
A Latency-based Object Placement Approach in Content Distribution
Networks

George Pallis, Athena Vakali, Konstantinos Stamos, Antonis Sidiropoulos, Dimitrios Katsaros,
Yannis Manolopoulos

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
gpallis@ccf.auth.gr, { avakali, kstamos, asidirop, dkatsaro, manolopo}@csd.auth.gr

Abstract
Content Distribution Networks (CDNs) are

increasingly being used to disseminate data in today's
Internet. The growing interest in CDNs is motivated by
a common problem across disciplines: how does one
reduce the load on the origin server and the traffic on
the Internet, and ultimately improve response time to
users? In this direction, crucial data management
issues should be addressed. A very important issue is
the optimal placement of the outsourced content to
CDN’s servers. Taking into account that this problem
is NP complete, an heuristic method should be
developed. All the approaches developed so far assume
the existence of adequate popularity statistics. Such
information though, is not always available, or it is
extremely volatile, turning such methods problematic.
This paper develops a network-adaptive, non-
parameterized technique to place the outsourced
content to CDN’s servers, which requires no a-priori
knowledge of request statistics. We place the
outsourced objects to these servers with respect to the
network latency that each object produces. Through a
detailed simulation environment, using both real and
synthetic data, we show that the proposed technique
can yield up to 25% reduction in user-perceived
latency, compared with other heuristic schemes which
have knowledge of the content popularity.

1. Introduction

The Web has evolved rapidly from a simple
information-sharing mechanism offering only static
text and images to a rich assortment of dynamic and
interactive services, such as video/audio conferencing,
e-commerce, and distance learning. The explosive
growth of the Web has imposed a heavy demand on
networking resources and Web servers. Users often

experience long and unpredictable delays when
retrieving Web pages from remote sites. For instance,
in networked online games a game player’s gaming
experience is negatively affected by large propagation
delays. Hence, an obvious solution in order to improve
the quality of Web services would be the increase of
the bandwidth, but such a choice involves increasing
economic cost. However, the higher bandwidth would
solve temporarily the problems since it would ease the
users to create more and more resource-hungry
applications, bunching again the network. Therefore,
the network limitations will remain or worsen unless
effective software solutions are also provided.

Traditional methods to cure this situation include
caching [7] (temporary storage of objects closer to the
consumer) and prefetching [11] (the process of
predicting future requests for Web objects and
bringing those objects into the cache in the
background, before an explicit request is made for
them). Although, these methods offer several benefits
(reduced network traffic, shorter response times) the
content access is problematic, because it does not
improve availability during “flash crowd events”1 and
can not resolve the performance problems related to
Web server processing and Internet delays [5].

In this framework, the Content Distribution
Networks (CDNs), [12, 15] are targeted to resolve such
problems, by moving the content to the “edge” of the
Internet, closer to the end-user. With the “key” content
outsourced as well as the “key” content placement, the
load on the origin server is reduced, the connection
from a local content delivery server is shorter than
between the origin Web server and the user, thus

1 The flash crowd event occurs when numerous users access a Web
site simultaneously, such as the one occurred in September 11th
2001 when users flooded popular news sites (with requests about the
terrorist attack in the US), and results in serious caching problems.

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

reducing latency, and since many users share the
CDN’s servers, this service greatly increases the hit
ratio. In this paper, we focus on finding an effective
policy for placing the outsourced content to a CDN
infrastructure.

The rest of the paper is organized as follows:
Section 2 reviews the related work and Section 3
outlines the motivation and contribution of this work.
Section 4 formulates the problem, whereas the
proposed object replication strategy is described in
Section 5. In Sections 6 and 7, the simulation testbed
is described and the performance evaluation of the
proposed scheme is shown. Finally, Section 8
concludes the paper.

2. Related Work

2.1. Content Distribution Network

A CDN (such as Akamai2, Mirror Image3 etc.) is a
network of cache servers, called surrogate servers,
owned by the same Internet Service Provider (ISP) that
delivers content to users on behalf of content
providers. Surrogate servers are typically shared,
delivering content belonging to multiple Web sites,
though all servers may not be used for all sites. The
networking functional components of a CDN include
user redirection services for directing user to the
closest or best cache server, distribution services for
intelligently distributing content to users or cache, and
accounting and billing system for measuring, logging
and billing customers based on usage.

2.2. CDNs Schemes

Each end-user sends requests for Web objects to its
nearest surrogate server in the CDN. The specific
details of how to handle a cache miss (i.e., the policy
that determines whether to fetch the object from
another surrogate server or the origin server) and the
meta-data information required at the surrogate server
to make such decisions are CDN-dependent. Similarly,
issues such as organization of the CDN into a
hierarchy or surrogate server groups, the degree of
cooperation among surrogate servers to service user
requests, the policies used to determine a suitable
surrogate server to serve a particular end-user are also
CDN-specific. Up to now, three distinct content
distribution policies have appeared in the context of
the CDNs:

2 http://www.akamai.org
3 http://www.mirror-image.com

Uncooperative pull-based: The clients' requests
are directed (by using either DNS redirection or
URL rewriting mechanisms) to their closest
surrogate server. If there is a cache miss (i.e, the
requested content is not found), the request is
directed either to a peering surrogate server of the
underlying CDN or to the origin server. A
problem in this practice is that CDNs do not
always choose the optimal server from which to
serve the content (as pointed out in [15]).
Moreover, there is excessive replication cost, in
terms of number of replicas [16]. However, many
popular CDN’s providers use uncooperative
pulling (e.g. Akamai, Digital Island etc.).
Cooperative pull-based: As previous, the clients'
requests are directed to their closest surrogate
server. The key in the cooperative pull-based
schemes is that the surrogate servers are
cooperating with each other in case of cache
misses. Specifically, using a distributed index, the
surrogate servers find nearby copies of requested
objects, and store them in their caches [1].
Cooperative push-based: The content is pushed
(proactively) from the origin Web server to
CDNs’ surrogate servers. Initially, the content is
prefetched to the surrogate servers and then, the
surrogate servers cooperate in order to reduce the
replication and update cost. In this scheme, the
CDN maintains a mapping between content and
surrogate servers, and each request is directed to
the closest surrogate server. This server may or
may not have a replica of the requested object. If it
has, the request is served locally, incurring no
traffic over the network backbone. Otherwise, it
forwards the request to the closest server that has
the object replica and relays the response to the
client. In this case, the indirect request service
generates traffic over the network backbone
between the two servers involved in the operation.
A key advantage of this scheme is that the
surrogate servers can efficiently share the
bandwidth. On the other hand, an over-aggressive
cooperative push-based scheme may cause
excessive network traffic.

2.3. CDNs Challenges

The most important problems related to content
management on CDNs and the solutions which have
been proposed can be summarized as follows:

Replica/Surrogate server placement problem:
In order to deliver content to end users with

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

quality of service (QoS) guarantees, CDN
administrators must ensure that surrogate servers
are strategically placed across the Web. Generally,
the problem is to place N surrogate servers among
M different sites (M > N) in a way that yields the
lowest cost (widely known as the Minimum K-
Median problem). A number of previous works
have studied how to efficiently place the surrogate
servers on the network. In this context, several
placement algorithms have been proposed (such as
Greedy - incrementally places replicas, Hot Spot -
places replicas near the clients generating the
greatest load [13], Tree-based replicas- based on
the assumption that the underlying topologies are
trees [9], HotZone- a latency-driven replica
placement [14] etc.). These algorithms specify the
locations of the surrogate servers, in order to
achieve improved performance (with low
infrastructure cost) and earlier experimentation
[13] has shown that the Greedy placement strategy
can yield close to optimal performance.
Content selection problem: is to determine which
content should be outsourced. A “naïve” idea
would be to replicate the entire content of a Web
site on surrogate servers. However, such a solution
is not feasible/practical because, although disk
prices are continuously dropping, the sizes of Web
objects increase as well (e.g., Video On Demand,
Audio). Moreover, the problem of updating such a
huge collection of Web objects is unmanageable.
In this framework, the practice of replicating the
Web content in units of content clusters is mainly
used [2].
Content replication problem: It refers to the
problem of optimally replicating the outsourced
content in surrogate servers of a CDN. Under a
CDN’s infrastructure (with a given set of
surrogate servers) and a chosen content for
delivery it is crucial to determine in which
surrogate servers the outsourced content should be
replicated. Authors in [6] conclude that Greedy-
Global heuristic algorithms are the best choice in
making the replication decisions between
cooperating surrogate servers.

3. Motivation and Paper’s Contribution

In this paper, we study the content replication
problem. Authors in [6] have shown that this problem
is NP complete. In particular, they have proved that it
is identical to the well-known NP-complete knapsack
problem [4]. In this framework, the authors used four
heuristics methods: 1) random, 2) popularity, 3)
greedy-single, and finally 4) greedy-global.

Apart from the naive, unscalable approach, where
the outsourced objects are placed randomly to
surrogate servers, the other approaches require
popularity statistics. However, the use of those
statistics has several drawbacks. Firstly, it requires
quite a long time to collect reliable request statistics for
each object. Such a long interval though may not be
available, when a new site is published to the Internet
and should be protected from flash crowds. Moreover,
as authors in [2] report, the popularity of each object
varies considerably; for the WorldCup'98 trace, only
40% of the “popular” objects of the one day remain
“popular” and the next day. Furthermore, the use of
administratively tuned parameters to select the hot
outsourced objects, or decide the number of clusters
causes additional headaches, since there is no a-priori
knowledge about where to set the popularity threshold
or how many clusters of objects exist. In addition, the
greedy approaches are not feasible to implement on
real applications, due to their high complexity4.

Another motivation of this work is to study the
content replication problem under an analytic CDN
simulation model which considers both the network
traffic and the server load. Until now, the most
noteworthy work [6], which has studied this problem,
does not take into account several critical factors, such
as the bottlenecks that are likely to occur in the
network, the number of sessions that can serve each
network element (e.g. router, surrogate server) etc.
Thus, the results that the authors presented in [6] may
be misleading (they measure the number of traversed
nodes (hops) without considering the TCP/IP network
infrastructure). Therefore, the motivation for us is to
develop a flexible simulation model that simulates in
great detail the TCP/IP protocol as well as the main
characteristics of a cooperative push-based CDN
infrastructure model5. Specifically, the main benefit of
a detailed CDN simulation model is that it gives a
(closely) realistic view to the CDNs’ developers about
which will be the profits for both the CDNs’ providers
and CDNs’ customers if the proposed approach adapts
to a real CDN’s provider (e.g. Akamai).

Thus, we introduce a self-tunable strategy, which
will not exploit popularity statistics and will not use
any administratively set parameters to optimally
replicate the outsourced objects to surrogate servers. In
the context of this problem, the present paper makes
the following contributions:

4 Because of the huge memory requirements, authors in [6] reported
that they could not run all the experiments for the greedy heuristic
policies.
5 We use the cooperative-push based policy since it has been proved
to have the best results [6].

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

We formulate the content replication problem for a
cooperative push-based scheme.
We provide a novel, self-tuning, parameterless
strategy for optimally placing outsourced objects
in CDN’s surrogate servers, which is based on
network latency.
We develop an analytic simulation environment to
test the efficiency of the proposed latency-based
scheme. Using real and synthetically generated
test data, we show the robustness and efficiency of
the proposed method which can reap performance
benefits better than an analogous heuristic method
which has a priori knowledge of the object
popularity statistics.

4. Problem Formulation

Here, we formulate the content replication problem
for cooperative-push based over CDNs. Therefore, we
consider a popular Web site that signs a contract with a
CDN’s provider with N surrogate servers, each of
which acts as an intermediary between the servers and
the end-users. We further assume that the surrogate
server i has Si bytes of storage capacity, where

},...,1{ Ni .

In order to formulate the placement’s cost function,
we assume that we have K outsourced objects. Each
object k has a size of sk, where },...,1{ Kk . In this

context, we define a variable which determines if an
object k is stored to surrogate server k.

)1(
0

1

otherwise

isurrogateatstorediskobjectif
f ik

The storage is subject to the constraint that the
space available at surrogate server i is bounded by

K

k
iikk Sfs

1

, where },...,1{ Ni .

Considering that all the outsourced objects are
initially placed on an origin server (the initial
placement is denoted by xo), the content replication
problem is to select the optimal placement x (defines
the placement of outsourced objects to CDN’s
surrogate servers) such that it minimizes:

N

i

K

k
ikN

j
j

ik xD
p

xt
1 1

1

)()(cos (2),

where)(xDik is the “distance”6 to a replica of object

k from surrogate server i under the placement x, i is

the request rate for surrogate server i, and kp is the

probability that a client will request the object k7.
However, as it has been proved in [6], this problem

is NP complete (it is similar to the NP-complete
knapsack problem), which means that for a large
number of outsourced objects and surrogate servers is
not feasible to solve this problem optimally. In this
context, we propose a new heuristic strategy where its
criterion is the overall latency of the network. We
name this algorithm latency-based object placement in
CDNs, in short Lat-cdn.

5. The Lat-cdn Algorithm

The main idea is to place the outsourced objects to
surrogate servers with respect to the total network’s
latency, which is produced by these objects, without
taking into account the objects’ popularity. Therefore,
the distance D(x) in equation 2 reflects the latency.

In this framework, each surrogate server maintains a
cache that is typically stored on disk. Upon receiving a
request, the surrogate server services the request from
the local cache (in the event of a cache hit) or by
fetching the requested object from another surrogate
server or the origin server (in the event of a cache
miss). Here, we make the assumption that the surrogate
servers are collaborating and each one knows a priori
what content is cached to all the other surrogate servers
that belong to the same CDN (via the CDN’s
distribution system8). In addition, we consider that the
Web objects fetched upon a cache miss are not inserted
into the cache for servicing future requests.

Initially all the outsourced objects are stored in the
origin server and all the CDN’s surrogate servers are
empty. For each outsourced object, we find which is
the best surrogate server in order to place it (produces
the minimum network latency). Then, we select from
all the pairs of outsoursed object – surrogate server
that have been occurred in the previous step, the one
which produces the largest network latency, and thus
place this object to that surrogate server. The above
process is iterated until all the surrogate servers
become full. As a result, an outsourced object may be

6 The distance may reflect several metrics such as the number of
traversed nodes (hops), the latency, servers’ load etc.
7 For simplicity, we assume that the client request patterns are

homogenous. Therefore, the values of kp are the same for all the

surrogate servers.
8 It is a collection of network elements that support distribution for a
CDN [15].

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

assigned to several surrogate servers, but a surrogate
server will have at maximum one copy of an
outsourced object. Concerning the complexity of the
Lat-cdn is polynomial. In order to by-pass this
problem, we may use clusters of objects [2]. The
detailed algorithm is described in pseudo-code in
Figure 1.

Lat-cdn
{

Input:
obj[1…K] //outsourced objects
ss[1…N] //surrogate servers
Output:
a placement x of outsourced objects to surrogate

servers

while (there is free cache space on surrogate servers)
{
 for (k=1; k<=K; k++)
 {
 min[obj[k]]= ;
 for (n=1; n<=N; n++)
 if (free cache size of ss[n] <= size obj[k]

&& obj[k] does not exist in ss[n])
 {
 place obj[k] to ss[n];
 find the cost(obj[k],ss[n]);
 if (cost(obj[k],ss[n])<min[obj[k]]) //find

the minimum cost
 min[obj[k]]=cost(obj[k],ss[n]);
 }
 }
 for (k=1; k<=K; k++)
 find the maximum of min[obj[k]];
 placement (object y, surrogate server z); //place the

object y to surrogate server z which has the maximum
value of minimum costs.
 }
}

Figure 1. The Lat-cdn Algorithm

6. Simulation Testbed

To evaluate the proposed methods we use trace-
driven simulations developing an analytic simulation
environment, which includes the following: a) a system
model simulating the CDN infrastructure, b) a network
topology generator, c) a Web site generator, modeling
file sizes, linkage, etc., and d) a client request stream
generator capturing the main characteristics of Web
users' behavior.

6.1. System Model

We have implemented a simulation model for
CDNs using the ParaSol library9, which is a parallel
discrete event simulation system. We consider a CDN
infrastructure consisting of N=20 surrogate servers.
We assume the case of homogeneous servers (all the
servers have the same storage capacity). Then, we
group the users based on their domains. The number of
client groups is equal to the number of surrogate
servers. Thus, each client group is connected with only
one surrogate server and contains a few thousands
clients. All CDN networking issues, like surrogate
server selection, propagation, queuing, bottlenecks and
processing delays are computed dynamically via the
simulation model, which provides an implementation
as close as possible to the working TCP/IP protocol,
implementing packet switching, packet retransmission
upon misses, etc. Finally, in order to efficiently
manage the outsourced objects stored in surrogate
servers, we modeled their disks using the Bloom
filters, as in [8].

6.2. Network Topology

Using the GT-ITM internetwork topology generator
[17], we generated a random network topology, called
Waxman, with a total of 1008 nodes. Specifically, in
Waxman model, the nodes are randomly assigned to
locations on a plane, but an edge is created between a

pair of node u and v with probability L

d

evuP),(,

where vud , L is the maximum Euclidean

distance between any two vertices, 0 and 1.

Furthermore, we constructed an AS-level Internet
topology with a total of 3037 nodes, using BGP
routing data collected from a set of 7 geographically-
dispersed BGP peers in April 2000.

6.3. Web Site Generation

In order to generate the outsourced objects, we used
artificially generated Web graphs, constructed by the
R-MAT tool [3]. The R-MAT produces realistic Web
graphs capturing the essence of each graph in only a
few parameters. In this framework, we create two
graphs with varying number of nodes (objects).
Specifically, the sparse-density graph has 4000 nodes,
and a moderate-density graph consists of 3000 nodes.

9 http://www.cs.purdue.edu/research/PaCS/parasol.html

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Finally, we should also assign a size for each node (a
node represents a Web object), since the R-MAT
model gives us only the nodes which are inter-
communicated with each other. For this task we have
used the log-t distribution as described in [10]. The
total objects’ sizes for sparse graph and the moderate
graph are 746 MB and 1022 MB respectively.

6.4. Request Streams Generation

The workloads to the above Web graphs are streams
of requests, called client transactions. To generate
transactions, we used the generator described in [11],
which given a Web site graph, generates transactions
as sequences of page traversals (random walks) upon
the site graph. After producing the transactions, we
follow three steps in order to convert them to a log file.

Step 1. We define the number of clients and
distribute the transactions to the clients, so that
each client will make at least one transaction).
Step 2. We define the time window that the
transactions will be spread out; the length of the
window determines how “heavy” or “light” the
system load is. The default value that we used is
one week.
Step 3. For each transaction, repeat the following:

o Step 3a. Assign a client who has made no
transactions yet to the current transaction.
If such a client does not exist, we select a
client at random.

o Step 3b. A random timestamp is selected
uniformly within the time window. This
timestamp determines the starting time of
the transaction. The time interval between
two successive requests of the same
transaction is selected uniformly with an
average of 2 minutes.

7. Performance Evaluation

In our experiments, we use the average response
time measure in order to evaluate our proposed
scheme. In practice, we compute the elapsed time
between when a user issues a request and when it
receives the response; it measures the user satisfaction
and it should be as small as possible.

7.1. Examined Methods

In order to evaluate the proposed algorithm, we
examine also the following heuristics:

Random: Assigns the outsourced objects to
CDN’s surrogate servers randomly subjected to

the storage constraints. Both the outsourced object
and the surrogate server are selected by uniform
probability. If the surrogate server already stores
that object, a new object and a new surrogate
server are selected. This heuristic plays the role of
the baseline for our experiments.
Popularity: Each surrogate server stores the most
popular outsourced objects among its clients. The
node sorts the objects in decreasing order of
popularity and stores as many outsourced objects
in this order as the storage constraint allows. The
surrogate server estimates the popularities by
observing the requests it receives from its clients.

7.2. Lat-cdn for Typical Object Sizes

Based on our testbed, we performed an analytic
investigation of the performance of the proposed
object replication method, Lat-cdn, with the
aforementioned methods. We performed extensive
experiments with various graph sizes (in terms of
number of vertices and edges), with various client
populations and request patterns, etc. Due to the
interest of space, in this paper we present only a small
selection of the result obtained.

AS Network Topology - Moderate Graph

0

0,05

0,1

0,15

0,2

0,25

1% 3% 5% 10%

Cache Size

A
v
g

.
R

e
s
p

o
n

s
e
 T

im
e

Popularity

Random

Lat-cdn

Waxman Network Topology - Moderate Graph

0

0,05

0,1

0,15

0,2

0,25

0,3

1% 3% 5% 10%

Cache Size

A
v
g

.
R

e
s
p

o
n

s
e
 T

im
e

Popularity

Random

Lat-cdn

Figure 2. Average Response Time for

Moderate-density Web Graphs (3000 objects)

Our first experiment demonstrates the average
response time for the moderate-density Web graph
(3000 outsourced objects) on both network topologies

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

with respect to surrogate servers’ cache size.
Specifically, the size of the cache is expressed in terms
of the percentage of the total number of bytes of the
Web site. The results of this set of experiments are
reported in Figure 2. The x-axis represents the cache
size of CDN’s surrogate servers, while the y-axis
represents the average response time. From this Figure,
it can be seen that the Lat-cdn approach, gives the best
response times for both network topologies. The
second best is the Popularity, which is followed closely
by Random. Furthermore, we observe that as the cache
size increases, the average response time also
increases. Although it looks quite strange at first sight
(one may expect to have lower times), it is explained
by the fact that the larger in size caches may satisfy
more requests. Thus, the average response time is
increased, as the size of surrogate servers’ caches
increases.

AS Network Topology - Sparse Graph

0

0,05

0,1

0,15

0,2

0,25

0,3

1% 3% 5% 10%

Cache Size

A
v
g

.
R

e
s
p

o
n

s
e
 T

im
e

Popularity

Random

Lat-cdn

Waxman Network Topology - Sparse Graph

0

0,05

0,1

0,15

0,2

0,25

0,3

1% 3% 5% 10%

Cache Size

A
v
g

.
R

e
s
p

o
n

e
 T

im
e

Popularity

Random

Lat-cdn

Figure 3. Average Response Time for Sparse-

density Web Graphs (4000 objects)

In Figure 3, we plot the results from experiments
with 4000 outsourced objects (sparse-density Web
graph). The results are very similar to the results from
the previous experiment. In general, for both network
topologies, the Lat-cdn outperforms all the other
heuristics, whereas Popularity and Random are very
close.

7.3. Lat-cdn Limitations

We further conclude the evaluation by reporting on
some experiments conducted using outsourced objects
from a real Web site. The real Web site we used is the
Stanford Web site from a September 2002 crawl10 that
consists of 281903 Web objects. Note, that the network
topologies, client populations and request stream
generation are the same as with synthetic data.

Our experiment demonstrates the average response
time for AS network topology. The results are reported
in Figure 4. As previous, the x-axis represents the
cache size of CDN’s surrogate servers, while the y-axis
represents the average response time. Notice that in
this experiment we use a different scale for the cache
sizes (compared with the previous ones) due to the
large amount of objects of the Stanford Web site. From
this Figure, it can be seen that the Lat-cdn outperforms
all the other approaches. The only exception is when
the surrogate servers have very small cache sizes,
where the Popularity has the best performance.
Another observation that we make is that the response
times are too small. The reason is that the majority of
objects of Stanford Web site have very small sizes.

AS Network Topology - Stanford Web site

0,06

0,061

0,062

0,063

0,064

0,065

0,1% 0,3% 0,5% 1%

Cache Size

A
v
g

.
R

e
s
p

o
n

e
 T

im
e

Popularity

Random

Lat-cdn

Figure 4. Average Response Time for Real

Web Site

In general, from our results, we can conclude that
the best performance is obtained by the Lat-cdn
heuristic, taking into account the surrogate servers are
cooperated with each other. The difference in
performance between Lat-cdn and the other two
heuristics is quite significant especially for artificial
Web sites (ranges from 6% to 25%), which have on
average larger objects in size than the Stanford Web
site. Despite the low improvement rates on Stanford
Web site, the Lat-cdn is still in most cases beneficial.
In this context, it should be noticed that the role of
CDNs is focused on improving the QoS of the

10 It is available at http://www.stanford.edu/
~sdkamvar/ research.html

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

explosive growth of resource-hungry applications in
Web sites, such as Digital Television, Interactive TV,
Video On Demand (VOD), etc. Therefore, the
medium to large size objects are of interest in the Lat-
cdn context.

8. Conclusions

In this paper, we addressed the content replication
problem for CDNs. Differently from all other relevant
heuristics approaches, we refrained from using any
request statistics in determining in which surrogate
servers to place the outsourced objects. Our goal is to
find an efficient placement so that when clients fetch
objects from the nearest surrogate server, the average
response time is minimized. Implementing a detailed
simulation environment, the CDNs’ developers may
have a (closely) realistic view about which will be the
profits for both the CDNs’ providers and CDNs’
customers if the proposed approach adapts to a real
CDN’s provider (e.g. Akamai). The results have shown
that the proposed algorithm outperforms the other
examined heuristic methods in a cooperative push-
based scheme. For the future we plan to investigate the
content replication problem in CDNs for uncooperative
pull-based schemes as well as for cooperative pull-
based schemes.

9. References
[1] S. Annapureddy, M. J. Freedman, and D. Mazières,
“Shark: Scaling File Servers via Cooperative Caching”,
Proceedings of the 2nd USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI),
Boston, USA, May 2005.
[2] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz,
“Efficient and Adaptive Web Replication using Content
Clustering”, IEEE Journal on Selected Areas in
Communications, 21(6), Aug. 2003, pp. 979-994.
[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
Recursive Model for Graph Mining”, Proceedings of the 4th
SIAM International Conference on Data Mining, Orlando,
Florida, USA, 2004.
[4] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-Completeness”,
Freeman, New York, 1979.
[5] Y. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash
Crowds and Denial of Service Attacks: Characterization and
Implications for CDNs and Web Sites”, Proceedings of the
11th International World Wide Web Conference (WWW),
Honolulu, Hawaii, USA, May 2002, pp. 293–304.

[6] J. Kangasharju, J. Roberts, and K. W. Ross, “Object
Replication Strategies in Content Distribution Networks”,
Computer Communications, 25(4), Apr. 2002, 367-383.
[7] D. Katsaros and Y. Manolopoulos, “Caching in Web
Memory Hierarchies”, Proceedings of the ACM Symposium
on Applied Computing, Nicosia, Cyprus, Mar. 2004, pp.
1109-1113.
[8] P. Kulkarni and P. Shenoy, “Scalable Techniques for
Memory-efficient CDN Simulations”, Proceedings of the
12th International World Wide Web Conference (WWW),
Hungary, May 2003, pp. 609-618.
[9] B. Li, M. J. Golin, G. F. Ialiano, and X. Deng, “On the
Optimal Placement of Web Proxies in the Internet”,
Proceedings of the Conference on Computer
Communications, 18th Annual Joint Conference of the IEEE
Computer and Communications Societies, Networking the
Next Generation (IEEE INFOCOM), New York, USA, Mar.
1999, pp.1282-1290.
[10] M. Mitzenmacher and B. Tworetzky, “New Models and
Methods for File Size Distributions”, Proceedings of the 41th
Annual Allerton Conference on Communication, Control,
and Computing, Illinois, USA, Oct. 2003, pp. 603-612.
[11] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A
Data Mining Algorithm for Generalized Web Prefetching”,
IEEE Transactions on Knowledge Data Engineering, 15(5),
May 2003, pp. 1155-1169.
[12] G. Pallis and A. Vakali, “Insight and Perspectives for
Content Delivery Networks”, Communications of the ACM
(CACM), to appear.
[13] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On
the Placement of Web Server Replicas”, Proceedings of the
Conference on Computer Communications, 20th Annual
Joint Conference of the IEEE Computer and
Communications Societies, Networking the Next Generation
(IEEE INFOCOM), Anchorage, Alaska, USA, Apr. 2001, pp.
1587-1596.
[14] M. Szymaniak, G. Pierre, and M. Van Steen, “Latency-
Driven Replica Placement”, Proceedings of the International
Symposium on Applications and the Internet (SAINT),
Trento, Italy, Feb. 2005, pp. 399-405.
[15] A. Vakali and G. Pallis, “Content Delivery Networks:
Status and Trends”, IEEE Internet Computing, 7(6), 2003,
pp. 68-74.
[16] H. Yu and A. Vahdat, “Minimal Replication Cost for
Availability”, Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing (PODC),
Monterey, California, USA, Jul. 2002, pp. 98-107.
[17] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to
Model an Internetwork”, Proceedings of the Conference on
Computer Communications, 15th Annual Joint Conference of
the IEEE Computer and Communications Societies,
Networking the Next Generation (IEEE INFOCOM), San
Francisco, USA, Mar. 1996, pp. 594-602.

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

