking a detailed,
microscopic view that examines the citation curves of
every scientist’s article, the article develops a scalable,
macroscopic methodology that uses the articles’ citation
profiles to build a more abstract and high-level profile
that characterizes a scientist. This profile is utilized to
cluster scientists in a set of ‘performance’ clusters. To
this end, established techniques such as Principal Com-
ponent Analysis and Self-Organizing Map clustering are
employed as well as a set of proposed heuristics. The
effectiveness of the proposed methodology is examined
by comparing the resulting rankings with the outcomes
of the peer-review procedures that resulted in the E.
F. Codd and the Turing awards. The good match be-
tween the outcomes of computerized and peer-review
procedures provides solid evidence that the proposed
techniques constitute a promising analysis method for
big scholarly data.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copiesare not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

IDEAS ’16, July 11-13, 2016, Montreal, QC, Canada
c© 2016 ACM. ISBN 978-1-4503-4118-9/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2938503.2938523

Keywords
h-index, perfectionism index, principal component analy-
sis, self-organizing map, clustering, career path.

1. INTRODUCTION
The abundance of bibliometric data related to the

citations amongst articles, which are now available by
modern, online sources such as Microsoft’s Academic
Search1, Google Scholar2, Elsevier’s Scopus3, comprise
a rich source of big data for analysis and modeling to
detect interesting patterns concerning a scientist’s per-
formance, an article’s citation curve, or an institution’s
rank. Among the variety of these tasks, the recogni-
tion and ranking of individuals has stimulated a lot
of research in the field of scientometric analysis. Vari-
ous indexes have been introduced in the past that at-
tempt to quantify this performance. For instance, the
h-index [4] is a proxy for productivity and impact, the
e-index [15] complements the h-index for the ignored
excess citations, the contemporary h-index [13] detects
the young-promising star scientists by estimating the
currency of articles that comprise the h-index, the f

index [5] characterizes the interdisciplinary nature of a
scientist’s work, whereas the perfectionism index [14]
finds those laconic and high impact scientists.
These bibliometric indices have been utilized in cre-

ating methodologies to evaluate individual scientists,
journals and academic institutions. Two important as-
pects in the assessment of scientific output that have
recently attracted significant attention are the element
of time [2, 6, 11] and the predictive power of sciento-

1http://academic.research.microsoft.com/
2https://scholar.google.com/
3http://www.scopus.com/



metrics [1, 3, 9], i.e., the evolution of scientific output
over time, and the estimation of future impact based on
early information regarding scientific productivity.
The present article addresses the following questions:

“How does the career of a scientist in terms of his/her
impact on the community progress over time?”and“Are
there early signs of scientific potential?”
Towards this goal, this article focuses on grouping

and comparing scientists of similar academic age over
a period of 30 years based on a set of representative
bibliometric indexes. The key objective is to identify
patterns in the evolution of scientific output and realize
whether scientists progress or not with respect to the
quality of their results, while at the same time identify
scientists that demonstrated early signs of increased sci-
entific impact by comparing them with their academic
peers. This is a macroscopic methodology contrary to
previous microscopic ones such as the one developed
in [7]. In this context, the article makes the following
contributions:

• It introduces the problem of consistently group-
ing scientists of similar performance and age over
a long time period, while maintaining a common
basis for comparisons,

• It develops a methodology for quantifying and vi-
sualizing the evolution of an individual’s scientific
career in terms of its impact over time,

• It evaluates the effectiveness of this computerized
methodology by comparing it with a peer-review
based method that results in well-known computer
science awards.

2. THE ANALYSIS TECHNIQUE
Since the heart of the investigated question is rather

qualitative than quantitative, we have to devise a new
methodology to address it. In this section we describe
the proposed methodology and its associated strengths
and limitations along with the metrics and heuristics
used to validate it. Firstly, we provide details on the
dataset used in the present work.

2.1 Data set description
For the purposes of this study, a set of scientists pub-

lishing in the field of computer science was collected
along with their citation records, the publication year
of their papers and the number of coauthors. The data
were retrieved from the Microsoft Academic Research

database, according to its field and domain categoriza-
tion. The original set constitutes of 100, 000 scientists
linked to the Computer Science field according to MAS
and they were reduced to a set of 30, 000 scientists with
an h-index higher than 8 to filter out low cited authors,
since we are looking for distinguishing individuals. This
resulted in a total of over 3 million papers with their as-
sociated information. To evaluate the temporal evolu-
tion of each author’s scientific impact, we proceed to ac-

quire“snapshots”of the publication and citation records
of the authors in our dataset for 7 specific years with
a 5-year time step [1983, 1988, 1993, 1998, 2003, 2008,
2013]. For each of these years, we divide the authors
in subgroups according to their academic age, i.e., the
number of years since they published their first paper.
The intervals used to classify academic age were 0-5, 5-
10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45 and
45-50 years (the right end of the intervals is open). The
idea behind this categorization is to compare authors of
similar academic age and monitor the evolution of their
performance over time. Moreover, by dividing scientists
into 10 groups according to their academic age for each
one of the given years, it is ensured that a scientist who
belongs to the first age group (0-5 years active) in 1983
will advance to the second age group (5-10) in the next
year to be examined, that is 1988. Table 1 displays the
data distribution over all years and age groups in ab-
solute numbers. For evaluation purposes we have also
identified a set of top scientists, consisting of those who
have received the E. F. Codd4and the Turing award5.

Age Groups 1983 1988 1993 1998 2003 2008 2013

0-5 1732 3264 6937 7330 5949 1670 7
5-10 1167 1814 3376 7094 7380 5972 1667
10-15 643 1169 1829 3400 7124 7385 5964
15-20 303 652 1178 1837 3413 7130 7388
20-25 134 306 654 1186 1835 3415 7133
25-30 38 134 311 657 1194 1835 3414
30-35 14 38 135 315 663 1199 1837
35-40 7 14 38 136 318 670 1200
40-45 2 7 14 39 136 317 670
45-50 7 2 7 14 40 139 321

Table 1: Cardinality of the 10 age groups.

2.2 Methodology
For every time interval and each age group, we de-

ploy a clustering technique to group together scientists
of analogous impact. The first step is to identify the
appropriate features according to which we divide the
authors into clusters, so that the resulting grouping is
deemed representative of the quality and status of the
scientists included. According to [12], bibliometric in-
dices can be placed into three categories based on the
part of the citation curve they emphasize on: i) indices
focusing on the productive h-core, ii) indices focusing on
citation count, and iii) indices taking into account the
whole citation curve. Using one bibliometric index from
each one of the above groups allows us to incorporate in-
formation on various aspects of a scientist’s impact and
quality of work. Therefore, to achieve a meaningful and
representative segmentation of the scientists in our data
set the h-index [4] was chosen as a representative metric
from the first group, the total number of citations (C)
from the second group, and the Perfectionism Index [14]
(PI) from the third group.

4http://www.sigmod.org/sigmod-awards/
5http://amturing.acm.org/byyear.cfm



As stated earlier, grouping scientists together across
all 10 age groups over the selected 7 time intervals con-
stitutes an unsupervised learning task. However, choos-
ing the suitable clustering algorithm as well as the ap-
propriate number of clusters to achieve a meaningful
result that allows for comparisons over time and age,
is a challenging procedure. Dynamic clustering algo-
rithms, such as Learning Vector Quantization, ART
model, Fuzzy C-means, DBSCAN, are able to find the
optimal number of clusters, but this property contra-
dicts the goals of our temporal clustering task. This is
due to the fact that our data sets change for every given
year and age group, for instance, for the age group 5-10
in year 1988 scientists could be divided into 3 clusters,
while, for the same age group in year 1993, the optimal
number of clusters could be 4. As a result, comparisons
could not be performed over all years and age groups, as
the connection between the top cluster of two different
“snapshots”would be unclear. Moreover, if the number
of clusters is dynamically defined, we would not be able
to automatically rank the resulting clusters and detect
the clusters containing the high impact scientists, and
those with the lower impact scientists. Therefore, we
have adapted a neural network clustering approach, the
Self-Organizing Map (SOM) [8], that can be adjusted
to produce a specified number of clusters based on the
topology of neurons used and the learning procedure
employed6.
To address the issue of specifying the appropriate

number of clusters, we opted for a two-phase approach.
The first stage of our approach focuses on the auto-
matic ranking of clusters, i.e., the interpretation of the
level of scientific impact represented in each cluster. To
achieve this ranking, we sum the maximum values of
all 3 normalized features for each cluster. The same
is done for the minimum and average values. Conse-
quently, for each distinct clustering, a matrix is pro-
duced where the number of rows equals the number of
clusters and 3 columns for the above mentioned sum-
mations (sumMax, sumMin, sumMean) and then a
weighted combination of these summations is produced,
by assigning equal weights to the maximum, minimum
and average values. The top cluster is defined as the
one with the biggest score, whereas the lowest ranked
cluster has the smallest score; tie breaking is based on
the summation of the maximum values of all features.
Now that a consistent cluster ranking has been set,

the appropriateness of the number of clusters needs to
be evaluated. To this end, a well-known metric for
unsupervised learning was utilized, the silhouette mea-
sure [10], which provides an estimation of the similarity
of a point with respect to the other members of the
same cluster (cohesion), as well as its dissimilarity with
respect to points belonging to the other clusters (sep-

6The classic k-means, which is often used in cases with pre-
specified number of clusters, was utilized for additional experi-
mentation, but led to low quality results. For brevity reasons we
did not include the additional experiments in the present work.

aration). Although a high silhouette score indicates a
well segmented grouping of the original data based on
inter- and intra-cluster similarity, we also need an in-
sightful result to interpret what the content of each clus-
ter means for a scientist’s impact. In this direction, we
have employed two more measures, which are analogous
to the traditional precision and recall. The set of top
authors that we defined in Section 1 consisting of award
winning scientists is employed for evaluation purposes,
as these scientists need to be clustered to a high impact
cluster in all our data sets. The following two measures
were identified:

• precision: the fraction of the scientists that have
received awards to the total number of scientists
that have an average cluster membership classified
as high,

• recall: the fraction of the scientists that achieved
a high average cluster membership out of the ones
that have been awarded.

It is expected that the values of precision and recall
are going to be relatively low with respect to what val-
ues we usually encounter in information retrieval set-
tings. Nevertheless, they can be utilized to provide an
insight on how meaningful and effective our clustering
approach is according to the chosen number of clusters.

# of clusters precision recall silhouette

2 0.008 0.535 0.770
3 0.025 0.195 0.689
4 0.021 0.530 0.640
5 0.022 0.500 0.600

Table 2: Precision, recall and average silhouette
for different numbers of clusters.

Table 2 displays the average silhouette scores as well
as the precision and recall values for 4 different num-
bers of clusters: 2, 3, 4 and 5 clusters respectively. As
our grouping of scientists needs to reflect performance
levels, we opted for a relatively small number of clusters.
For any higher number of clusters the middle-rank clus-
ters could not reflect a distinctly defined performance
level. For each chosen number of clusters, the whole set
of 70 clusterings over all time intervals and age groups
were conducted. As depicted in Table 2, the best trade
off between high silhouette and equally good precision
and recall scores is achieved with the number of clusters
equal to 4. In the next section, we proceed to validate
the merits of our method and the insightful information
it provides on our datasets.

3. EXPERIMENTS AND RESULTS

3.1 Clustering visualization
The first step in our analysis is to provide evidence

that our clustering methodology with the chosen num-
ber of clusters produces meaningful segmentation of our



data set. To this end, the scientists’ membership to
a cluster is plotted in the Principal Component space
of the 3 clustering features for further evaluation. Fig-
ures 1 and 2 display the formed clusters for 2 age groups
in the year 2013 and the respective positioning of the
feature vectors. It can be seen that the scientists are
depicted as points of different color according to the
cluster they belong to; cluster 4 is represented with red
dots, cluster 3 with green, cluster 2 with blue and clus-
ter 1 with cyan. Authors to the far right (depicted with
red) are the ones with the combination of the highest
values in all three features.

Figure 1: Authors with academic age 10-15 years
in the year 2013 clustered in 4 groups projected
on the Principal Component space.

Figure 2: Authors with academic age 15-20 years
in the year 2013 clustered in 4 groups projected
on the Principal Component space.

Although our number of features is small, projecting
them to the Principal Component space allows for their
interrelations and correlations to be displayed. This
plot allows for an assessment of the consistency of the
clusters and the degree of separation between the 3 clus-
tering features, which are plotted as vectors in the prin-
cipal component coordinate system. As depicted in Fig-
ures 1 and 2, the PI index and the h-index are uncor-
related with each other, whereas the citation count C

is connected to both features. The first Principal Com-
ponent mostly focuses on citation count, whereas the
second Principal Component expresses the publication
count. As a result, the top cluster displayed to the far
right of the figures includes the scientists with high ci-
tation count and small increase in publication count.
As expected, the high impact cluster (cluster 4) is the
smallest one in any given year, whereas the low impact
and low-moderate cluster (clusters 1 and 2) are the most
densely populated.

3.2 Scientists’ impact over time
We now proceed to present the findings on the ques-

tions we initially set about the temporal evolution of
scientists and the existence of early signs indicating in-
creased academic impact. A more detailed picture of
the evolution of cluster memberships and the trends
that appear over the years is illustrated in Figures 3-
5, which depict colormaps of the cluster memberships
in the 7 examined time intervals. Each value on the
y axis represents a specific scientist and different col-
ors depict the cluster membership in the year indicated
by the x axis value. Colder colors (starting from cyan)
represent low impact clusters, while warmer colors in-
dicate higher impact clusters. More specifically, cyan
represents scientists that have been clustered in cluster
1 (low impact), blue for cluster 2 (low-moderate im-
pact), green for cluster 3 (moderate-high impact) and
finally red stands for cluster 4 (high impact). Intervals
depicted with white represent scientists that have not
yet published in the given time interval, i.e., they have
not been clustered yet.
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Figure 3: Cluster membership of all authors in
the set since they first appear in a cluster.

In Figure 3 we can see that many scientists start from
the first two clusters and then either remain on that im-
pact level or progress to higher impact clusters. How-
ever, there is also a group of scientists with declining im-
pact as time progresses, that end up into lower impact
clusters than when they started. A small percentage
of scientists are classified as high impact ones from the
beginning of their academic career. Figures 4-5 provide
an insight in the groups of scientists that present zero
declines in impact level (i.e., cluster memberships) and
the ones that have been classified more than 4 times
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Figure 4: Cluster membership of scientists that
managed to progressively increase their score in
all 3 bibliometric indices (C, h, PI) thus improv-
ing their cluster memberships.
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Figure 5: Cluster membership of authors who
have been clustered more than 4 times in a lower
impact cluster than the best cluster membership
they have ever scored.

in lower impact clusters than the top cluster they were
grouped into respectively. In particular, Figure 4 dis-
plays the scientists that have managed to progressively
improve their impact as measured by the 3 bibliometric
indices used in this study, while Figure 5 demonstrates
the ones that failed to maintain their highest achieved
status. This decline is mostly captured by the Perfec-
tionism Index that becomes smaller with the addition
of new low or zero cited papers. Moreover, a scientist’s
academic age increases gradually; therefore, they are
being compared with a different set of more mature sci-
entists, and if they fail to analogously raise the quality
of their research, they end up in a lower impact cluster.
As already mentioned, this clustering approach can

yield useful results regarding identification of distin-
guished scientists early in their career as well as the
timely assessment of their academic career as charac-
terized by bibliometric indices. Table 3 contains7 a
set of well renowned scientists publishing in the field of
Databases that have won a E. F. Codd award and their
membership to the 4 given clusters. It can be observed
that (almost) all of them have been grouped in the top
cluster (cluster 4) from the beginning of their career.
This observation provides a confirmation of the validity

7The empty cells in Table 3 and 4 indicate that a scientist was
not part of the examined age groups during the specific year.

of our methodology and indicates that award winning
scientists often have achieved high scores according to
bibliometric indexes early in their careers. Even though
their scores may not be significantly high as absolute
values, they can prove distinguishing when compared
to the analogous scores of their academic peers belong-
ing to the same age group. Nevertheless, exceptions to
this strong pattern can be seen in the cases of J. Gray,
S. Chaudhuri who have an ‘industrial’ rather than ‘aca-
demic’ profile.

1983 1988 1993 1998 2003 2008 2013award on

Ceri S. 3 4 4 4 4 4 4 2013

Lindsay B. 3 4 4 4 3 3 3 2012

Chaudhuri S. 1 3 4 3 3 2011

Dayal U. 3 4 4 4 4 4 3 2010

Kitsuregawa M. 2 2 2 2 2 2 2009

Vardi M. 3 4 4 4 4 4 4 2008

Widom J. 2 4 4 4 4 4 2007

Ullman J. 4 4 4 4 4 4 2006

Carey M. 1 2 4 4 4 4 4 2005

Fagin R. 4 4 4 4 3 4 4 2004

Chamberlin D. 4 4 4 3 3 3 2 2003

Selinger P. 3 4 3 3 2 2 2 2002

Agrawal R. 3 4 4 4 4 4 2000

Garcia-Molina H. 3 4 4 4 4 4 4 1999

Abiteboul S. 3 4 4 4 4 4 1998

Maier D. 4 4 4 4 4 3 3 1997

Mohan C. 3 4 4 4 3 3 3 1996

Dewitt D. 2 4 4 4 4 4 4 1995

Bernstein P. 4 4 4 4 4 4 4 1994

Gray J. 3 3 3 3 1993

Stonbraker M. 4 4 4 4 4 4 4 1992

Table 3: Cluster membership for scientists
that have won the ACM SIGMOD’s E.F. Codd
award.

In Table 4, we repeat the same analysis but for those
who have won a Turing award. The generic pattern
is similar to that observed for Table 3, but now the
case of seeing less scientists being constantly grouped
in cluster 4 appears more often. This is mainly due to
the fact that our data cover a specified period of time,
while a number of Turing Award winners have reached
their academic peak before that time.
As it is often the case, many indexes used to assess

scientific impact (like the h-index) are cumulative in na-
ture, meaning that they never decrease. As a result, us-
ing them as standalone metrics without an added time
window leads to poor conclusions about the real scien-
tific impact of authors, thus eliminating their predictive
power. A unified framework such as the one proposed in
this work that incorporates combination of features and
the time parameter as well as the concept of peer com-
parison can lead to valuable characterization of scien-
tific output and reveal early signs of increased scientific
potential.

4. CONCLUSIONS
The present article developed an unsupervised metho-

dology for analyzing and categorizing scientific careers
over time aiming to be used as a – complementary to
other approaches – tool for promotions and funding by
recognizing individuals of high scientific impact. The
developed methodology is appropriate for big data anal-



1983198819931998200320082013award on

Stonebraker Michael 4 4 4 4 4 4 4 2014

Lamport Leslie 4 4 4 4 4 4 4 2013

Goldwasser Shafi 3 4 4 4 4 4 4 2012

Micali Silvio 3 4 4 4 4 4 4 2012

Pearl Judea 3 4 4 4 4 4 4 2011

Valiant Leslie 4 4 4 4 4 3 3 2010

Thacker Charles 3 3 3 2 1 1 1 2009

Liskov Barbara 4 4 4 4 4 4 4 2008

Clarke Edmund 2 3 4 4 4 4 4 2007

Emerson E. Allen 3 4 4 4 4 4 4 2007

Sifakis Joseph 3 3 3 4 3 3 3 2007

Allen Frances 3 3 3 2 2 1 1 2006

Naur Peter 1 2 1 1 1 1 2005

Kahn Robert 3 3 3 2 1 1 1 2004

Cerf Vint 2 2 2 3 3 2 2 2004

Kay Allan 2 3 3 2 2 2 2 2003

Adleman Leonard 4 4 4 3 3 3 3 2002

Rivest Ronald 4 4 4 4 4 4 4 2002

Shamir Adi 4 4 4 4 4 4 4 2002

Nygaard Kristen 3 2 2 2 2 2 2 2001

Dahl Ole-Johan 2 2 2 2 1 1 1 2001

Yao Andrew 4 4 4 4 4 3 3 2000

Brooks Frederick Phill. 2 2 3 2 3 1999

Gray Jim 3 3 3 3 3 1998

Engelbart Douglas 2 2 3 2 2 2 1997

Pnueli Amir 4 4 4 4 4 4 4 1996

Blum Manuel 3 3 3 3 3 1995

Feigenbaum Edward 2 3 2 3 2 2 1994

Reddy Raj 3 3 3 3 2 2 2 1994

Hartmanis Juris 2 3 2 3 2 2 1993

Stearns Richard 4 3 3 3 2 2 1993

Lampson Butler 4 4 4 4 3 3 3 1992

Milner Robin 4 4 4 4 4 4 4 1991

Corbato Fernando 3 2 1 1 1 1 1990

Kahan William 3 3 3 2 2 2 2 1989

Sutherland Ivan 3 3 3 2 2 2 2 1988

Cocke John 3 3 3 2 2 2 2 1987

Hopcroft John 4 4 4 4 4 4 4 1986

Tarjan Robert 4 4 4 4 4 4 1986

Karp Richard 4 3 4 4 4 4 1985

Wirth Niklaus 4 4 4 4 3 3 3 1984

Thompson Ken 2 3 3 2 2 2 1 1983

Ritchie Dennis 4 4 3 3 2 2 2 1983

Cook Steve 3 4 4 4 3 3 3 1982

Codd Edgar 4 4 4 3 3 2 2 1981

Hoare Tony 4 4 4 4 4 4 1980

Floyd Robert 4 3 3 3 2 2 1978

Backus John 3 3 3 2 2 2 1977

Rabin Michael 3 3 3 3 3 3 1976

Scott David 3 3 2 3 2 2 1976

Newell Allen 4 4 4 4 4 1975

Simon Herbert 4 4 4 4 1975

Knuth Donald 4 4 4 4 4 4 1974

Backman Charles 3 2 2 1 1 1 1 1973

Dijkstra Edsger 4 4 4 4 4 1972

McCarthy John 3 3 3 3 3 3 1971

Wilkinson James 3 2 3 2 2 2 1970

Minsky Marvin 3 3 3 3 3 2 1969

Hamming Richard 2 2 2 2 1968

Wilkes Maurice 4 1967

Perlis Alan 3 2 3 2 2 2 1966

Table 4: Cluster membership for scientists that
have won the Turing award.

ysis purposes and it is based on established dimension-
ality reduction and clustering algorithms with the addi-
tion of proposed heuristics and metrics to allow for an
automated and unified over time ranking to be achieved.
The identified as top scientists based on their cluster
memberships through the years are in accordance to the
ones who have won discipline-specific (i.e., E. F. Codd)
and generic awards (i.e., Turing).
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